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Abstract: The foremost objective of this article is to develop a novel hybrid powerful meta-heuristic that integrates 

the Salp Swarm Algorithm with Sine Cosine Algorithm (called HSSASCA) for improving the convergence 

performance with the exploration and exploitation being superior to other comparative standard algorithms. In this 

method, the position of salp swarm in the search space is updated by using the position equations of sine cosine; 

hence the best and possible optimal solutions are obtained based on the sine or cosine function. During this process, 

each salp adopts the information sharing strategy of sine and cosine functions to improve their exploration and 

exploitation ability. The inspiration behind incorporating changes in Salp Swarm Optimizer Algorithm is to assist 

the basic approach to avoid premature convergence and to rapidly guide the search towards the probable search 

space. The algorithm is validated on twenty-two standard mathematical optimization functions and three 

applications namely the three-bar truss, tension/compression spring and cantilever beam design problems. The aim 

is to examine and confirm the valuable behaviors of HSSASCA in searching the best solutions for optimization 

functions. The experimental results reveal that HSSASCA algorithm achieves the highest accuracies with least 

runtime in comparison with the others. 

Keywords: Standard global Optimization Functions; Heuristic Hybridization; Salp Swarm Algorithm; Sine Cosine 

Algorithm; Exploration and Exploitation. 
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1. INTRODUCTION

Nature inspired techniques are powerful and well-known for searching optimal solutions in optimization

problems. Day by day, researchers have developed several newly meta-heuristics for improving and enhancing 

exploration and exploitation of the existing algorithms, for instance Gravitational Search Algorithm (GSA) [15], 

Grey Wolf Optimization (GWO) [30], Particle-Swarm-Optimization (PSO) [23], Ant-Colony-Optimization- (ACO) 

[3], Krill Herd Algorithm (KHA) [37], Ant Lion Optimizer (ALO) [36] and many others [1, 4, 5, 7, 8, 11-13, 17, 21, 

22, 25, 29, 31-35, 38-39, 42, 44-52, 53-54, 58, 61, 84]. Each nature inspired algorithm has its own advantages and 

disadvantages so that there is no guarantee which algorithm is best suited for a specific problem [57]. It is possible 

that the single optimizer algorithm cannot find the best solution for each type of functions [57]. Therefore, 

implementing and proposing new and high-accuracy meta-heuristics for real applications have become a challenging 

task for scientists [9]. 

Hybridization of nature inspired algorithms is a popular approach for to merge merits and strength of standalone 

algorithms for handling those deficiencies [9]. Several typical studies can be seen in [21, 38, 42, 44, 47, 50,61, 82, 

83] in which the hybrid algorithms merging advantages of single ones performed well in boosting the accuracy of

functions and reducing classification time. As an example, Sarbazfard et al. [42] developed a hybrid variant called

HFADE that integrates differential evolution (DE) with Firefly algorithm (FA) for improving exploration tendency

of those algorithms. Firefly algorithm and differential evolution both are effective techniques but firefly approach

depends on arbitrary instructions for hunt, which lead into retardation in searching the superior and possible global

result in the search area. The existing variant was utilized on twenty-six standard functions for testing the

convergence accuracy. Fouad [17] recently proposed a hybrid approach called Hybrid GWO-GA, amid the grey

wolf optimizer (GWO) and genetic algorithm (GA) in order to minimize a simplified model of the energy function

of the molecule. In this study, GWO was applied to create the equilibrium amid exploration and exploitation in the

existing variant. The experiments revealed that the existing approach is more competent, capable and promising of

searching nearest global optima minimum value of the standard problem than the others.

However, there are several meta-heuristics applied in real-world problems and no algorithm can solve all types 

of functions [2]. In this paper, we consider the extension of the salp swarm (SSA) [28], which is a robust algorithm 

in comparison with the other algorithms. It has good convergence rate, but there are still some 

shortcomings/demerits, like easy fall into low exploration, local optimum, poor solution accuracy, premature 

convergence and exploitation tendency [43]. Faris et al. [16] was presented an newly modified approach for enhance 

the performance of SSA algorithm. In this work two new wrapper FS algorithms that apply SSA as the search 

method. Firstly, eight transfer problems/or functions are employed to convert the continuous version of salp swarm 

algorithm to binary. And secondly, the crossover operator is applied in addition to the transfer problems/or functions 

enhanced the exploratory behavior of the approach. The working performance of this version have been tested on 22 

standard problems and verified with several latest meta-heuristics in term of best and possible solution of functions. 

