10 research outputs found

    Simulation-optimization models for the dynamic berth allocation problem

    Get PDF
    Container terminals are designed to provide support for the continuous changes in container ships. The most common schemes used for dock management are based on discrete and continuous locations. In view of the steadily growing trend in increasing container ship size, more flexible berth allocation planning is mandatory. The consideration of continuous location in the container terminal is a good option. This paper addresses the berth allocation problem with continuous dock, which is called dynamic berth allocation problem (DBAP). We propose a mathematical model and develop a heuristic procedure, based on a genetic algorithm, to solve the corresponding mixed integer problem. Allocation planning aims to minimise distances travelled by the forklifts and the quay crane, for container loading and unloading operations for each ship, according to the quay crane scheduling. Simulations are undertaken using Arena software, and experimental analysis is carried out for the most important container terminal in Spain

    Multicriteria Fuzzy Analysis for a GIS-Based Management of Earthquake Scenarios

    Get PDF
    Objective of this article is the formulation andthe implementation of a decision-making model for theoptimal management of emergencies. It is based on theaccurate definition of possible scenarios resulting fromprediction and prevention strategies and explicitly takesinto account the subjectivity of the judgments of prefer-ence. To this end, a multicriteria decision model, basedon fuzzy logic, has been implemented in a user-friendlygeographical information system (GIS) platform so asto allow for the automation of choice processes betweenseveral alternatives for the spatial location of the investi-gated scenarios. In particular, we have analyzed the po-tentialities of the proposed approach in terms of seismicrisk reduction, simplifying the decision process leadingto the actions to be taken from directors and managers ofcoordination services. Due to the large number of vari-ables involved in the decision process, it has been pro-posed a particularly flexible and streamlined method inwhich the damage scenarios, based on the vulnerabilityof the territory, have represented the input data to de-rive a vector of weights to be assigned to different de-cision alternatives. As an application of the proposedapproach, the seismic damage scenario of a region of400 km2, hit by the 2009 earthquake in L’Aquila (Italy),has been analyzed

    Water Distribution System Computer-Aided Design by Agent Swarm Optimization

    Full text link
    Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins.Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062S433448296Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156)Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221)Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysisDorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.xDuan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.xDupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.xZong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.xIzquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimizationIzquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.xJanson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49)Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic AlgorithmsNejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.xPark, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.xPinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.xRaich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.xRodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596)Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.xShafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.xVrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysisXie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.xXu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.

