11 research outputs found

    Improved Lion Optimization based Enhanced Computation Analysis and Prediction Strategy for Dropout and Placement Performance Using Big Data

    Get PDF
    Background: Predicting the undergraduate’s placement performance is vital as it impacts the credibility of educational institutions. Hence, it is significant to predict their performance based on placement in the early days of degree program. Objectives: The study intends to predict the undergraduate’s placement performance through the introduced ANN-R (Artificial Neural Network based Regression) as it is able to handle fault tolerance. For efficient prediction, relevant feature selection is needed that is performed by the proposed ILO (Improved Lion Optimization) algorithm as it has the ability to find nearest probable optimal solution. Methodology: Initially, the parameters and population are initialised. Subsequently, first best-agent is stated in accordance with fitness function. Subsequently, position of present search agent is updated. This iteration continues until all the features are selected and optimized result is attained. Here best score is computed using the proposed ILO for feature selection. Finally, the dropout analysis and placement performance of students is predicted using the introduced ANN-R through a train and test split. Results/Conclusion: Performance of the proposed system is analysed in accordance with loss metrics. Additionally, internal comparison is performed to find the extent to which the actual and predicted values correlate with one another during prediction using the existing and proposed system. The outcomes revealed that the proposed system has the ability to predict the student’s placement performance along with domain of interest with minimum errors than the traditional system. This makes the proposed system to be highly suitable for predicting student’s performance

    Improved Lion Optimization based Enhanced Computation Analysis and Prediction Strategy for Dropout and Placement Performance Using Big Data

    Get PDF
    Background: Predicting the undergraduate’s placement performance is vital as it impacts the credibility of educational institutions. Hence, it is significant to predict their performance based on placement in the early days of degree program. Objectives: The study intends to predict the undergraduate’s placement performance through the introduced ANN-R (Artificial Neural Network based Regression) as it is able to handle fault tolerance. For efficient prediction, relevant feature selection is needed that is performed by the proposed ILO (Improved Lion Optimization) algorithm as it has the ability to find nearest probable optimal solution. Methodology: Initially, the parameters and population are initialised. Subsequently, first best-agent is stated in accordance with fitness function. Subsequently, position of present search agent is updated. This iteration continues until all the features are selected and optimized result is attained. Here best score is computed using the proposed ILO for feature selection. Finally, the dropout analysis and placement performance of students is predicted using the introduced ANN-R through a train and test split. Results/Conclusion: Performance of the proposed system is analysed in accordance with loss metrics. Additionally, internal comparison is performed to find the extent to which the actual and predicted values correlate with one another during prediction using the existing and proposed system. The outcomes revealed that the proposed system has the ability to predict the student’s placement performance along with domain of interest with minimum errors than the traditional system. This makes the proposed system to be highly suitable for predicting student’s performance

    New Soft Set Based Class of Linear Algebraic Codes

    Get PDF
    In this paper, we design and develop a new class of linear algebraic codes defined as soft linear algebraic codes using soft sets. The advantage of using these codes is that they have the ability to transmit m-distinct messages to m-set of receivers simultaneously. The methods of generating and decoding these new classes of soft linear algebraic codes have been developed. The notion of soft canonical generator matrix, soft canonical parity check matrix, and soft syndrome are defined to aid in construction and decoding of these codes. Error detection and correction of these codes are developed and illustrated by an example

    An intelligent rule-oriented framework for extracting key factors for grants scholarships in higher education

    Get PDF
    Education is a fundamental sector in all countries, where in some countries students com-pete to get an educational grant due to its high cost. The incorporation of artificial intelli-gence in education holds great promise for the advancement of educational systems and pro-cesses. Educational data mining involves the analysis of data generated within educational environments to extract valuable insights into student performance and other factors that enhance teaching and learning. This paper aims to analyze the factors influencing students' performance and consequently, assist granting organizations in selecting suitable students in the Arab region (Jordan as a use case). The problem was addressed using a rule-based tech-nique to facilitate the utilization and implementation of a decision support system. To this end, three classical rule induction algorithms, namely PART, JRip, and RIDOR, were em-ployed. The data utilized in this study was collected from undergraduate students at the University of Jordan from 2010 to 2020. The constructed models were evaluated based on metrics such as accuracy, recall, precision, and f1-score. The findings indicate that the JRip algorithm outperformed PART and RIDOR in most of the datasets based on f1-score metric. The interpreted decision rules of the best models reveal that both features; the average study years and high school averages play vital roles in deciding which students should receive scholarships. The paper concludes with several suggested implications to support and en-hance the decision-making process of granting agencies in the realm of higher education

    A New Fusion of Salp Swarm with Sine Cosine for Optimization of Non-linear Functions

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The foremost objective of this article is to develop a novel hybrid powerful meta-heuristic that integrates the Salp Swarm Algorithm with Sine Cosine Algorithm (called HSSASCA) for improving the convergence performance with the exploration and exploitation being superior to other comparative standard algorithms. In this method, the position of salp swarm in the search space is updated by using the position equations of sine cosine; hence the best and possible optimal solutions are obtained based on the sine or cosine function. During this process, each salp adopts the information sharing strategy of sine and cosine functions to improve their exploration and exploitation ability. The inspiration behind incorporating changes in Salp Swarm Optimizer Algorithm is to assist the basic approach to avoid premature convergence and to rapidly guide the search towards the probable search space. The algorithm is validated on twenty-two standard mathematical optimization functions and three applications namely the three-bar truss, tension/compression spring and cantilever beam design problems. The aim is to examine and confirm the valuable behaviors of HSSASCA in searching the best solutions for optimization functions. The experimental results reveal that HSSASCA algorithm achieves the highest accuracies with least runtime in comparison with the others

    AI in Education

    Get PDF
    Artificial intelligence (AI) is changing the world as we know it. Recent advances are enabling people, companies, and governments to envision and experiment with new methods of interacting with computers and modifying how virtual and physical processes are carried out. One of the fields in which this transformation is taking place is education. After years of witnessing the incorporation of technological innovations into learning/teaching processes, we can currently observe many new research works involving AI. Moreover, there has been increasing interest in this research area after the COVID-19 pandemic, driven toward fostering digital education. Among recent research in this field, AI applications have been applied to enhance educational experiences, studies have considered the interaction between AI and humans while learning, analyses of educational data have been conducted, including using machine learning techniques, and proposals have been presented for new paradigms mediated by intelligent agents. This book, entitled “AI in Education”, aims to highlight recent research in the field of AI and education. The included works discuss new advances in methods, applications, and procedures to enhance educational processes via artificial intelligence and its subfields (machine learning, neural networks, deep learning, cognitive computing, natural language processing, computer vision, etc.)
    corecore