In order to handle these drawbacks, we propose the idea of combination between salp swarm and sine cosine 

algorithms (SCA) [34], which is competent for determining best solution with the exploitation and exploration being 

superior to other recent comparative standard algorithms [56]. Farnad and Jafarian [77] presented an efficient hybrid 

method for finding the solutions of engineering and constrained numerical functions. Three different algorithms 

such as genetic algorithm (GA), particle swarm optimization (PSO) and symbiotic organisms were integrated for 

finding solutions of function in a complex design space and to manage the feasibility of searching with penalty 

function strategy. The new algorithm was tested on the standard well-known functions and engineering applications 

with the recent meta-heuristics. Similarly, several recent hybrid, modified and newly evolutionary approaches have 

been presented by the researchers such as Hybrid Bacterial Flower Pollination Algorithm (HBFPA) [78], Flower 

Pollination Algorithm (FPA) [79], Hybrid whale optimization algorithm based on local search strategy [80], hybrid 

Q-learning sine-cosine- based strategy (QLSCA) [81], Adaptive Operator Quantum-Behaved Pigeon-Inspired

Optimization Algorithm [85] and many others.
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The main objective of this work is to present a hybrid salp swarm optimizer with sine cosine algorithm to solve 

engineering problems. This proposed method is called as hybrid SSASCA algorithm. Although the salp swarm 

algorithm is more capable to reveal a competent accuracy in comparison with other well-known meta-heuristics, it 

still may face the difficulty of getting trapped in local optima. It is also not fitting for high complex functions and 

cannot handle several their drawbacks such as premature convergence, slow diversity, slow convergence speed etc. 

Hence, in order to improve the slow convergence and other weakness of the salp swarm approach, SCA is invoked 

as a local search scheme.  The proposed method transits from (exploration to exploitation) the search of solved with 

the use of optimal range in the trigonometry functions. Therefore, HSSASCA algorithm produces and refines a set 

of random optimal goals for the given functions and furthermore it intrinsically advantages from the local optima 

avoidance and high exploration compared to separate based meta-heuristics. Our methodology enhances search 

capabilities and global convergence rate by accelerating the search speed. The modified method has been tested on 

several well-known standard benchmark functions and engineering applications in the comparison with the related 

algorithms. All numerical and statistical optimal solutions of the functions reveal that the proposed method 

outperforms the others for searching the best value of the functions. 

The remains are below: Section 2 describes the background of Salp Swarm and Sine Cosine. The motivation of 

the present work has been reported in the section 3. Section 4 shows details of the newly hybrid approach. Analysis 

and comparative experiments are described in Sections 5-6. In Section 7, three applications namely the three-bar 

truss, tension/compression spring and cantilever beam design problems are presented. Finally, Section 8 presents the 

concluding remarks and future studies. 

2. BACKGROUND

2.1 Salp Swarm Algorithm (SSA)

Mirazalii et al. [28] introduced an extensive accessibility such as SSA, inspired from the navigation and foraging 

behavior of salp deep in the sea. These organisms attach roots and make a root or a slip chain. The salp chain tries to 

find the best place of food via process of searching with the help of a leader salp, as the rest of the followers. The 

crowd of salp swarm optimizer algorithm is initialized in two different groups like followers and leader. The 

first group is one salp taking the position at the front of the sequence. Let y  denoted as position of a salp, and

F represents food. Position of leader is updated as, 

  
  

0.5
1 2 31

0.5
1 2 3

F c ub lb c lb cj j j j
x j

F c ub lb c lb cj j j j

   



   







(1) 

where 
1

x j is the position of the best solution, ub j and lb j are upper and lower bound of the 
th

j dimension, Fj is 

the food source position of the dimension and
2

c ,
3

c are random numbers,

Here, 
1

c is an important constant that it maintains a balance amid exploitation and exploration, and it can be 

written/or given by: 

2
4

2
1

l

L
c e

 
 
 


 (2) 

where L  is the maximum number of iteration and  l is the current iteration. 

 The follower’s positions are updated by using the following mathematical equation: 

1 2
02

i
x at v tj     (3) 
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where 2, j

ii x presents the position of 
thi followers salp in

thj dimension, t is time, 0v is the initial speed and

0

finalv
a

v
 where 

0x x
v

t


 .

Hence, the time in optimization in generation or iteration, the discrepancy between generations or iterations is equal 

to 1, and considering 0 0v  , this equation can be expressed as follows: 

1 1
2

i i ix x xj jj
 
 
 

  (4) 

where 
i

x
j is the position of the 

th
i follower at the 

th
j dimension.

