65,830 research outputs found

    Cortical lamina-dependent blood volume changes in human brain at 7T

    Get PDF
    Cortical layer-dependent high (sub-millimeter) resolution functional magnetic resonance imaging (fMRI) in human or animal brain can be used to address questions regarding the functioning of cortical circuits, such as the effect of different afferent and efferent connectivities on activity in specific cortical layers. The sensitivity of gradient echo (GE) blood oxygenation level-dependent (BOLD) responses to large draining veins reduces its local specificity and can render the interpretation of the underlying laminar neural activity impossible. The application of the more spatially specific cerebral blood volume (CBV)-based fMRI in humans has been hindered by the low sensitivity of the noninvasive modalities available. Here, a vascular space occupancy (VASO) variant, adapted for use at high field, is further optimized to capture layer-dependent activity changes in human motor cortex at sub-millimeter resolution. Acquired activation maps and cortical profiles show that the VASO signal peaks in gray matter at 0.8–1.6 mm depth, and deeper compared to the superficial and vein-dominated GE-BOLD responses. Validation of the VASO signal change versus well-established iron-oxide contrast agent based fMRI methods in animals showed the same cortical profiles of CBV change, after normalization for lamina-dependent baseline CBV. In order to evaluate its potential of revealing small lamina-dependent signal differences due to modulations of the input-output characteristics, layer-dependent VASO responses were investigated in the ipsilateral hemisphere during unilateral finger tapping. Positive activation in ipsilateral primary motor cortex and negative activation in ipsilateral primary sensory cortex were observed. This feature is only visible in high-resolution fMRI where opposing sides of a sulcus can be investigated independently because of a lack of partial volume effects. Based on the results presented here, we conclude that VASO offers good reproducibility, high sensitivity and lower sensitivity than GE-BOLD to changes in larger vessels, making it a valuable tool for layer-dependent fMRI studies in humans

    Cerebral atrophy in mild cognitive impairment and Alzheimer disease: rates and acceleration.

    Get PDF
    OBJECTIVE: To quantify the regional and global cerebral atrophy rates and assess acceleration rates in healthy controls, subjects with mild cognitive impairment (MCI), and subjects with mild Alzheimer disease (AD). METHODS: Using 0-, 6-, 12-, 18-, 24-, and 36-month MRI scans of controls and subjects with MCI and AD from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, we calculated volume change of whole brain, hippocampus, and ventricles between all pairs of scans using the boundary shift integral. RESULTS: We found no evidence of acceleration in whole-brain atrophy rates in any group. There was evidence that hippocampal atrophy rates in MCI subjects accelerate by 0.22%/year2 on average (p = 0.037). There was evidence of acceleration in rates of ventricular enlargement in subjects with MCI (p = 0.001) and AD (p < 0.001), with rates estimated to increase by 0.27 mL/year2 (95% confidence interval 0.12, 0.43) and 0.88 mL/year2 (95% confidence interval 0.47, 1.29), respectively. A post hoc analysis suggested that the acceleration of hippocampal loss in MCI subjects was mainly driven by the MCI subjects that were observed to progress to clinical AD within 3 years of baseline, with this group showing hippocampal atrophy rate acceleration of 0.50%/year2 (p = 0.003). CONCLUSIONS: The small acceleration rates suggest a long period of transition to the pathologic losses seen in clinical AD. The acceleration in hippocampal atrophy rates in MCI subjects in the ADNI seems to be driven by those MCI subjects who concurrently progressed to a clinical diagnosis of AD

    Born too early and too small: higher order cognitive function and brain at risk at ages 8–16

    Get PDF
    Prematurity presents a risk for higher order cognitive functions. Some of these deficits manifest later in development, when these functions are expected to mature. However, the causes and consequences of prematurity are still unclear. We conducted a longitudinal study to first identify clinical predictors of ultrasound brain abnormalities in 196 children born very preterm (VP; gestational age 32 weeks) and with very low birth weight (VLBW; birth weight 1500 g). At ages 8–16, the subset of VP-VLBW children without neurological findings (124) were invited for a neuropsychological assessment and an MRI scan (41 accepted). Of these, 29 met a rigorous criterion for MRI quality and an age, and gender-matched control group (n = 14) was included in this study. The key findings in the VP-VLBW neonates were: (a) 37% of the VP-VLBW neonates had ultrasound brain abnormalities; (b) gestational age and birth weight collectively with hospital course (i.e., days in hospital, neonatal intensive care, mechanical ventilation and with oxygen therapy, surgeries, and retinopathy of prematurity) predicted ultrasound brain abnormalities. At ages 8–16, VP-VLBW children showed: a) lower intelligent quotient (IQ) and executive function; b) decreased gray and white matter (WM) integrity; (c) IQ correlated negatively with cortical thickness in higher order processing cortical areas. In conclusion, our data indicate that facets of executive function and IQ are the most affected in VP-VLBW children likely due to altered higher order cortical areas and underlying WMThis study was supported by the Spanish Government Institute Carlos III (FIS Pl11/02860), Spanish Ministry of Health to MM-L, and the University of Castilla-La Mancha mobility Grant VA1381500149

