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the Environmentally Sustainable Network Design naob
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Department of Civil Engineering, The UniversityHiing Kong, Hong Kong SAR, China
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Abstract: Nowadays, the decision
transportation industry are being
environmental costs into road network design
decision-making because road traffic affects the
environment and health. The design of a road networ
should be not only cost-effective but also enviemially
sustainable. This article proposes a new networkigie
problem (NDP) that takes both vehicle emissions ramide
into account. This proposed environmentally sustal@
NDP is formulated as a discrete bi-level progranheT
lower level problem is formulated as user-equilifoni
assignment. The upper level problem determinesplieal
road capacity expansion to minimize the total costs
emissions, noise, and travel time with the consitiens of

can accommodate but the budget and land for expgrte
system are limited. Sometimes, this problem hasnbee
generalized to consider toll setting (e.g., Shepph2012; Li
et al.,, 2012), signal control (e.g., Hawas, 201Bmp
metering, and other transportation network desigblems.
The objective of the upper level problem is to ojte a
given system performance measure, and is traditjoba
minimize the total system travel time or cost (eNg and
Waller, 2009a, b; Long et al., 2010). Some studit
include the investment costs into the objectivecfiom (e.g.,
Meng et al., 2001; Xu et al., 2009; Wang and Lol®0
Others consider reserve capacity (e.g., Chen e2@06),
consumer surplus (e.g., Szeto and Lo, 2008; Lo Sueto,
2009), equity (e.g., Szeto and Lo, 2006; Duthie waller,

budgetary and capacity improvement constraints. The 2008) and change in social surplus (e.g., Szetd.,€2010),

proposed problem is solved by an enhanced versfoa o
new metaheuristic named Chemical Reaction Optiioizat

and profit (e.g., Shepherd, 2013) in the objecfivection.
However, road traffic also imposes a profound iefice on

(CRO), and its parameters are tuned by our proposedthe environment. To have a sustainable transportati

tuning procedure. Two benchmark road networks with
different demand levels are used to evaluate

development, it is necessary to incorporate thecesfof road

the traffic on the environment and consider environraként

performance of the enhanced CRO and illustrate the sustainability in transportation network designisTleads to

properties of the problem. The results show thatetwere
tradeoffs between emissions, noise, and travel tiosts,
and
Algorithm (GA) on more than half of the testing re@os

a new research area of the bi-level NDP, namelybitevel
transportation network design problem with enviremhal

that the enhanced CRO outperformed Genetic considerations (BTPE), or equivalently the enviremmally

sustainable NDP, which considers the negative &ffed

and had a comparable performance on certain test road traffic on the environment and has been récent

scenarios compared with GA.

1INTRODUCTION

The bi-level Network Design Problem (NDP) is todfithe
optimal decision on selecting either link improvense or
link additions to an existing road network in thgpar level
problem, while accounting for the route choice hétraof
network users in the lower level problem (Yanglet098).
This problem has been receiving attention, becaisethe
economic development, the demand for travel on gdad
growing at a rate faster than the urban transportatystem

reviewed by Szeto et al. (2012). The model stractaf
BTPE is similar to that of a typical bi-level NDBut the
upper level problem includes environmental impaetsures
such as noise or vehicle emissions in either thectike
function or constraints (e.g., Huang et al., 2000gt al.,
2012).

To capture the environmental consideration in the
objective function, the environmental objectives@metimes
treated as the only objective in the model (e.grghkson et
al., 2010), but very often is combined with othéjeatives
as one objective function using the weighted supregech
(e.g., Kim and Kim, 2006; Qiu and Chen, 2007; liale
2009), or is one of the objectives in the multiemia



2 Szeto et al.

optimization model (e.g., Ferguson et al., 2012e1Cand Xu,
2012). In the first approach, Ferguson et al. (2@blved the
emissions network design problem to minimize th&lto
network emissions including three air
hydrocarbons (HC), nitrogen oxides (N© and carbon

monoxide (CO). They are considered because they aree

harmful to human health and/or cause climate chanrgeO

increases the chance of people having cardiovascula e

diseases and impede the psychomotor functions; ¢i@ f
ground-level ozone and the smog to cause deletehiealth
and greenhouse effects; N@rm ground-level ozone to
create nitric acid causing serious respiratory |enmois.

In the existing studies using the weighted sum @i,
various objectives are considered and combined ame

and efficiently, especially for large network apglions.
Hence, the recent trend is to develop, apply anprone
meta-heuristics which can obtain good solutiongieffitly.

pollutants: The following metaheuristics are some examples tizat

been used for solving NDP and BTPE:

genetic algorithm (GA) (e.g., Ng et al., 2009; Cletil.,

2010; Sharma and Mathew, 2011; Szeto and Wu, 2011),

simulated annealing (SA) (e.g., Meng and Yang, 2002

 particle swarm optimization (e.g., Zhang and Gaf)72
Miandoabchi et al., 2012a),

« artificial bee colony (ABC) (e.g., Szeto et al.12) and

» clonal selection algorithm (e.g., Miandoabchi et, al
2012b).

The performances of some of the above heuristiog we

single objective. For example, Kim and Kim (2006) compared between each other. However, which metistieu

incorporated the emission cost into the objectivecfion as
the sum of social costs including network traveldicost,
maintenance cost, accident cost, and vehicle dparabst.
Qiu and Chen (2007) included the environmentalypiolh
cost in the objective function together with thetwark
travel time cost, investment cost, land use andrggne
consumption costs. Jia et al. (2009) proposed cativel
costs including emission cost over the modelingZoor.

In the third approach, more than one objectivalé®
considered simultaneously to determine the Pametatiér.
In the literature, only various objectives are ¢desed. For

is better depends on the problem and the demanithgset
considered. For example, Karoonsoontawong and Walle
(2006) found that GA outperforms SA and random cean
solving their linear, continuous network designkgeon, but
Jia et al. (2009) found that SA performs bettent@A and
ABC in solving their problem. Xu et al. (2009) irstgyated
the performance of GA and SA under different demand
conditions. They found that SA was more efficidmrt GA

in solving the nonlinear continuous network degigoblem,
and much more computational effort was needed farnd@
achieve the same optimal solution as SA. Howevéreny

instance, Wismans et al. (2011) considered thel totagemand was light, GA could reach a more optimaltam at
emissions of CQ noise, and total travel time in their o expense of more computation time.

multi-objective optimization model. Ferguson et @012)
explored the tradeoffs between designing a roadiar&tfor
minimal congestion and designing it for minimal i

The above meta-heuristics are not the only metaidtas
that can be used to solve NDP and BTPE. Indeedyman
meta-heuristics exist but not all of them have bagplied to

emissions. Chen and Xu (2012) considered total COgqye these problems. One of such example is clemic

emissions, total travel time, and the maximum ratio
origin-destination travel times after and beforepamity
enhancement in their multi-objective optimizationdel.