2.2 Sine Cosine Algorithm (SCA) 

SCA [34] establishes various basic random agent solutions based on sine-cosine functions towards the best 

global optima. Main step of an optimizer is known to be the formulation of the position updating. Subsequent 

position of an agent is modified by: 

 1 2 3
1

sin
t t t t

x x r r r l xi i i i


      (5) 

 1 2 3
1

cos
t t t t

x x r r r l xi i i i


      (6) 

The conditions in equations (4-5) for exploitation and exploration are: 

 

 

sin , 0.5
1 2 3 4

cos , 0.5
1 2 3 4

1
t t tx r r r l x ri i i

t t tx r r r l x ri i i

t
xi


     


      



  (7) 

where 
t

xi is the current position at 
th

t iteration in 
th

i dimension, il is the targeted global optimal solution, , ,
1 2 3
r r r

are random numbers and  is the absolute value. 

In order to get a balance amid exploitation and exploration, the first random value is chosen adaptively as 

follows. 

1

constant
constant _

_
r present iter

Max iter
   (8) 

The first random value  1
r controls the new update position’s region. The second random value  2r decides the

distance outwards or towards the destination. The third random value  3r generates a random weight to 

stochastically deemphasize  1
3

r   or emphasize  1
3

r   effect of destination in defining the distance. The fourth 

random value is in [0,1] and uniformly switches amid the cosine and sine position updating. 

3. Motivation of the present work

Although SSA is skilled to conceal well-organized accuracy in comparison with recent meta-heuristics, it is still 

may face the difficulty of getting trapped in local optima and is not fit for highly complex functions. To extent its 

search ability and overcome these limitations, a newly hybrid method called hybrid salp swarm optimizer and sine 

cosine algorithms (HSSASCA) algorithm is developed to solve engineering problems. During this work, SSA 

operates in the direction of exploring the vector of solutions while SCA is invoked as a local search scheme to 

improve the solution superiority. The natural characteristic of SCA algorithm to make compound mutation in the 

optimal solutions and to avoid to stuck in local optima. By this methodology, it is intended to improve the global 

convergence by accelerating the search seeking instead of letting the algorithm running several iterations without 

any improvement. The accuracy of the proposed method has been tested on various standard well-known benchmark 

and engineering functions. Experimental results reveal that the proposed approach is a robust search method for 

several optimization functions. 
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4. THE PROPOSED HSSASCA ALGORITHM 
 

Researchers have been trying for developing new hybrid and modified version of the exiting algorithms for 

different specific complex functions of optimization problems. As per Talbi [86], two different algorithms can be 

hybridized in two ways such as low level versus high level and relay versus teamwork (sub-categories (i) low-level 

relay hybrid (LRH) and (ii) low-level teamwork hybrid (LTH) with co-evolutionary techniques as homogeneous. 

During this research, we hybridize the salp swarm algorithm with sine cosine algorithm using low-level teamwork 

hybrid (LTH) co-evolutionary mixed hybrid. Further, the main structure of the proposed hybrid method is explained. 

It is known as HSSASCA, which merges the Salp Swarm Algorithm (SSA) and the Sine Cosine Algorithm (SCA). 

The main part of the Salp Swarm Algorithm is modified by improving the updating phase of the population’s 

position.  In this modification the sine and cosine functions have been applied in the position update equation in 

SSA algorithm for enhancing the exploration and exploitation tendency of the algorithm. This integration adds more 

flexibility to the Salp Swarm Algorithm (SSA) in exploring the crowd/or population and ensures the diversity of it, 

as well as the appropriate value reaches quickly. 

 

Further, during this study, a modified approach of hybrid SSA and SCA is incorporated in a parallel manner with 

the objective to replace bad optimal solutions via the one-to-one idea to find new crowd/or population. The main 

motive of this work is that the help of salp swarm can be improved exploitation tendency and exploration can be 

achieved with the help of sine and cosine. The proposed method uses trigonometry functions (i.e. sine and cosine) to 

search and exploit space between two solutions in the search area for finding a better optimal solution. The agent/or 

salp population and fitness value of the given function has been evaluated as per the newly hybrid method. 

Furthermore, the position of the each salp swarm in the entire group is improved by applying the position equations 

of sine and cosine functions. For this reason, better quality of global optimal results/or solutions have been tried to 

update based on these functions, which means that the exploration ability could be much stronger. The sine and 

cosine functions can more helps the Salp Swarm Optimization algorithm phase to attained the best solution/ or score 

more rapidly and improve the convergence rate. 
 