    Fuzzy Fibers: Uncertainty in dMRI Tractography

    Full text link
    Fiber tracking based on diffusion weighted Magnetic Resonance Imaging (dMRI) allows for noninvasive reconstruction of fiber bundles in the human brain. In this chapter, we discuss sources of error and uncertainty in this technique, and review strategies that afford a more reliable interpretation of the results. This includes methods for computing and rendering probabilistic tractograms, which estimate precision in the face of measurement noise and artifacts. However, we also address aspects that have received less attention so far, such as model selection, partial voluming, and the impact of parameters, both in preprocessing and in fiber tracking itself. We conclude by giving impulses for future research

    Quantitative pharmacologic MRI: Mapping the cerebral blood volume response to cocaine in dopamine transporter knockout mice

    Get PDF
    The use of pharmacologic MRI (phMRI) in mouse models of brain disorders allows noninvasive in vivo assessment of drug-modulated local cerebral blood volume changes (ΔCBV) as one correlate of neuronal and neurovascular activities. In this report, we employed CBV-weighted phMRI to compare cocaine-modulated neuronal activity in dopamine transporter (DAT) knockout (KO) and wild-typemice. Cocaine acts to block the dopamine, norepinephrine, and serotonin transporters (DAT, NET, and SERT) that clear their respective neurotransmitters from the synapses, helping to terminate cognate neurotransmission. Cocaine consistently reduced CBV, with a similar pattern of regional ΔCBV in brain structures involved inmediating reward in both DAT genotypes. The largest effects (−20% to −30% ΔCBV) were seen in the nucleus accumbens and several cortical regions. Decreasing response amplitudes to cocaine were noted in more posterior components of the cortico-mesolimbic circuit. DAT KO mice had significantly attenuated ΔCBV amplitudes, shortened times to peak response, and reduced response duration in most regions. This study demonstrates that DAT knockout does not abolish the phMRI responses to cocaine, suggesting that adaptations to loss of DAT and/or retained cocaine activity in other monoamine neurotransmitter systems underlie these responses in DAT KO mice

    Within-Subject Joint Independent Component Analysis of Simultaneous fMRI/ERP in an Auditory Oddball Paradigm

    Get PDF
    The integration of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) can contribute to characterizing neural networks with high temporal and spatial resolution. This research aimed to determine the sensitivity and limitations of applying joint independent component analysis (jICA) within-subjects, for ERP and fMRI data collected simultaneously in a parametric auditory frequency oddball paradigm. In a group of 20 subjects, an increase in ERP peak amplitude ranging 1–8 μV in the time window of the P300 (350–700 ms), and a correlated increase in fMRI signal in a network of regions including the right superior temporal and supramarginal gyri, was observed with the increase in deviant frequency difference. JICA of the same ERP and fMRI group data revealed activity in a similar network, albeit with stronger amplitude and larger extent. In addition, activity in the left pre- and post-central gyri, likely associated with right hand somato-motor response, was observed only with the jICA approach. Within-subject, the jICA approach revealed significantly stronger and more extensive activity in the brain regions associated with the auditory P300 than the P300 linear regression analysis. The results suggest that with the incorporation of spatial and temporal information from both imaging modalities, jICA may be a more sensitive method for extracting common sources of activity between ERP and fMRI

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5&nbsp;months post-injury, and again 12&nbsp;months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18&nbsp;years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5&nbsp;months post injury. We investigated how this subgroup (TBI-slow, N&nbsp;=&nbsp;11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N&nbsp;=&nbsp;10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18&nbsp;months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    Towards in vivo g-ratio mapping using MRI: unifying myelin and diffusion imaging

    Get PDF
    The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. This is the second review on the topic of g-ratio mapping using MRI. As such, it summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. Using simulations based on recently published data, this review demonstrates the relevance of the calibration step for three myelin-markers (macromolecular tissue volume, myelin water fraction, and bound pool fraction). It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the potential of many novel techniques yet to be investigated.Comment: Will be published as a review article in Journal of Neuroscience Methods as parf of the Special Issue with Hu Cheng and Vince Calhoun as Guest Editor

    fMRI of Healthy Older Adults During Stroop Interference

    Get PDF
    The Stroop interference effect, caused by difficulty inhibiting overlearned word reading, is often more pronounced in older adults. This has been proposed to be due to declines in inhibitory control and frontal lobe functions with aging. Initial neuroimaging studies of inhibitory control show that older adults have enhanced activation in multiple frontal areas, particularly in inferior frontal gyrus, indicative of recruitment to aid with performance of the task. The current study compared 13 younger and 13 older adults, all healthy and well educated, who completed a Stroop test during functional magnetic resonance imaging. Younger adults were more accurate across conditions, and both groups were slower and less accurate during the interference condition. The groups exhibited comparable activation regions, but older adults exhibited greater activation in numerous frontal areas, including the left inferior frontal gyrus. The results support the recruitment construct and suggest, along with previous research, that the inferior frontal gyrus is important for successful inhibition
    corecore