As shown in the above, few researchers incorporadéil
noise and vehicle emission costs into BTPE simahasly.
To fill this research gap in the network designaaree
propose a more comprehensive bi-level model
incorporating the costs of noise and different sypévehicle
emissions into BTPE. The upper level minimizesshm of
total system travel time cost, emission cost andengost.
Three key pollutants are chosen for emission calsutation:
CO, HC (also known as volatile organic compound®CY)

reaction optimization (CRO), which has been regentl
proposed by Lam and Li (2010). It mimics the int¢i@ns of
molecules in a chemical reaction to reach a lowgnstable
state. It is a variable population-based metahgéciriwhere
the total number of solutions kept simultaneousyy the
algorithm may change from time to time (Lam and20d]10).

forcro has the ability to avoid getting stuck at logghima.

Different from other heuristics, CRO allows the
diversification and intensification of solutions toccur
automatically, rather than using a fixed sequeriagperators
for these purposes. Moreover, as Lam and Li (2010)
indicated, CRO may be considered an optimizatigoridhm

and NQ. They are chosen because of their respective angyhich allows the users to use their favorable fstiari

combined significant impacts on human health ané th components for specific optimization problems, ayia the
environment (Ferguson et al., 2012). The noise @St cpangeable components including criteria and méshen
calculated by the model proposed by Delucchi andi Hs of \arious operators. The extents of intensificatiand

(1996). The decision is to determine the optiméc®n of
link improvements in road networks under limiteddbet

diversification on solution searching are contrl&asily by
operators. Hence, this meta-heuristic can be appliea

and capacity improvement constraints. The capacityyige range of optimization problems and has alrelelgn

improvement is modeled by a discrete decision bgizo
our problem belongs to the bi-level discrete NDP.

Since our bi-level discrete NDP is nonlinear, nanex
and NP-hard, it is difficult to solve for global tma exactly

proven to be well performed in solving classic N&teh
problems, such as the quadratic assignment probileen,
resource-constrained project scheduling problem #rel
channel assignment problem (e.g., Lam and Li, 201@)so
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had a wide application in various fields, such laes fuzzy
rule learning problem (e.g., Lam et al.,, 2012), seen
deployment for air pollution monitoring (e.g., Yuad., 2012)
and stock portfolio selection (e.g., Xu et al., PDHowever,

2.1 Lower level problem

In this problem, the classic deterministic user ildgium
(UE) principle is adopted to model the travelershavioral

the performance of CRO in solving bilevel problems, reaction to transportation planner’s link expansi@eisions

including BTPE, has not been known yet. Therefare,are
interested in improving CRO and testing the perfomoe of
the improved algorithm in solving our proposed \ele
problem. Numerical examples are set up to illustrtte
performance of the improved CRO, and compare i WA

and the demand is assumed to be fixed.A &k the set of
links of the network,R, be the set of routes between
origin-destination (O-D) pairwOW, andW be the set of
O-D pairs. The travel time on lirkis denoted by, (Va, W),
all A with v, being the flow on linka and u, being the

because GA is the most classical and frequentlyd use capacity enhancement of link. Then, the lower level

metaheuristic, and GA is found to be used widetysfiving
BTPE (Szeto et al., 2012).

Like other metaheuristics, CRO has parametersrteat
to be tuned to achieve better results for each lpnob
However, every problem has its own characterigiog it is
time-consuming to determine a good parameter cacatibim
for each problem. This study proposes a new mettalted
the normalized parameter tuning method. This mefbdd
tune the normalized coefficients for certain parearsewhich
are closely related to the objective function valoke a
category of similar problems. It can help find thegitable
parameter combination quicker.

The main contributions of this study lie in theldeling
aspects: firstly, it incorporates the
considerations
emissions simultaneously into the objective of NDRyrder
to illustrate the total environmental cost can begé and
should not be ignored; secondly, it improves CRGdtve
BTPE and
applications for large transportation networks. rdflyj it
demonstrates the trade-offs between congestiortiffiedent
environmental objectives. Fourthly, a new paramaiaing
method is proposed for CRO implementation to heldifig
suitable parameter values quicker.

The rest of this article is outlined as follows.cen 2
formulates the problem. Section 3 introduces CRO the
enhancement. Section 4 presents the numericalestuzh
two benchmark transportation networks and fineligction
5 gives the conclusion.

2 PROBLEM FORMULATION

The proposed problem is formulated as a bi-leveblam.
The lower level problem captures the behavior
transportation network users while the upper |grelblem
determines the optimal link capacity expansion sleai
made by the transportation planner. The mathentatétails
of lower level and upper level problems will be givin
Sections 2.1 and 2.2, respectively.

environmental
including noise and multiple type o

illustrates the effectiveness and potentia

problem can be formulated as:

minZJ;ata (x,u, )dx (1)
V. aoA
subject to > f =d,,0wO0wW (2)
roRr,,
f.20,0rOR,,wOW (3)

wheref, is the flow on router OR,,wOW, v is the vector

of link flows andd,, is the demand between O-D pavOW.
Here, the link flowv, is defined by

v,=> fg,,0a0A (4)
rOrR
where J, =1 if route r uses link a; and J, =0

otherwise.
2.2 Upper level problem

2.2.1 Objective. The upper level problem aims at
determining which links to be improved in ordemtmimize
the total cost TC). Other than the traditional total system
travel time costTSTQ, total emission cosfTEC) and total
noise cost TNCQ) are included simultaneously in the
objective function. Mathematically, the objectivd the
upper level problem can be formulated as:
minTC = TSTC+ TEC+ TN( (5)

Total system travel time cost
The total system travel time cost is defined bygheduct of
total system travel time and the value of tird©).