Through that methodology, the natural properties of this improvement can be controlled by involving the SCA 

phase as a local research strategy which accelerates the behavior of the desire and prevents the system of metabolic 

modification without any modifications in the results. Indeed, the inefficiency of the SSA phase can be reduced 

efficiently. Here, the proposed algorithm proceeds to find the best and possible results in the search areas. Further, 

brief details of the newly hybrid approach is shown step by step as below:  
 

Step 1: Initialization population 
 

During this study, firstly we initialize the population in the search area. The crowds of salp are initialized 

randomly within the search area of the given functions, where the meta-heuristic assigns a random vector of n

dimensional for the 
thi salp;  ~ 1, 2, 3, ...,X x i ni  .  

 

Step 2: Evaluation 

 

Every search member is evaluated according to the superiority of its position/or location which is allied to the 

preferred objective problem/or function, where the best solution (or goal) so far is obtained. 

 

Step 3: Each agent locations/or positions updating 
 

The following equation (9) affirmed that the leader only updates its position or location with respect to the food 

source. It is most important role of this parameter in SSA algorithm, since it creates balancing between exploration 

and exploitation. The sine and cosine functions have been applied to this parameter to enhance the convergence rate 

and balance between exploration and exploitation. The position equation of SSA algorithm has been modified as 

follows: 

 

 
1

sin 0.5
2 1 3

cos 0.5
2 1 3

F r c F S cj j j
x j

F r c F S cj j j

    



    




                                                  

(9) 
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where
1

x j is the position of the best solution at the 
th

j dimension, F j is the food position at the 
th

j dimension,

S j is the salp position at the 
th

j dimension and random number is    2
2

r rand   . The parameter 
3

c is 

random numbers uniformly generated in the interval of [0,1]. In fact, they dictate if the next position in 
th

j

dimension should be towards positive infinity or negative infinity as well as the step size. 

Step 4: Followers locations/or positions updating 

The position update in equation (4) of the followers has been modified as equation (10). This methodology helps 

the best position value of the salp ( S j ) in the entire swarm during the searching of the best goal for a given function

have been directly providing best position scores in that equation for the enhancing the convergence rate and 

defeating the premature convergence. The update the position of the followers by following equations: 

1 1
2

S
j

i i ix x xj jj
 

 
 

  (10) 

where
i

x
j is the position of the 

th
i follower at the 

th
j dimension, S j is the salp position at the 

th
j dimension. 

Step 5: Stopping condition 

Finally, the stopping criteria have been applied for calculating the final optimal solution of the given functions. 

By the procedure of evaluating each agent/or salp assessment process and updating the best agent's place, it will be 

repeated again and again until it satisfies the criteria of prevention. i.e. it reaches to the highest number of 

generations/or iterations or the global optimal result/or goal is earliest found. 

The first optimization process is to search optimal results using salp Swarm. Then, the position update equation 

of Sine and Cosine is used to refine the position of leader and followers during the search process. The rest of 

operations are the same as Salp Swarm. Algorithm 1 shows the HSSASCA flow. 

Algorithm 1. The hybrid HSSASCA 

Initialization the population X
Repeat 

Compute the objective function for each solution xi

Evaluate each salp in the population  ~best salp F

Determine the fitness (value) of each salp 

      Update the repository optimal solutions considering the fitness (values) of best agents 

Modify the constant 1c value by equation (2) 

 For (all salp  xi ) do

If ~x leaderi Update the position of the leader of the group by applying the mathematical equation (9)

     Else 

Update the position of each follower’s by applying the mathematical equation (10) 

While  max_t iters

Return F 

The procedure of the proposed method is shown in algorithm 1. For the basic computational complexity of 

the Salp Swarm Algorithm (SSA) is of   CofO t d n n   , where d  is the number of variables

(dimension), t shows the number of iterations, Cof  presents the cost of objective function  and n is the 

number of solutions. The time complexity of performing sine and cosine operations is of 
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 max_O iters n d  , where max_ iters is the maximum number of iterations or generations. Hence, the 

time complexity of the proposed algorithm (HSSASCA) is: 

    Cof max_O t d n n O iters n d     . 

Obviously, the time complexity of the proposed algorithm is higher than that of the standard salp swarm 

algorithm (SSA) while both of them are in the same order of magnitude. 

With the above strategy, the newly hybrid approach hypothetically is competent to determine the global 

optimum of the optimization function due to the following reasons: 

 In HSSASCA, the disparate regions of the search area are explored, when the cosine and sine

trigonometry functions return an optimal solution less than negative one (-1) or greater than positive

one (+1).

 In HSSASCA, the encouraging regions of the search area is exploited when the trigonometry

function gives optimal solution amid negative one (-1) and positive one (+1).