    Water Distribution System Computer-Aided Design by Agent Swarm Optimization

    Full text link
    Optimal design of water distribution systems (WDS), including the sizing of components, quality control, reliability, renewal and rehabilitation strategies, etc., is a complex problem in water engineering that requires robust methods of optimization. Classical methods of optimization are not well suited for analyzing highly-dimensional, multimodal, non-linear problems, especially given inaccurate, noisy, discrete and complex data. Agent Swarm Optimization (ASO) is a novel paradigm that exploits swarm intelligence and borrows some ideas from multiagent based systems. It is aimed at supporting decisionmaking processes by solving multi-objective optimization problems. ASO offers robustness through a framework where various population-based algorithms co-exist. The ASO framework is described and used to solve the optimal design of WDS. The approach allows engineers to work in parallel with the computational algorithms to force the recruitment of new searching elements, thus contributing to the solution process with expert-based proposals.This work has been developed with the support of the project IDAWAS, DPI2009-11591, of the Spanish Ministry of Education and Science, and ACOMP/2010/146 of the education department of the Generalitat Valenciana. The use of English was revised by John Rawlins.Montalvo Arango, I.; Izquierdo Sebastián, J.; Pérez García, R.; Herrera Fernández, AM. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering. 29(6):433-448. https://doi.org/10.1111/mice.12062433448296Adeli, H., & Kumar, S. (1995). Distributed Genetic Algorithm for Structural Optimization. Journal of Aerospace Engineering, 8(3), 156-163. doi:10.1061/(asce)0893-1321(1995)8:3(156)Afshar, M. H., Akbari, M., & Mariño, M. A. (2005). Simultaneous Layout and Size Optimization of Water Distribution Networks: Engineering Approach. Journal of Infrastructure Systems, 11(4), 221-230. doi:10.1061/(asce)1076-0342(2005)11:4(221)Amini, F., Hazaveh, N. K., & Rad, A. A. (2013). Wavelet PSO-Based LQR Algorithm for Optimal Structural Control Using Active Tuned Mass Dampers. Computer-Aided Civil and Infrastructure Engineering, 28(7), 542-557. doi:10.1111/mice.12017Arumugam, M. S., & Rao, M. V. C. (2008). On the improved performances of the particle swarm optimization algorithms with adaptive parameters, cross-over operators and root mean square (RMS) variants for computing optimal control of a class of hybrid systems. Applied Soft Computing, 8(1), 324-336. doi:10.1016/j.asoc.2007.01.010Badawy, R., Yassine, A., Heßler, A., Hirsch, B., & Albayrak, S. (2013). A novel multi-agent system utilizing quantum-inspired evolution for demand side management in the future smart grid. Integrated Computer-Aided Engineering, 20(2), 127-141. doi:10.3233/ica-130423Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(1), 41-51. doi:10.1007/bf00940812Dandy, G. C., & Engelhardt, M. O. (2006). Multi-Objective Trade-Offs between Cost and Reliability in the Replacement of Water Mains. Journal of Water Resources Planning and Management, 132(2), 79-88. doi:10.1061/(asce)0733-9496(2006)132:2(79)Díaz , J. L. Herrera , M. Izquierdo , J. Montalvo , I. Pérez-García , R. 2008 A particle swarm optimization derivative applied to cluster analysisDorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 26(1), 29-41. doi:10.1109/3477.484436Dridi, L., Parizeau, M., Mailhot, A., & Villeneuve, J.-P. (2008). Using Evolutionary Optimization Techniques for Scheduling Water Pipe Renewal Considering a Short Planning Horizon. Computer-Aided Civil and Infrastructure Engineering, 23(8), 625-635. doi:10.1111/j.1467-8667.2008.00564.xDuan, Q. Y., Gupta, V. K., & Sorooshian, S. (1993). Shuffled complex evolution approach for effective and efficient global minimization. Journal of Optimization Theory and Applications, 76(3), 501-521. doi:10.1007/bf00939380Duchesne, S., Beardsell, G., Villeneuve, J.-P., Toumbou, B., & Bouchard, K. (2012). A Survival Analysis Model for Sewer Pipe Structural Deterioration. Computer-Aided Civil and Infrastructure Engineering, 28(2), 146-160. doi:10.1111/j.1467-8667.2012.00773.xDupont, G., Adam, S., Lecourtier, Y., & Grilheres, B. (2008). Multi objective particle swarm optimization using enhanced dominance and guide selection. International Journal of Computational Intelligence Research, 4(2). doi:10.5019/j.ijcir.2008.134Fougères, A.-J., & Ostrosi, E. (2013). Fuzzy agent-based approach for consensual design synthesis in product configuration. Integrated Computer-Aided Engineering, 20(3), 259-274. doi:10.3233/ica-130434Fuggini, C., Chatzi, E., & Zangani, D. (2012). Combining Genetic Algorithms with a Meso-Scale Approach for System Identification of a Smart Polymeric Textile. Computer-Aided Civil and Infrastructure Engineering, 28(3), 227-245. doi:10.1111/j.1467-8667.2012.00789.xZong Woo Geem, Joong Hoon Kim, & Loganathan, G. V. (2001). A New Heuristic Optimization Algorithm: Harmony Search. SIMULATION, 76(2), 60-68. doi:10.1177/003754970107600201Giustolisi, O., Savic, D., & Kapelan, Z. (2008). Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. Journal of Hydraulic Engineering, 134(5), 626-635. doi:10.1061/(asce)0733-9429(2008)134:5(626)Goulter, I. C., & Bouchart, F. (1990). Reliability‐Constrained Pipe Network Model. Journal of Hydraulic Engineering, 116(2), 211-229. doi:10.1061/(asce)0733-9429(1990)116:2(211)Goulter, I. C., & Coals, A. V. (1986). Quantitative Approaches to Reliability Assessment in Pipe Networks. Journal of Transportation Engineering, 112(3), 287-301. doi:10.1061/(asce)0733-947x(1986)112:3(287)Gupta, R., & Bhave, P. R. (1994). Reliability Analysis of Water‐Distribution Systems. Journal of Environmental Engineering, 120(2), 447-461. doi:10.1061/(asce)0733-9372(1994)120:2(447)Gutierrez-Garcia, J. O., & Sim, K. M. (2012). Agent-based cloud workflow execution. Integrated Computer-Aided Engineering, 19(1), 39-56. doi:10.3233/ica-2012-0387Herrera, M., Izquierdo, J., Montalvo, I., García-Armengol, J., & Roig, J. V. (2009). Identification of surgical practice patterns using evolutionary cluster analysis. Mathematical and Computer Modelling, 50(5-6), 705-712. doi:10.1016/j.mcm.2008.12.026Hsiao, F.-Y., Wang, S.-H., Wang, W.-C., Wen, C.-P., & Yu, W.-D. (2012). Neuro-Fuzzy Cost Estimation Model Enhanced by Fast Messy Genetic Algorithms for Semiconductor Hookup Construction. Computer-Aided Civil and Infrastructure Engineering, 27(10), 764-781. doi:10.1111/j.1467-8667.2012.00786.xIzquierdo , J. Minciardi , R. Montalvo , I. Robba , M. Tavera , M. 2008a Particle swarm optimization for the biomass supply chain strategic planning 1272 80Izquierdo , J. Montalvo , I. Herrera , M. Pérez-García , R. 2012 A general purpose non-linear optimization framework based on particle swarm optimizationIzquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2008). Design optimization of wastewater collection networks by PSO. Computers & Mathematics with Applications, 56(3), 777-784. doi:10.1016/j.camwa.2008.02.007Izquierdo, J., Montalvo, I., Pérez, R., & Fuertes, V. S. (2009). Forecasting pedestrian evacuation times by using swarm intelligence. Physica A: Statistical Mechanics and its Applications, 388(7), 1213-1220. doi:10.1016/j.physa.2008.12.008Izquierdo , J. Montalvo , I. Pérez , R. Tavera , M. 2008b Optimization in water systems: a PSO approach 239 46Jafarkhani, R., & Masri, S. F. (2010). Finite Element Model Updating Using Evolutionary Strategy for Damage Detection. Computer-Aided Civil and Infrastructure Engineering, 26(3), 207-224. doi:10.1111/j.1467-8667.2010.00687.xJanson, S., Merkle, D., & Middendorf, M. (2008). Molecular docking with multi-objective Particle Swarm Optimization. Applied Soft Computing, 8(1), 666-675. doi:10.1016/j.asoc.2007.05.005Kalungi, P., & Tanyimboh, T. T. (2003). Redundancy model for water distribution systems. Reliability Engineering & System Safety, 82(3), 275-286. doi:10.1016/s0951-8320(03)00168-6Keedwell, E., & Khu, S.-T. (2006). Novel Cellular Automata Approach to Optimal Water Distribution Network Design. Journal of Computing in Civil Engineering, 20(1), 49-56. doi:10.1061/(asce)0887-3801(2006)20:1(49)Kennedy , J. Eberhart , R. C. 1995 Particle swarm optimization 1942 48Khomsi, D., Walters, G. A., Thorley, A. R. D., & Ouazar, D. (1996). Reliability Tester for Water-Distribution Networks. Journal of Computing in Civil Engineering, 10(1), 10-19. doi:10.1061/(asce)0887-3801(1996)10:1(10)KIM, H., & ADELI, H. (2001). DISCRETE COST OPTIMIZATION OF COMPOSITE FLOORS USING A FLOATING-POINT GENETIC ALGORITHM. Engineering Optimization, 33(4), 485-501. doi:10.1080/03052150108940930Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671Kleiner, Y., Adams, B. J., & Rogers, J. S. (2001). Water Distribution Network Renewal Planning. Journal of Computing in Civil Engineering, 15(1), 15-26. doi:10.1061/(asce)0887-3801(2001)15:1(15)Martínez-Rodríguez, J. B., Montalvo, I., Izquierdo, J., & Pérez-García, R. (2011). Reliability and Tolerance Comparison in Water Supply Networks. Water Resources Management, 25(5), 1437-1448. doi:10.1007/s11269-010-9753-2Montalvo Arango, I. (s. f.). Diseño óptimo de sistemas de distribución de agua mediante Agent Swarm Optimization. doi:10.4995/thesis/10251/14858Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2010). Improved performance of PSO with self-adaptive parameters for computing the optimal design of Water Supply Systems. Engineering Applications of Artificial Intelligence, 23(5), 727-735. doi:10.1016/j.engappai.2010.01.015Montalvo, I., Izquierdo, J., Pérez, R., & Iglesias, P. L. (2008). A diversity-enriched variant of discrete PSO applied to the design of water distribution networks. Engineering Optimization, 40(7), 655-668. doi:10.1080/03052150802010607Montalvo, I., Izquierdo, J., Pérez, R., & Tung, M. M. (2008). Particle Swarm Optimization applied to the design of water supply systems. Computers & Mathematics with Applications, 56(3), 769-776. doi:10.1016/j.camwa.2008.02.006Montalvo, I., Izquierdo, J., Schwarze, S., & Pérez-García, R. (2010). Multi-objective particle swarm optimization applied to water distribution systems design: An approach with human