TSTC= VOD_ ty (6)

aJA

Total emission cost

The total emission cost is defined by summing up th
product of the emission coBt on each link and the flow on
that link v, (veh/hour):

TEC=) Evy 7
alA
The emission codf, on linka is given by:
E, =2 ¢/'Q,0al A (8)
k

where ¢& is the external cost per unit weight of pollutint
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and Q is the weight of pollutark emitted on linka. submodel:
As Penic and Upchurch (1992) pointed out, the weddh _ @' 50"
different types of pollutants emitted on link can be Leq(d).,, =100og, 0'029@180D\é UK, d (14)
expressed a function of link length (ft) and link average
_ = -B,,0ah
speed S, (f/sec.S, _E)' where ¢' is the equivalent subtending angle, is the
3 30630014565, | ground-cover coefficient (unitless) arg, (dBA) is the
For CO: ng E b —- N - 9) reduction in the noise level due to a barrier vhiglight-class
10008, h. K, is the total noise-energy emissions from all typés
2 78420015065, | vehicles. Due to the insufficient information ofhigle types
For VOC: Q/°¢ =W.Da, k (10) on the road, all vehicles are assumed to be light-dutos.
a MathematicallyK, is expressed as:
1.5718°%75 | 1
For NO: Q% ==—"———2 [Oak (11) K, === ,Oald A (15)
1000033 Sa [q Sa4.174+100.115+ 16- )

Total noise cost

The total noise coSINCis calculated by the model proposed
by Delucchi and Hsu (1996). According to this modhke
external noise cost is equal to the area-noisel |&W,

where ga is the average speed (miles/hour) of all the

vehicles on linka; C, is the weighted average of exponent
for cruising and the exponent for accelerating tfer autos

(dBA-mi®) (defined as the sum of the excess noise levels irPn linka.

the affected area), multiplied by the density ofisiag units
exposed to traffic noise above a thresHal (units/mf), the
median annualized value of housing units exposeuaftic
noise above a threshol® ($/unit), the percentage of
annualized housing value lost for each decibelai$enover
the threshold leveHV and a scaling factor to account for the
noise costs in non-residential area&'«{)/T), whereT’ is
the average amount of time spent away from one’sehimn
places where motor-vehicle noise can be a probleairas
the average amount of time spent in or around draise.
The model is formulated by:

TNC= (Z[z ANthDHDDFﬂ DHV[-IT’T;T

th T Eoaan
" 5280

wherel;, (mile) is the total length of road, while substrip
represents different types of roads (such as tater,sother
freeway, principal arterial, minor arterial, collecstreet and
local road) and subscrigt represents the height-class of
noise barriers (such as none, low, medium, and)hagging
the road. Due to the insufficient information ofetmoad
hierarchy and noise barrier used in specific urlvaad
system, in this study, we adopt the parameter gal(gee
Section 4.1) of the base case in Delecchi and Hsatel for
each linka and the road type is selected as “other freeway”.
de anddy are, respectively, the equivalent distance from th
roadway to the closest residence (ft) and the edgmt
distance from the roadway to the point at whiclffiranoise
drops to the threshold levél (ft). ANB, (dBA-ft) is the sum
of the noise-damage threshdatd(which is a function of road
typer and noise barrier of height-clasg over the width of
the affected area. (i.@*(dw-dy)).

The equivalent sound levedleqd),, is calculated by a

(12)

A

I Led 9, ,

dE

}— AN%],D rt @13)

2.2.2 Upper level constraint3he upper level problem also
contains the following budget constraint to lintietcapacity
that can be added to each candidate link:
> Kklu,<B
alA
where «, is the construction cost per unit length of limk

and u, is the capacity enhancement of limk |, is the

length of linka. B is the available capacity improvement
budget. The left hand side of condition (16) is to¢al
construction cost, which cannot be greater thanbilmdget.
This condition implies that when the budget is tedi not
all candidate links can be improved.

For practical and physical reasons, roads or higewa
rarely have more than a few lanes. Therefore, Bifielides
link improvement constraints, expressed as

u,<u Oal A )

u, = 0,are integerdJall A (18)
where u, .., is the maximum allowable capacity. Equation

(18) is the non-negativity condition of capacitypiavements
together with the integer requirement.

(16)

a,max’?

3 SOLUTION METHOD: ENHANCED CHEMICAL
REACTION OPTIMIZATION

3.1 Key components of the enhanced CRO

In this paper, the new meta-heuristic, chemicalctiea
optimization (CRO), is improved and employed tovedhe
proposed problem. This meta-heuristic mimics troeess of
high-energy molecules taking part in various typefs
elementary reactions to become the final produdts stable
low-energy states. It has two major components, eigm
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molecules and elementary reactions. in the environment obtained from exothermic reaxtiand
supports endothermic reactions (i.e., the reactitmest
3.1.1 Molecules Molecules (denoted byM) are the require energy as an input, such as decomposition).

manipulated agents in the enhanc&dO and each has the The KE of the reactant depends on how much engilgy
following three properties: not be lost to the environment, which is modelealmpntrol

1) Molecular structurew: This represents solutionof the parameter nameldELossRateA random numbeq from the
problem. interval [KELossRate 1] is generated to determine the

2) Potential energyPE): This corresponds to tbbjective  portion of KEnot being lost to the environment. Hence, the
function valueof a solution. KE of reaction product with its structus€ is calculated as:

3) Kinetic energyKE): It defines thameasure of tolerance KE, =(PE,- PE, + KE)x ¢ (21)

for a solution changing to a worse solution. Thastcbutes
to the ability of the algorithm of jumping out obdal
minima.

Each of the molecules can be considered to beensid
container undergoing a series of chemical reactiontl
each of them reaches a stable state.

The lost energy is kept to the central energy buffe
The pseudo code of this reaction is as follows:

On-wall ineffective collision:
Input: a moleculeM in the container, anduffer
1. Obtain & = N(w)

3.1.2 Elementary ReactionsThe core feature of the 2. Calculate PE,
enhancedCRO is the conservation of energy in chemical 3. if PE + KE,> PE, then
reactions. Energy cannot be created or destroye@bland

: ) 4 Create a new moleculd’

KE are allowed to convert into gach other througi@_raes of ¢ Generatej randomly from KELossRatel]
elementary reactions, including 1) on-wall ineffeet 6 Set KE,, = (PE, - PE, + KE)X ¢
collision; 2) decomposition; 3) inter-molecular fieetive ' o '
collision and 4) synthesis. 7. Update

1) On-wall ineffective collisionThis mimics the reaction buffer= buffer+ ( PE - PE + KE)x(1- }
that a molecule hits the wall of the container.si¢ollision is 8. Update the  population by replacing
not so vigorous that only a small change in molacul moleculeM with M. w=w', PE, = PE,, and
structure can take place. This change can be matiesity KE = KE.
expressed as 9. dse @ “

) ] @ =N(e) ) (19) . 1o0. Keep the molecul®! in the container
whereN is the neighborhood search operator which modifies{  engif

the current molecular structuee within a small extent.«'
is the molecular structure of the reaction proditte new 2)
molecule can be created only if it possesses arl®kethan
the reactant’s total energy:

Decomposition This reaction is more vigorous
than the previous on-wall ineffective collision. ¥h a
moleculeM with structurew hits the wall, it decomposes into
PE, + KE, 2 PE; (20) two molecules with structures; and w, respectively.
where PE, and KE, are the potential energy and kinetic Hence, the new molecular structures differ front wfathe

energy held by the reactant whose molecular strectsr ~ reactant molecule greatly. Thg structures of neviemes
represented by. PE, is the potential energy associated a'e defined by the decomposition operaor

with the new molecular structueg after the reactiorif (20) [a{',wzi =D(w) (22)
does not hold, then no on-wall ineffective collisids
allowed and the original molecule remains in theylation
without any change.