 HSSASCA algorithm produces and refines a set of random optimal goals for the given function.

Hence, it intrinsically advantages from the local optima avoidance and high exploration compared to

separate based meta-heuristics.

 The HSSASCA approach transits from (exploration to exploitation) the search of solved with the use

of optimal range in trigonometry functions.

 The finest estimate of the comprehensive optimum is stored in a variable as the target point and not

at all gets mislaid throughout optimization.

 Because the optimal solutions always update their conditions around the best solution they have ever

received, there is a trend toward the best areas of search during optimization.

 Because the newly proposed method considers the compatibility problem as a black box, the

problems can be easily added in different areas, which are under the solution to the right problem.

5. ANALYSIS

The proposed algorithm has been applied on well-known standard and engineering optimization functions. Here 

these functions have been chosen for verifying our experimental solution with recent meta-heuristics. All the results 

are illustrated in Tables 2-10. Further, the experimental results/or solutions of the hybrid method are verified/or 

compared against the SSA (Salp Swarm Algorithm), PSO (Particle Swarm Optimization), MFO (Moth-Flame 

Optimization Algorithm), SCA (Sine Cosine Algorithm), DA (Dragonfly Algorithm), MVO (Multi-Verse 

Optimizer), ALO (Ant Lion Optimizer), MGWO (Mean Grey Wolf Optimizer), DCSGWO (Distributed Compressed 

Sensing + Grey Wolf Optimizer), FWAGWO (Fireworks Algorithm + Grey Wolf Optimizer) and HAGWO (Hybrid 

Algorithm of Grey Wolf Optimizer) algorithms.  

The HSSASCA (Hybrid Salp Swarm Algorithm + Sine Cosine Algorithm), SSA, PSO, MFO, SCA, DA, MVO, 

ALO, MGWO, DCSGWO, FWAGWO and HAGWO algorithms are programmed by MATLAB 2015 and 

implemented on, 15.6” Intel HD Graphics, Pentium-Intel Core (TM), 16.9 HD LCD, 3GB Memory, 320 GB HDD 

and i5 Processor 430 M.   

Massive experiments illustrate that the SCA and SSA techniques can be close to the best condition on these 

problems/functions when the number of generation/iteration and population size are set to 300 and 30, respectively. 

For a fair comparison, the swarm size and the number of generations must be the same for all variants used and 

should also 30 runs each algorithm for check the quality.  

Hence, in this work, the same numbers of generation and population size were used for SSA, PSO, MFO, SCA, 

DA, MVO, ALO, MGWO, DCSGWO, FWAGWO, HAGWO and HSSASCA. Parameter settings for these 

techniques are listed in Table 1. 
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Table1. Parameter settings 

Algorithm Parameters 

SSA Set as in [28] 

PSO 30,max_ 300,s iter 

6, 2, 0.9max max1 2
v c c w    and 0.2

min
w 

MFO 30,max_ 300,s iter  remaining by [33] 

SCA 30,max_ 300,s iter  2a   

DA 30,max_ 300,s iter  remaining by [31] 

MVO 30,max_ 300,s iter  remaining by [29] 

ALO 30,max_ 300,s iter  remaining by [36] 

MGWO 30,max_ 300,s iter  remaining by [53] 

DCSGWO 30,max_ 300,s iter  remaining by [25] 

FWAGWO 30,max_ 300,s iter  remaining by [46] 

HAGWO 30,max_ 300,s iter  remaining by [5] 

HSSASCA 30,max_ 300s iter  ,  ,
3

, 0,1
1 2

cc c  , 

 2
1

randr  
,

 2
2

randr    , 
0

0v  and

30Iruns 

Hence, the hybrid HSSASCA algorithm has been investigated on the tested functions. The uni-modal 

problems/or tasks are well-known to have only one global optimum and thus can be used to assess the exploitation 

capability of a meta-heuristic. Regularly having more than one local optimum, multi-modal and fixed-dimension 

multi-modal problems/or tasks are applied/or used to assess the exploration capability of a meta-heuristic. The 

proposed algorithm was run 20 times on each benchmark problem. The statistical and numerical solutions have been 

performed to illustrate that. By best parameter settings, it was found that the best solutions or results of the given 

functions lie within a reasonable number of generations/ or iterations. The different criteria in this work have been 

applied to assess the capability of proposed algorithm and others. The statistical values such as average and standard 

deviation have been used to assess the reliability of the algorithms. Further, the minimum and maximum value of the 

objective function represent the best possible cost of the given problem in the number of iterations. The average 

number of function evaluation of the successful runs and average computational time of the successful runs has been 

utilized to found the best cost of the problems. 