interaction. Mathematical and Computer Modelling, 52(7-8), 1219-1227. doi:10.1016/j.mcm.2010.02.017Moscato , P. 1989 On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic AlgorithmsNejat, A., & Damnjanovic, I. (2012). Agent-Based Modeling of Behavioral Housing Recovery Following Disasters. Computer-Aided Civil and Infrastructure Engineering, 27(10), 748-763. doi:10.1111/j.1467-8667.2012.00787.xPark, H., & Liebman, J. C. (1993). Redundancy‐Constrained Minimum‐Cost Design of Water‐Distribution Nets. Journal of Water Resources Planning and Management, 119(1), 83-98. doi:10.1061/(asce)0733-9496(1993)119:1(83)Paya, I., Yepes, V., González-Vidosa, F., & Hospitaler, A. (2008). Multiobjective Optimization of Concrete Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8), 596-610. doi:10.1111/j.1467-8667.2008.00561.xPinto, T., Praça, I., Vale, Z., Morais, H., & Sousa, T. M. (2013). Strategic bidding in electricity markets: An agent-based simulator with game theory for scenario analysis. Integrated Computer-Aided Engineering, 20(4), 335-346. doi:10.3233/ica-130438Putha, R., Quadrifoglio, L., & Zechman, E. (2011). Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions. Computer-Aided Civil and Infrastructure Engineering, 27(1), 14-28. doi:10.1111/j.1467-8667.2010.00715.xRaich, A. M., & Liszkai, T. R. (2011). Multi-objective Optimization of Sensor and Excitation Layouts for Frequency Response Function-Based Structural Damage Identification. Computer-Aided Civil and Infrastructure Engineering, 27(2), 95-117. doi:10.1111/j.1467-8667.2011.00726.xRodríguez-Seda, E. J., Stipanović, D. M., & Spong, M. W. (2012). Teleoperation of multi-agent systems with nonuniform control input delays. Integrated Computer-Aided Engineering, 19(2), 125-136. doi:10.3233/ica-2012-0396Saldarriaga , J. G. Bernal , A. Ochoa , S. 2008 Optimized design of water distribution network enlargements using resilience and dissipated power concepts 298 312Sarma, K. C., & Adeli, H. (2000). Fuzzy Genetic Algorithm for Optimization of Steel Structures. Journal of Structural Engineering, 126(5), 596-604. doi:10.1061/(asce)0733-9445(2000)126:5(596)Sgambi, L., Gkoumas, K., & Bontempi, F. (2012). Genetic Algorithms for the Dependability Assurance in the Design of a Long-Span Suspension Bridge. Computer-Aided Civil and Infrastructure Engineering, 27(9), 655-675. doi:10.1111/j.1467-8667.2012.00780.xShafahi, Y., & Bagherian, M. (2012). A Customized Particle Swarm Method to Solve Highway Alignment Optimization Problem. Computer-Aided Civil and Infrastructure Engineering, 28(1), 52-67. doi:10.1111/j.1467-8667.2012.00769.xTanyimboh, T. T., Tabesh, M., & Burrows, R. (2001). Appraisal of Source Head Methods for Calculating Reliability of Water Distribution Networks. Journal of Water Resources Planning and Management, 127(4), 206-213. doi:10.1061/(asce)0733-9496(2001)127:4(206)Tao, H., Zain, J. M., Ahmed, M. M., Abdalla, A. N., & Jing, W. (2012). A wavelet-based particle swarm optimization algorithm for digital image watermarking. Integrated Computer-Aided Engineering, 19(1), 81-91. doi:10.3233/ica-2012-0392Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2Vamvakeridou-Lyroudia, L. S., Walters, G. A., & Savic, D. A. (2005). Fuzzy Multiobjective Optimization of Water Distribution Networks. Journal of Water Resources Planning and Management, 131(6), 467-476. doi:10.1061/(asce)0733-9496(2005)131:6(467)Vitins, B. J., & Axhausen, K. W. (2009). Optimization of Large Transport Networks Using the Ant Colony Heuristic. Computer-Aided Civil and Infrastructure Engineering, 24(1), 1-14. doi:10.1111/j.1467-8667.2008.00569.xVrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W., & Sorooshian, S. (2003). Effective and efficient algorithm for multiobjective optimization of hydrologic models. Water Resources Research, 39(8). doi:10.1029/2002wr001746Vrugt, J. A., Ó Nualláin, B., Robinson, B. A., Bouten, W., Dekker, S. C., & Sloot, P. M. A. (2006). Application of parallel computing to stochastic parameter estimation in environmental models. Computers & Geosciences, 32(8), 1139-1155. doi:10.1016/j.cageo.2005.10.015Vrugt , J. A. Robinson , B. A. 2007 Improved evolutionary search from genetically adaptive multi-search method 104 3 708 11Wu , Z. Y. Wang , R. H. Walski , T. M. Yang , S. Y. Bowdler , D. Baggett , C. C. 2006 Efficient pressure dependent demand model for large water distribution system analysisXie, C., & Waller, S. T. (2011). Optimal Routing with Multiple Objectives: Efficient Algorithm and Application to the Hazardous Materials Transportation Problem. Computer-Aided Civil and Infrastructure Engineering, 27(2), 77-94. doi:10.1111/j.1467-8667.2011.00720.xXu, C., & Goulter, I. C. (1999). Reliability-Based Optimal Design of Water Distribution Networks. Journal of Water Resources Planning and Management, 125(6), 352-362. doi:10.1061/(asce)0733-9496(1999)125:6(352)Zeferino, J. A., Antunes, A. P., & Cunha, M. C. (2009). An Efficient Simulated Annealing Algorithm for Regional Wastewater System Planning. Computer-Aided Civil and Infrastructure Engineering, 24(5), 359-370. doi:10.1111/j.1467-8667.2009.00594.