This reaction may result in a loss of molecularrgneo PE,+ KE, 2 Pk, + PE, (23)
the environment inside the container, leading to an As the chemical process evolves, the KE of eaclecubé
exothermic reaction (i.e., the reaction that redsasnergy). tends to decrease in a sequence of on-wall inéfeect
Because of the conservation of energy, the eneztpased  collisions (Lam and Li, 2010). If the original molde does
from the molecule cannot be destroyed. The enha@éed not possess enough total energy for this transfiiomathe
must develop a way to store the energy released flee  buffer can be utilized to encourage decomposition to take
molecules in case the reaction is endothermic. this place, similar to an endothermic reaction intuitvélence,
purpose, a central energy buffer, denotednijer, is created  if Equation (23) does not hold, then the followitggerion is
in the enhance@RO, which can be interpreted as the energychecked:

This decomposition takes place if the total PEheftivo new
molecules is lower than the total energy of thetarat:
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PE, + KE, + buffer= PE, + PE (24)

The calculation of the new KE still obeys the rué
energy conservation. The formula for determiningv ri€E
can be found in the pseudo code below:

Decomposition:
Input: a moleculeM in the container, anduffer

1. Obtain [a)l',a)zi =D(w)

2. Calculate PE, and PE,
3. Let temp= PE+ KE- PE - PE
4. if temp=0 then
5. Create two new moleculds,” andM,’
6. Generat& randomly from [0, 1]
7. Set KE&{, =tempx kand
KE@, =tempx(1- K
8. Update the population by replacing molecie

with M;" andM,’

9. edseif temp+ buffe=0

10. Create two new moleculds,” andM,’

11. Generatem,, m,, mg, andmy independently and
randomly from [0, 1]

12. SetKEai, =(temp+ buffeyx nx mand

KE%, = (temp + buffer KE)X ox o
13. Update buffer=(temp+ buffer KE— KE)

14. Update the population by replacing moleciMe
with M, ansz'

15. ese

16. Keep the molecul®! in the container

17. endif

3) Inter-molecular ineffective collisiorThis reaction
mimics the collision between two molecules and theay
separate. There is no energy transformation wighcéntral
energy buffer. When two molecules collide with eather,
both of them change their structures a little Hithe new
molecules possess a lower total PE than the totigg of
original ones, or if

PE, + PE, + KE, + KE, 2 PE + PE (25)

holds, then these two new molecules will be keptha
container. Otherwise, the original ones will be mained.

The molecular structure change here is processe

through the same neighborhood search opefdtas in the
on-wall ineffective collision:

o = N(w) andw, = N @, (26)
The calculation of KE can be found in the pseuddecof
inter-molecular ineffective collision below:

Inter-molecular ineffective collision:
Input: two moleculesM; andM, in the container
1. Obtain @' = N(@), andw, = N {,
Calculate PE%, and PEaé
lettemp = PE + PE + KE+ KE - PE- PE
if temp> Othen

Create two new moleculds,” andM,’

Generat& randomly from [0, 1]
Set KEq, =tempx k and

Nogor~ 0N

KE%, =tempx(1- K

8. Update the population by replacing molechle
andM, with M;" andM,’

9. €dse

10. Keep the moleculed; andM, in the container

11. endif

4) Synthesis This reaction simulates the collision
between two molecules and then they combine. Haistion
is vigorous and the resultant molecule is veryedéht from
the original two molecules. The criterion for syedis to
occur is expressed by:

PE, + PE, + KE, + KE, 2 PE (27)
The new molecular structure/ is obtained through the
synthesis operat® which is mathematically expressed as:
W =S, w,) (28)
The pseudo code of synthesis is as follows:

Synthesis:
Input: two moleculegV; andM, in the container

1. Obtain & =S(y,w,)

2. Calculate PE,

3. if PE, + PE, + KE, + KE, = PE then
4, Create one new molecu\#
5
6

Set KE, = PE, + PE, + KE, + KE, — PE
Update the population by deleting; and M,

and addingv’

7. €se

8. Keep the two moleculeM; and M, in the
container

9. endif

%.2 The parameters and overall procedure of the

enhanced CRO

The parameters in the enhanc&eO include the following:
 InitialKE: It is the initial KE of a solution, which can be
considered as the initial KE of a molecule in tbatainer.
e f: It is used to control the occurrence of the sgaih
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and inter-molecular ineffective collision reactions

e popsize It refers to the number of initial solutions
generated by the enhanc€RO, which is an analogy of the
number of molecules initially in the container.

« Initialbuffer: It is the initial value of central energy
buffer whose default value is set to be zero (Lamale
2012b).

» MoleColl It is the average fraction of inter-molecular
reactions performed in the enhan€RO.

» KELossRatelt is the fraction of KE NOT being lost to
the buffer during the reaction of an on-wall ineffective
collision. It corresponds to the fraction KE noirelost to
the environment due to the ineffective collision.

The overall procedure of the enhanc&€RO can be
divided into three main steps, namely initializatigteration
and output, in which the first step is initializatiand the last
step is the output stage.

In the first step, all the values of the parametsfrshe

enhancedCRO are assigned. Then, a fixed number of initial 13.

solutions, defined bypopsize is generated. If the solution is
infeasible in terms of the budget constraint, therepairing
process is carried out. Afterwards, the PE of dadsible
solution is calculated and the KE of each soluitget to be
InitialKE.