For seven uni-modal problem, the quality of solution of the given functions obtained have been illustrated by the 

best score, max or min objective function value, average, standard deviation, self and total cpu time respectively. 

These obtained results are reported in table 2 and the convergence performance of the algorithms is shown in figure 

2. Further, the accuracy of the algorithms has been verified on six multi-modal and nine fixed dimension functions.

The experimental solutions of these functions and convergence performance of the algorithms are presented in table

3-4 and figure 3-4 respectively. At the end, we have solved the optimization engineering problems for verifying the

performance of the algorithms and the brief details of these problems and solutions are reported in the section 7.

6. DISCUSSION ON EXPERIMENTAL RESULTS

6.1 Convergence performance of the Algorithms 

The convergence performance of the HSSASCA algorithm and the others are presented for tested functions by 

plotting the standard function values against the-number of generations/or iterations as present in Figure 1. The red 

line represents the accuracy and performance of the standard SSA algorithm, whereas the black line represents the 

accuracy and performance of the HSSASCA algorithm. The data in Figure 1 are plotted after d-iterations. The 

convergence performance of the algorithm proves that the new hybrid method is superior than the standard SSA 

algorithm and other meta-heuristics. This confirms that the applied partitioning mechanism and the integration 
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between the SSA and SCA algorithm can accelerate the convergence of the proposed algorithm. Here, we concluded 

that the modification reduces the running time of the algorithms and boosts the accuracy of classification problems. 

Figure 1. Convergence performance of algorithms on different dimensions 
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6.2 Standard Functions 

The working accuracy of the hybrid HSSASCA algorithm has been confirmed on uni-modal, multi-modal and 

fixed dimension multi modal tested standard problems/or functions. The tested functions are presented in Appendix 

(Tables A - C).   

6.3 Uni-modal Test Functions 

In this subsection, the ability of the proposed method has-been-tested on uni-modal problems/or functions. The 

obtained solutions of these functions have been discussed in Table 2 and Figure 2. For verifying the performance 

and ability of the hybrid algorithms, we have used the standard PSO, SSA, MFO, SCA, DA MVO, ALO, MGWO, 

DCSGWO, FWAGWO and HAGWO algorithms. The best optimal solutions are written in bold font. Here, it-can-be 

easily seen-that-the newly proposed approach provides better or highly effective global optimal results as compared 

to other recent comparative algorithms. As previously discussed, these functions are more capable for benchmarking 

exploitation of the meta-heuristics. Therefore, it is evidence that the proposal achieves high rate of exploitation 

capability. 

Table 2. Results of SSA, PSO, MFO, SCA, DA, MVO, ALO, MGWO, DCSGWO, FWAGWO, HAGWO and 

HSSASCA algorithms on seven Uni-modal functions at different iterations 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

1. SSA 0.2759 0 2.0834e+04 3.9077e+03 4.4991e+03 0.795 0.858 

PSO 0.0598 0.0598 6.7880e+04 1.4489e+03 7.0965e+03 0.950 1.029 

MFO 184.2208 184.2208 7.6447e+04 1.3452e+04 1.8670e+04 0.935 1.108 

SCA 130.2639 0 6.8458e+04 2.2581e+04 2.9145e+04 0.872 0.952 

DA 3.2003e+03 3.2003e+03 6.6178e+04 1.8076e+04 2.3940e+04 15.568 36.892 

MVO 3.9565 3.9565 4.9374e+04 4.3413e+03 8.5599e+03 3.712 5.163 

ALO 6.2254 0 3.9019e+04 2.6497e+03 5.8941e+03 1.254 40.886 

MGWO 2.8399e-04 2.8399e-4 7.6545e+04 1.3452e+04 1.8670e+04 1.669 1.763 

DCSGWO 2.3764e-04 2.3764e-04 6.3262e+04 767.7876 4.4856e+03 1.779 1.888 

FWAGWO 1.2829e-04 1.2829e-04 7.3761e+04 751.0181 5.0120e+03 1.811 1.857 

HAGWO 4.4683e-18 4.4683e-37 7.8074e+04 658.1758 5.5804e+03 3.199 3.276 

HSSASCA 1.2220e-20 0 7.8823e+04 1.273320 9.0073e+03 0.483 0.515 

Fun. 

No. 