    Reducing gaps in quantitative association rules: A genetic programming free-parameter algorithm

    Get PDF
    The extraction of useful information for decision making is a challenge in many different domains. Association rule mining is one of the most important techniques in this field, discovering relationships of interest among patterns. Despite the mining of association rules being an area of great interest for many researchers, the search for well-grouped continuous values is still a challenge, discovering rules that do not comprise patterns which represent unnecessary ranges of values. Existing algorithms for mining association rules in continuous domains are mainly based on a non-deterministic search, requiring a high number of parameters to be optimised. These parameters hinder the mining process, and the algorithms themselves must be known to those data mining experts that want to use them. We therefore present a grammar guided genetic programming algorithm that does not require as many parameters as other existing approaches and enables the discovery of quantitative association rules comprising small-size gaps. The algorithm is verified over a varied set of data, comparing the results to other association rule mining algorithms from several paradigms. Additionally, some resulting rules from different paradigms are analysed, demonstrating the effectiveness of our model for reducing gaps in numerical features

    Using Classification Techniques for Assigning Work Descriptions to Task Groups on the Basis of Construction Vocabulary

    Get PDF
    Construction project management produces a huge amount of documents in a variety of formats. The efficient use of the data contained in these documents is crucial to enhance control and to improve performance. A central pillar throughout the project life cycle is the Bill of Quantities (BoQ) document. It provides economic information and details a collection of work descriptions describing the nature of the different works needed to be done to achieve the project goal. In this work, we focus on the problem of automatically classifying such work descriptions into a predefined task organization hierarchy, so that it can be possible to store them in a common data repository. We describe a methodology for preprocessing the text associated to work descriptions to build training and test data sets and carry out a complete experimentation with several well-known machine learning algorithms.Programa Juan de la Cierva. Grant Number: FJCI-2015-24093Ministry of Economy, Industry and Competitiveness. European Regional Development Fund—ERDF. Grant Number: TIN2014-58227-