The second step involves a number of iterationedch
iteration, an elementary reaction is selected atiogly.
Firstly, a random numbdrfrom [0, 1] is generated. K is
larger thanMoleColl, the reaction will only involve one
molecule at the beginning, such as on-wall ineffect
collision or decomposition. Otherwise, inter-moliecu
ineffective collision or synthesis will take plac&hen,
corresponding number of molecules is selected fw t
reaction. Secondly, the criterion of decompositian

The enhance@RO:

Input: problem specific information (objective function,
constraint)

Assign the parameter valudsifialKE, 8, KELossRatg
Popsize MoleColl)

2. Create a population

3. Repair infeasible solution

4. Determine the PE of each solution

5

6

=

Set the KE of each solution to létialKE
Set the central energy buffer baefferand assigtuffer
=0
7. dowhile (the stopping criteria is not satisfied)
8. Generata randomly from [0, 1]
9. if t > MoleCollthen
1
1

0. Select one molecule from the population randomly
1 if decomposition criterion (Eq. (23) or (24)) is
satisfiedthen
12. Perform the decomposition reaction
else
14. Perform on-wall ineffective collision
15. end if
16. €se
17. Select two molecules from population randomly
18. if the synthesis criteriorKE, < p) is satisfiedhen
19. Perform the synthesis reaction
20. else
21. Perform inter-molecular ineffective collision
22. end if
23. endif
24. Repair infeasible solution
25. Determine the best solution up to the currenatten
26. enddo

Output: the best solution and its objective function ealu

synthesis is checked. If one molecule is chosen thed
decomposition criterion (either Condition (23) &4)) is
satisfied, then the molecule will experience a dggosition
reaction. Otherwise, the on-wall ineffective cadis will

happen. If two molecules are chosen, then theytested
against the synthesis criteriorKE,, < §5). If this criterion is
satisfied, then the two selected molecules will boma
through synthesis; otherwise, they will experienaa
inter-molecular ineffective collision. Lastly, thest solution
in the current iteration is identified and compateith the
best solution obtained in the last iteration. Tled¢tdy of the
two solutions is kept. The second step is repeatdad a
predefined stopping criterion is met.

3.3 Differences between the original CRO and our CRO

There are three main differences between origifDC
and ours. The first main difference between théROCand
ours is on the criterion used to determine whether
decomposition or on-wall ineffective collision réaa
should be carried out. Ours use conditions (23) @) to
determine the choice. There are two advantagest, Kircan
ensure that no matter which reaction takes placegw
solution can be identified in each iteration. Thanot be
ensured in their CRO because their CRO allows the
decomposition criterion to be met but both condiia23)

In the final step, the best solution found and theand (24) notto be met. Consequently, their CROreault in
corresponding PE are reported. The flow chart o th no new solution generated in some iterations, wigchot

algorithm can be found in the first paper publisigdLam
and Li (2010). The pseudo code of the enhar€R® is as
follows:

beneficial especially for the case that the contpratime
for functional evaluation is long like ours due $olving
many lower level problems. Second, we used onenpetex
less, which is beneficial in terms of parameteirtgn

The second main difference is that ours can be tsed
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handle bilevel problems whereas the original versian
only be used to handle single level optimizationhems.
The upper level problem is handled by the enhar€e®
framework but the lower level problem is handled thg
Frank-Wolfe algorithm. The solution of the lowervéd
problem is used to determine the objective functialue of
the upper level problem, and hence PE.

The third difference is that our CRO adopts a nepgi
strategy to handle infeasible solutions while theinsure the
solution to be always feasible. Both PE calculatol the
repairing strategy will be mentioned in the nexitism.

3.4 Algorithm Implementation

3.3.1 Solution representatiofo solve our proposed network
design problem with environmental consideratiorg tbad
capacity improvement strategy needs to be convénteda
form which the algorithm can operate with. The deci
variables in our
improvements of candidate links. Hence, a binamiper or
string is used to represent whether each candiifgteis
improved or not. When there atedecision variables, the
string had. bits. A bit with a value of 1 means that the link
expanded and a bit with a value of 0 means the inkot
expanded (see Figure 1 for an example).

initialization stage, but also after generating ewnbut
infeasible solution from any reaction. The repagcimanism
is to flip some of the bits of those improved lirffksm 1 to 0
when the total improvement cost exceeds the budfgsbre
than one link needs to be repaired, the bit for mhest
expensive one will be flipped to 0 first.

3.3.4 PE evaluation and stopping criterioAfter repairing
all infeasible solutions, each feasible solutionll wie
decoded to obtain the capacities of the links ie thad
network. Then, the UE assignment problem is solwedhe
Frank-Wolfe algorithm. Based on the optimal solataf the
UE assignment problem and Equations (5)-(15),

objective function value is calculated.

The stopping criterion is set based on the maximum
number of times required to solve the UE problerictv is
20,000. This measure is chosen rather than the nnusi
number of iterations normally used in other metaiséas,

the

proposed problem are the capacityincluding GA, because in the numerical study prestiater,

we want to have a fair comparison between the isolut
quality obtained by GA and our CRO under the same
computation effort, in which the computation effsrimainly
controlled by the number of times to solve the Ipvevel
problem. In our CRO, the number of solutions maiad in

the population is changing over iterations, whickams that

In our study, we consider two cases of improvement,the number of times using the Frank-Wolfe algoritiign
namely doubling the capacity and constant capacitychanging. If we defined the stopping criterion lihghe

increment (lane addition). For the first case, exiiiag a link
means that the capacity is doubled. This case le&n b

considered Sharma et al. (2009). For the secon&, cas

expanding a link means that a constant of 1800iy@uded
to that link. This corresponds to adding one eldre to the
link. We can actually consider a more generalizaskeaf we
use a non-negative integer for each bit in theesgmtation.
However, this is not our main focus and hence \aedehis
for future study.

Link1 Link2 Link3 Link4 ... Link I
Soltionl [ 1 [ o [ o [ 1 ... | 1]
Soltion2 | 0 [ o | 1 [ o J... | o |
Solutim;xM |t T3 T 8] 1 [ | o ]

Figure 1 Solution representation bfcandidate links

3.3.2 Initial population generationThe initialization of
population utilizes a random generator. For eatlobithe
string, the enhanced CRO generates a random nuafitzam
[0, 1]. If k is larger than 0.5, the value of that bit is sefLt
Otherwise, it is set to be equal to 0.

3.3.3 Repair procedureAfter the initialization, a repair
process is followed. It ensures that the capanifyrovement
strategy represented by the solution can satisfybtidget
constraint (16). This process is necessary not amlyhe

maximum number of iterations, then the number ofes
required by our CRO and GA would be different.