Algorith

m 

Best Score Min 

Value 

Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

2. SSA 0.0106 0 17.3558 4.3063 4.7084 0.266 0.358 

PSO 1.2915e-06 1.2915e-06 92.4274 2.2606 5.9981 0.328 0.390 

MFO 1.1725e-05 1.1725e-05 472.5344 11.2343 57.1102 0.234 0.359 

SCA 2.3263e-05 0 20.3387 2.4146 4.6487 0.201 0.281 

DA 0.9367 0.9367 187.2231 11.4567 29.6896 7.884 12.793 

MVO 0.0736 0.0736 171.9180 4.8690 11.3572 0.685 1.014 

ALO 1.6103 0 22.9658 5.6325 6.8939 0.516 8.550 

MGWO 6.2826e-07 6.2826e-07 1.9385e+03 6.8720 111.9145 0.467 0.561 

DCSGWO 1.5601e-06 1.5601e-06 72.9144 0.9138 5.1513 0.390 0.453 

FWAGWO 1.1151e-06 1.1151e-06 33.4773 0.5179 2.7794 0.466 0.546 

HAGWO 6.5042e-06 6.5042e-34 2.2434e+03 7.8006 129.5365 0.858 0.983 

HSSASCA 1.5649e-25 0 522.6365 0.4596 2.2949 0.125 0.187 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

3. SSA 0.0069 0 5.3657e+03 443.0421 578.0686 0.517 1.404 

PSO 5.3411e-04 5.3411e-04 1.8194e+04 459.8058 2.2769e+03 0.126 0.904 

MFO 1.0982 1.0982 1.0448e+04 1.7434e+03 2.2465e+03 0.485 1.404 

SCA 0.0035 0 5.3657e+03 443.0421 578.0686 0.343 1.248 
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DA 147.3776 147.3776 9.1964e+03 2.3952e+03 3.0610e+03 12.699 23.759 