    Simulation and optimization model for the construction of electrical substations

    Get PDF
    One of the most complex construction projects is electrical substations. An electrical substation is an auxiliary station of an electricity generation, transmission and distribution system where voltage is transformed from high to low or the reverse using transformers. Construction of electrical substation includes civil works and electromechanical works. The scope of civil works includes construction of several buildings/components divided into parallel and overlapped working phases that require variety of resources and are generally quite costly and consume a considerable amount of time. Therefore, construction of substations faces complicated time-cost-resource optimization problems. On another hand, the construction industry is turning out to be progressively competitive throughout the years, whereby the need to persistently discover approaches to enhance construction performance. To address the previously stated afflictions, this dissertation makes the underlying strides and introduces a simulation and optimization model for the execution processes of civil works for an electrical substation based on database excel file for input data entry. The input data include bill of quantities, maximum available resources, production rates, unit cost of resources and indirect cost. The model is built on Anylogic software using discrete event simulation method. The model is divided into three zones working in parallel to each other. Each zone includes a group of buildings related to the same construction area. Each zone-model describes the execution process schedule for each building in the zone, the time consumed, percentage of utilization of equipment and manpower crews, amount of materials consumed and total direct and indirect cost. The model is then optimized to mainly minimize the project duration using parameter variation experiment and genetic algorithm java code implemented using Anylogic platform. The model used allocated resource parameters as decision variables and available resources as constraints. The model is verified on real case studies in Egypt and sensitivity analysis studies are incorporated. The model is also validated using a real case study and proves its efficiency by attaining a reduction in model time units between simulation and optimization experiments of 10.25% and reduction in total cost of 4.7%. Also, by comparing the optimization results by the actual data of the case study, the model attains a reduction in time and cost by 13.6% and 6.3% respectively. An analysis to determine the effect of each resource on reduction in cost is also presented

    Risk-Based Maintenance Planning Model for Oil and Gas Pipelines

    Get PDF
    Oil and gas pipelines are the main means of transporting fossil fuels from the wellheads and processing facilities to the distribution centers. The 2013 US infrastructure report card assigned a grade of D+ to energy pipelines signifying they are in a poor condition. More than 10,000 incidents were reported on oil and gas pipelines during the last two decades, most of which resulted in considerable consequences. Recent failures and ruptures have raised concerns over the risk of failure of such pipes in Canada. The main objective of this research is to develop a risk-based maintenance planning model for oil and gas pipelines. The research develops a probability of failure (POF) and a consequence of failure (COF) prediction model and establishes a risk-based inspection and simulation-based rehabilitation planning models. The POF model develops a comprehensive index by applying the granular theory of uncertainty and the principles of probability theory to forecast the POF of oil and gas pipes. The neuro-fuzzy technique is employed to develop a model that forecasts the financial consequences of the potential failures of such pipes. An integrated fuzzy risk evaluation model is developed with 25 fuzzy rules to assess a pipeline’s risk index. A fuzzy expert system is developed to select the inspection tools and determine their run-frequency according to the failure risk of a pipeline. Regression analysis is applied to develop a risk growth profile to forecast the maximum failure risk of various inspection scenarios. Scenarios are ranked based on their risk-cost index, which integrates two main indices: 1) maximum risk of failure, and 2) life cycle cost of scenarios, computed by applying the Monte-Carlo simulation. Finally, a comprehensive maintenance model proposes the optimum maintenance plans with the lowest LCC, developing a third-degree risk-based deterioration profile of the pipelines. The POF model’s sensitivity results highlight that cathodic protection effectiveness and soil resistivity are the leading causes of external corrosion failures, while the depth of cover is an important factor of mechanical damages. The COF model attests that diameter, as well as the location properties are important factors for estimating the financial consequences. The developed risk assessment model is validated using a test dataset that proved the models are accurate with about 80% validity. The developed models are applied on a case study of a 24-inch pipe. The POF and COF of the pipe are computed, and the results suggest that the pipe’s risk index is above medium with an average index of 3.5. The study proposes the application of an inspection tool, which decreases the risk growth by 50% during the service life of the pipeline. The application of the maintenance planning model proposes a combination of recoat, repair, and replacement with a medium size of rehabilitation. The net present value of the proposed scenario of maintenance is estimated to cost around 1.7 million dollars over the life cycle of the pipeline, compared to the last-ranked alternative that costs over three million dollars. This research offers a framework to develop a comprehensive index to predict the failure risk of pipes using historical data that can be extended to the other infrastructure types. It develops a model to plan for the optimal pipeline maintenance, and provides an overall image of its service life. The developed models will help the operators predict the risk of failure and plan appropriately for the life cycle of their oil and gas pipelines
    corecore