3.3.5 Mechanism of reaction operators in the enedn€RO
As introduced earlier in the elementary reactionSéction
3.1.2, three operators are utilized to produce selutions.
They are the Neighborhood search operatdy the
Decomposition operatoD and the Synthesis operat&
Based on the solution representation in this prabléhe
mechanism of these three operators are definenllaws$.

The Neighborhood search operaddrandomly flips one
bit on the string to change its value from 0 tonH avice
versa. In Figure 2, the second bit is selectedthaedralue is
changed from 0 to 1.

Molecular structure of M (w)
O o [ @ |

Molecular structure of M’ (")
[ o [ ¢ |

[ [

Figure 2 Neighborhood search operatér

The mechanism of the Decomposition operaris
defined as follows. The bit string of the origirsllution is
separated into two segments at a random positiinst F
(Second) segment is used to form the first (Seceadnent
of a new solution. The rest of the bits of each selution is
generated using the same random generator usetein t



The chemical reaction optimization approach to s@uhe environmentally sustainable network degigyblem 9

initialization. In Figure 3, a solution with 6 bits chosen and
the second position is selected. The solution lis ispo two
segments. The first segment has two bits and id us¢he
first segment of one new solution. The rest of bitthe first
solution are randomly generated. The second segiesit
four bits and is used in the second segment ofh@natew
solution. Again, the rest of bits are randomly gated.

S

T N 0 R
Molecular structure of M’ (@, ")

[TToJoJ1Jof1]
Molecular structure of M (w)

B 1 Jofofo]
Molecular structure of M;” (@, )

Figure 3 Decomposition operat@

The Synthesis operatd is the reverse process of the

Decomposition operator D. The two molecullsk, and M,

are cut at the same random position and the fginent of
M; combines with the second segmenthMf so that the
length of new solution is the same as that of the old

solutions. Figure 4 gives one example in which skeond
position is selected for cutting the two molecules.

o 1 [oJofo]
Molecular structure of M; (w;)

(1t et o]
Molecular structure of M- (e7)

CJoTfol1Jof1]
Molecular structure of M’ (@)

Figure 4 Synthesis operat®

4 NUMERICAL STUDIES

numerical studies. One is relatively small, Siouall$-
network and the other one is of moderate size Athetheim
network. A brief network profile is summarized imble 1
and the detailed configuration together with themded
matrix can be found on Bar-Gera (2012). The figuketwvo
networks are provided in the Appendix. For eachwosk,
different demand conditions are considered, indgdihe
low demand condition, the average demand conditiom
the high demand condition. Their demand matrices ar
obtained by multiplying the original O-D flow matrby 0.5,

1.0 and 2.0, respectively, max iS Set to be equal to the
capacity of linka and «, is set to be free flow travel time

on link a divided by the length of link. The VOT for TSTC
is adopted as 3.88 US dollars per hour (Calfee &sfdin,
1998) for commuting. The parameter values for thésea
model by Delucchi and Hsu (1996) are listed in &l The

monetary valuation of the specific emission factgf

provided by Matthews (1999) is listed in Table 3l the
costs are expressed as 1991 US dollars and tHecfises are
converted into million Hong Kong dollars in year919(1
US dollar = 7.77 in 1991 HK dollars). A BPR functids
used to model the relationship between link flovad dimk
travel time. For each testing scenario, 20 randeeds will
be generated and the average objective functioneva
computed.

Table 1
List of networks to be tested

In this section, the testing scenarios for our ORIDfirstly Networks | Zoneg Nodgs Links Budget
be provided. Then, the results of parameter tunitih be 70,000 (for
presented. Two main studies will be carried oue @the _ lane addition)
performance comparison between our CRO and GAflemd 1 | Sioux Falls| 24 24 76 | 40,000 (for
other one is to illustrate the tradeoffs of differebjectives. doubling the
capacity)
4.1 Testing scenarios 2 | Anaheim 38 416 914 25,000 (fqr
lane addition)
Two road networks in the United States are selefted
Table 2
Parameter input values for noise model
Symbol | HD P HV T T ¢ |C |a By de t*
Unit units/mf $/unit %/dBA | min min deg dBA Feet dBA
1290.8 (Sioux Falls) 3629.9 (Sioux Falls
Value(s) 4039 (Anaheim) 8101.3 (Anaheim) 0.0085 | 250.4 921.1 59 5.10 0.3f5 84 957 55
Table3 4.2 Parameter tuning of the enhanced CRO
Monetary valuation of specific emission factors
CO | VOC|] NQ It is well known that parameter tuning can be
: time-consuming while parameter values are crucal f
doll 1991 kg O. . . - . . ; ;
¢/in dollars ( )perkg051] 1.36] 1.03 metaheuristics to obtain nearly optimal solutiofiscording
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to the mechanism and criteria of the occurrenceea€tions,  values of other parameters fixddjtialKE was first varied

a conclusion can be drawn thattialKE andg have a direct and the best value found was 4.0. Then, the pasamet
and close relationship with PE, the objective fiorctvalue  combination was changed to [4.0, 0.5, 200, 0,@5, Then,

in our study, which usually varies widely betwedfiedent the value of the second paramegeiin this new combination
problems. Therefore, the fixed parameter values maty was tuned while other values were fixed. This pssceas
exert their best effects on optimization problenithwery repeated until all parameter values were tuned.

different objective function values. The tuning results of alhitialKE, g, popsizeinitialbuffer,

In order to ease this situation, a normalized patam MoleColl, andKELossRatere plotted in Figure 5, in which
tuning method is proposed for tunimgitialKE and . An the y-axis is the average value of the best objectialue
objective function value is computed in a trialtf@ssuming  obtained by each run, which is referred to as tlegage best
that there are no improvements on links. This valueobjective value. The graph is not smooth in genkeglause
corresponds to the maximum objective value amohthal  the enhanced CRO performs a stochastic search. ‘éowe
solutions. Then, the tuning results fimitialKE and g are we can still observe some reasonable trends. Fampbe,
expressed as the ratio of each of their valuekdartaximum  too small or too large values fgf, KELossRateand
objective value. This tuning method can simplife tiuning MoleColl are not good. The selected parameter values are
process forlnitialKE and g and improve the quality of [4.0, 2.0, 100, 0, 0.6, 0.6], which will be used ah the
solutions. numerical studies presented later.

The test instance for parameter tuning was selexsettie
constant improvement strategy for the Sioux Fa#isvork 4.3 Sudy 1: Objective function comparison
under the low demand condition with budget equalGm@00,
because of its calculation simplicity compared Viattge and  In this study, the Sioux Falls network is used ¢ondnstrate
congested networks. 20 random seeds were usedsfimnd. the importance of including environmental costshiea NDP,
To understand the general performance of the metstie, as well as the tradeoff betwe@8TC TEC, andTNC,
the average value of the best objective value péthin each To demonstrate the importance of including envirental
run was recorded for determining parameter values. costs in the NDP, a base case which only incldd&BCin

Before the tuning process, the objective functi@ue the objective function is created for comparisorihwiwo
without any link improvement in this problem wassfiy other cases: one considers the summ®TTand TECin the
calculated, which is equal to 434792.84. Then, ittigal objective function, and another one considers thal cost
combination for the values of the six parametbrgiglKE, 5, (i.e., TSTC + TEC + TN The results are shown in Table 4.
popsize initialbuffer, MoleColl, and KELossRatewas setto  0.5D, 1.0D and 2.0D denote the cases of low, aegragd
be [1.0, 0.5, 200, 0, 0.5, 0.5], in which the valu®r high demand conditions, respectively.

InitialKE andp are normalized. During the tuning, with the

1724000 1722000 1719000
1721000 1718000 4
1720000

1717000
1719000 4
1718000
1717000
1716000
1715000
1714000
1713000

1710000 T T T T T T T T T d 1712000 T T T T T T T 1 1711000 T T T T |
o 1 2 3 4 5 6 717 8 9 10 05 1 15 2 3 5 7 8 10 50 100 150 200 250

Initial KE B Popsize

1722000

1720000
1716000
1718000 -
¢ 1715000
1716000
1714000

1714000 1713000 |

Average best objective value
Average best objective value
Average best objective value

1712000 1712000 4

©

1705000 1710000 4 1721000
1720000
1719000
1718000 g
1717000
1716000
1715000
1714000
1713000
1712000

T T T T T | 1680000 T T T T T T T , 1711000 T T T T T T T |
0 10 100 1000 10000 1.E+06 1.E+07 01 02 03 04 05 06 07 08 09 01t 02 03 04 05 06 07 08 09
Buffer MoleColl KELossRate

1700000 4 1705000 4

1695000 4
1700000
4
1695000

1690000 4

1685000 4

1690000
1680000 9

1675000 - 1685000 1

Average best objective value
Average best objective value
Average best objective value

1670000

Figure 5 Parameter tuning for the enhanced CRO
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Table4
Average cost comparisons betwdesit Conly and total costi{STC+ TEC+ TNC)

Instance

Costs(million HKD)

Base Cas€TSTC only TSTC + TEC Difference TSTC + TEC + TNC  Difference
0.5D 415782.42 418596.44 0.67% 1710010.19 311.27%
1.0D 1438717.85 1445928.42 0.50% 5189190.17 260.68%
2.0D 19971509.22 20031246.20 0.30% 24536201.70 622.8

As shown in Table 4, the sum of the costs increastgs
the number of the cost components included. Theease is
very obvious especially when the noise cost isuitetl. The
maximum percentage increase is more than 3.1 tiwiaish

is quite large and should not be ignored. This Itesu

demonstrates the need to
considerations into the NDP.
Besides the significant effects on the magnitudeasts,
the incorporation of environmental concerns alse dgreat
influence on the network design solution. Tablerévjmes
the final design solutions under the low demanabsion and

different objective functions.

Table5
Final design under different objective functions
TSTC+TEC
TSTC TSTC+TE(Q +TNC

19 19

29 29

34 34 2

35 35 9

40 40 11

42 42 18

48 48 26
Links to be 53 53 33
improved 55 55 36
(Link No.) 57 57 45

58 58 46

65 65 49

66 66 53

69 69 58

70 70 60

72 72 63

74 74 74

75 75

76 76
Total costs 414254.85 417060.64 1698123.28

It can be seen that the final design for the sdenar
considering noise cost is significantly differembrh those
without noise cost (i.e.TSTC or TSTC + TEQ). This is
because the noise cost is not monotonic with réspec
average speed and link flow, compared to the manoto
relationship between travel time cost and link fléuwhough
the emission cost possesses certain nonlinearity nespect

to flow as well, the magnitude of emission costektively
minor compared toTSTC and hence fails to change the
design under the consideration ®STC Therefore, the
designs without considering noise cost are the same

In the following analysis, the tradeoff between thece

incorporate environmentatost components is explored. We constructed a meihl

the objective function considering only one coshponent,
and determined the best objective value. At theeséime,
we obtained the values of other cost components.ré$ults
are shown in Table 6 below. The arrows pointingoupown
indicate that the value increases or decreasesareehpvith
the base caseT8TConly). The asterisk (*) in front of the
number denotes that this is the smallest valubanaw.
Table 6
Cost comparison between different single objediivetions
Objective function

Instance Component

values  TsTC TEC TNC

TSTC  *414254.85 420761.69  426452.6T
0.5D TEC  2805.8 *2766.69 2776.86

TNC  1465563.5 1291911.47 *1266122.5]

TSTC  *1428817.98 143890357 1602971.4
1.0D TEC  7165.62 *7146.68 7500.76

TNC  3925517.87 3833606.63 *3608278.2Q

TSTC  *19509685.92 19509685.92  20214524.65
2.0D TEC  58469.82 *58469.82 60361.3

TNC  4399355.34 4399355.34 *4375468,63

Some important and interesting findings emerge fthen
results. Firstly, the three costs cannot be simaltasly
optimized in general. As indicated by the arrowsoime
scenario, when the objective component value ismiked,
the costs of the other two components do not nadgss
decrease and they usually increase. This implias ttiere
are tradeoffs between designing a network for mahitatal
travel time, minimal total emission cost, and miainotal
noise cost. This is because the relationship betwegission
factors and_.qare not monotonic with respect to speed and
link flow but the relationship between travel tiraad link
flow is.

Secondly, all the cost components as well as tta tost
increase as demand on the network increases. Thease
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amplitude of TSTCis much larger than those @EC and
TNC. This implies that in our modeling frameworSTCis
more sensitive to the link flow change than others.

4.4 Sudy 2: The enhanced CRO and GA performance
comparison

To test the performance of our CRO solving BTPE, IBA
used as a comparison. GA is a relatively classi@heauristic
in solving complicated, often NP hard, optimization
problems. Besides previously listed BTPEs solvedsBy it
also has a wide range of successful applicationgaiious
fields including transportation engineering (eRutha et al.,
2012), structural engineering (e.g., Adeli and @help93;
Adeli and Kumar, 1999; Adeli and Sarma, 2006; Kinda
Adeli, 2001; Hsiao et al., 2012; Marano et al., Z0%arma
and Adeli, 2001, 2002; Sgambi et al., 2012) andtetal
and electronic engineering (e.g., Adeli and Hun§95t

Szeto et al.

process. The crossover operator adopted is onet poin
crossover with the crossover rate of 1 at eachlbithis
study, two cases were tested for the performanogadson

of the enhanced CRO and GA: doubling the capacitythe
constant capacity increment.

4.4.1 Doubling the capacityn this scenario, the Sioux Falls
network with different demand conditions was uséth whe
budget equal to 40,000 (SD case). The results ae2ds are
plotted in the Figure 6 below and the summary dhitked
numerical results is given in Table 7. The valubaid is the
best value of the two algorithms for the criterimsidered. It
is obviously observed that, our CRO has a bettaraill
performance on this scenario with lower averagedhbje
function values and smaller standard deviationstignos

The convergence plots of our CRO and GA using a
random seed on the Sioux Falls network are provided
Figure 9. From the convergence comparison plot, @RO

Hung and Adeli, 1994). Similar to our CRO, GA has ashows a relatively faster speed to converge andhesaa

framework in which other techniques can be incaaper to
produce a hybrid that reaps the best performanadiftenent
problems (e.g., Adeli and Cheng, 1994a,b; Adeli Knodhar,
1995a,b; Sarma and Adeli, 2000a,b; Jiang and Az@Qg).
To carry out a fair comparison, the GA parameteesew
also fine-tuned. The selected valuemofitation probability

better objective function value within 3000 lowesvél
problem evaluations.

4.4.2 Lane additionin this scenario, the Sioux Falls network
(SC case) and the Anaheim network (AC case) witlergint
demand conditions were both tested. The budgengstfor

and popsizewere tuned as 0.01 and 100, respectively. Thethese two network applications are provided in €ahl The

solution representation, the initial solution gextien
procedure and the repairing procedure are identicéhose
of the enhanced CRO. The fitness of each solus@qual to
PE. All parents were allowed to reproduce offspring
Roulette wheel selection was adopted for the remtcoh

The low demand case: 0.5D

1740000 5270000

The average demand case: 1.0D

best objective function values are plotted in Fégur and
Figure 8 respectively. The detailed numerical rsstéhn also
be referred to Table 7 as well. Our CRO shows bette
performance to search for good solutions for thealkm
network.

4cro The high demand case: 2.0D scro
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Figure 6 Best objective function values for the Sioux Fakitwork scenario (doubling the capacity)
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Figure 7 Best objective function values for the Sioux Fadlse addition case
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Figure 9 Convergence plots of the enhanced CRO and GAmaralarged view within the dashed box
(Doubling the capacity, the low demand case: 0.5D.)
Table7
Statistical results and computation time
Noﬁ_of Enhanced CRO GA
traffic
Demand -
Network o assignment Standard
conditions - andar ' s Standard '
problems ~ Minimum Mean Deviation Time(s) Minimum Mean Deviation Time(s)
solved
0.5D 20,000 1688986.15 1718373.35 11527.81 636.08 1698123.28  1710010.19 6367.99 679.38
SC 1.0D 20,000 5140944.20 5175589.20 14318.84  1601.06 5165790.23 5189189.94 12693.01 1661.80
2.0D 20,000 23748654.72  24136630.09 21771457  2275.99 23967511.09 24536201.70 224751.76  2384.77
0.5D 20,000 1657075.53 1662193.54 1621.33 696.00 1661778.99 1665569.29 7713.83 744.80
SD 1.0D 20,000 5199695.85 5199695.85 0.00 1631.73 5199695.85 5215980.87 17568.83 1754.03
2.0D 20,000 24827783.76 2549402355 685112.66 2246.61 24827783.76  26153756.07 341834.33  2396.09
0.5D 20,000 20378950.82  20394079.59  5402.73 32473.59 | 20378418.87 20387157.82  3000.03 43885.69
AC 1.0D 20,000 41297460.72  41393602.60 55942.7763225.6 4112812240  41267375.65 59158.11 66071.48
2.0D 20,000 57685492.75 57525700.48 261244.03 90548.05 | 5731331530 57567537.14 109019.43 95833.48
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To have a more accurate comparison, a t-test Wb 9

confidence interval on the difference in meansotdltcosts

(TSTC+ TEC + TNCQ) obtained by the enhanced CRO and

GA was carried out. An illustration is providedTable 8. To

environmental concerns can influence the network
design pattern significantly. Hence, it is impottdor
transportation network planners to incorporate the
environmental costs in the NDP and minimize them.

present the results concisely, the summary of &@melosion 2. Minimizing the total system travel time cost doest n

is provided in Table 9, using “s+", “s-” and=™ to indicate necessarily minimize the environmental costs at the

that the enhanced CRO performs significantly bettban, same time. There are tradeoffs between these olgsct

significantly worse than and comparably with GA The transportation network planners need to consiae

respectively. tradeoff carefully when improving transportation
Table 8 networks.

Results of t-test of Sioux Falls lane addition cgséD) 3. Within 20,000 times of solving the traffic assigmmhe
Difference in meanfCRO-GA  t-Value Probability problem, our CRO is able to obtain a better obyecti
-13600.74 -3.718 0.001 function value than GA in some cases (e.g., in nobst

the Sioux Fall network cases with 24 nodes andris)
Table9 whereas they can have comparable performance en oth

cases (such as for the congested network with
numbers of zones, links and nodes of 38, 416, ddd 9
respectively).lt is no harm to use the CRO approach to

Results of t-tests with 95% confidence intervattom
difference in means between the enhanced CRO and GA

Traffic

Instance Network “ CRO GA solve other problems that have been solved by GA bu
condition not CRO in the future. Perhaps, better solutiomns lua
Double . 0.5D st s obtained. - -
capacity Sioux 1.0D s+ s- We believe that the above key findings and impioret
improvement Falls 2'0D N are useful for future research, and can open upe mew
. S S research directions For example, we can compare the
Sioux 0.5D S- s+ performance of the proposed solution method and
c Falls 1.0D s+ s- evolutionary strategy (e.g., Jafarkhani and Ma2@i11) on
onstant 2.0D s+ s solving BTPE.
capacity
improvement 0.5D S s+
Anaheim 1.0D s S+ ACKNOWLEDGEMENTS
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