MVO 0.3424 0.3424 2.2581e+04 806.4928 2.2571e+03 0.984 1.825 

ALO 143.0023 0 7.8399e+03 1.0820e+03 1.7367e+03 0.419 8.487 

MGWO 4.9523e-07 4.9523e-07 2.0697e+04 182.8018 1.2946e+03 0.765 1.622 

DCSGWO 2.3524e-06 2.3524e-06 9.4976e+03 107.9226 683.9416 0.668 1.170 

FWAGWO 3.4906e-07 3.4906e-07 1.4675e+04 101.5267 912.9078 0.673 1.388 

HAGWO 5.8588e-14 5.8588e-14 1.3787e+04 271.7098 1.3267e+03 1.638 2.216 

HSSASCA 8.1256e-20 0 9.7932e+04 1.0234e+3 951.0627 0.299 0.717 

 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

4.  SSA 2.3394e-04 0 38.6947 8.3834 9.4275 0.562 0.780 

PSO 0.0018 0.0018 73.6156 2.9436 10.2213 0.781 0.874 

MFO 1.7649 1.7649 59.2316 14.1327 12.0027 0.455 0.577 

SCA 0.0144 0 68.9919 20.7699 29.0354 0.280 0.468 

DA 1.8577 1.8577 56.9883 14.7945 18.7588 11.600 21.060 

MVO 0.1512 0.1512 57.9955 6.5487 8.0449 1.531 2.106 

ALO 1.2354 0 42.7337 7.5733 9.1118 0.848 10.296 

MGWO 0.0012 0.0012 55.9351 1.3939 5.3739 0.778 1.030 

DCSGWO 0.0019 0.0019 69.8150 1.6043 6.1068 0.704 0.858 

FWAGWO 7.7089e-04 7.7089e-04 69.6581 0.9924 5.0094 0.715 0.920 

HAGWO 7.6393e-08 7.6393e-12 62.8402 0.9806 5.2959 1.343 1.451 

HSSASCA 2.5975e-17 0 76.4551 0.5363 6.3498 0.185 0.296 

 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

5.  SSA 8.3157 0 1.3494e+06 1.9852e+05 2.8568e+05 0.655 0.889 

PSO 5.6829 5.6829 3.5715e+07 1.9152e+05 2.2477e+06 0.545 0.952 

MFO 21.2357 21.2357 1.7631e+07 8.2866e+05 3.0527e+06 0.639 0.795 

SCA 7.3599 0 1.3494e+06 1.9852e+05 2.8568e+05 0.531 0.686 

DA 141.9876 141.9876 5.2798e+07 3.0983e+06 8.4395e+06 13.117 23.648 

MVO 2.1040e+03 2.1040e+03 1.3201e+07 2.2837e+05 1.3008e+06 1.484 2.106 

ALO 8.7070 2.1040e+03 1.3201e+07 2.2837e+05 1.3008e+06 1.140 15.614 

MGWO 8.9504 8.9504 2.5173e+07 9.6965e+04 1.4602e+06 0.842 0.967 

DCSGWO 8.9602 8.9602 1.7942e+07 7.5526e+04 1.0570e+06 0.953 1.123 

FWAGWO 9.6635 9.6635 2.8436e+07 1.1315e+05 1.6614e+06 0.845 1.014 

HAGWO 7.2040 7.2040 3.6735e+07 1.8210e+05 2.2771e+06 1.452 1.669 

HSSASCA 6.8053 0 5.4183e+07 1.3471e+04 5.1118e+06 0.237 0.390 

 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

6.  SSA 7.9154e-10 0 4.4506e+03 746.7452 975.7130 0.608 0.671 

PSO 4.5756e-15 4.5756e-15 1.7447e+04 335.3805 1.9012e+03 0.672 0.733 

MFO 2.0967e-06 2.0967e-06 2.0146e+04 1.1386e+03 3.1252e+03 0.563 0.671 

SCA 0.1799 0 1.9716e+04 994.3458 2.0959e+03 0.499 0.577 

DA 32.3095 32.3095 5.5216e+03 988.6377 1.6564e+03 14.385 24.442 

MVO 0.0417 0.0417 1.4102e+04 391.3245 1.3024e+03 1.451 2.012 

ALO 3.8248e-07 0 4.93083+03 201.1074 682.6841 0.670 0.811 

MGWO 1.0053 1.0053 1.1956e+04 74.7038 717.8152 1.173 14.849 

DCSGWO 2.0017 2.0017 1.6848e+04 106.0464 1.0448e+03 0.780 0.858 

FWAGWO 0.2533 0.2533 1.5178e+04 96.9959 950.+6137 0.859 0.889 

HAGWO 3.4225e-05 3.4225e-05 1.9603e+04 141.1776 1.3994e+03 1.423 1.544 

HSSASCA 1.7573e-15 0 5.6263e+04 112.1714 1.3203e+03 0.141 0.281 

 

Fun. 

No. 

Algorithm Best 

Score 

Min Value Max 

Value 

Mean S.D. Self Time 

(s) 

Total Time 

(s) 

7.  SSA 0.0219 0 0.8737 0.0394 0.0559 0.562 0.780 

PSO 0.0045 0.0045 9.0468 1.1778 1.8024 0.669 0.842 
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MFO 0.0146 0.0146 7.0675 0.3132 1.0587 0.485 0.609 

SCA 0.0023 0 3.7177 0.3634 0.8358 0.470 0.624 

DA 0.0280 0.0280 3.0533 0.4134 0.7881 12.300 22.905 

MVO 0.0043 0.0043 7.6655 0.1185 0.5758 1.454 1.966 

ALO 0.0719 0 0.3726 0.1204 0.0929 0.798 15.118 

MGWO 0.0041 0.0041 6.6000 0.0323 0.3832 0.750 0.858 

DCSGWO 0.0053 0.0053 7.4071 0.0440 .4361 0.731 0.936 

FWAGWO 0.0055 0.0055 7.0363 0.0454 0.4123 0.841 0.936 

HAGWO 9.5054e-04 9.5054e-04 3.3142 0.0244 0.2209 1.500 1.654 

HSSASCA 6.9032e-04 0 9.7721 0.0197 0.3771 0.218 0.327 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Narinder Singh et al. 

13 
 

  

 
Figures 2. Convergence graphs of algorithms on Uni-modal functions 

 

6.4 Multi-Modal Test Functions 
 

The accuracy/or performance of new hybrid method has-been discussed on the multi-modal functions in this 

subsection and also verifying the ability of the algorithm with others. The experimental results of these functions 

have been prescribed in Table 3 and Figure 3. The superiority and ability of the proposed variant has been verified in 

the terms of best scores, average, minimum-and-maximum-objective-function-value, standard-deviation, self and 

total time on different dimensions. Here we see that, the proposed approach achieves superior quality of numerical 

solutions on these functions outperforms than others. Moreover, the testing results reveal that the high exploration of 

the new hybrid method is competent to explore the search space extensively and provide potential areas of the 

search field. 
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Table 3. Results of SSA, PSO, MFO, SCA, DA, MVO, ALO, MGWO, DCSGWO, FWAGWO, HAGWO and 

HSSASCA algorithms on six Multi-modal functions at different iterations 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total Time 

(s) 

1. SSA -2.4116e+03 -2.4116e03 0 -2.0829e+03 425.4179 0.670 0.889 

PSO -1.8404e+03 -1.8404e+03 -997.8602 -1.7778e+03 167.7536 0.732 0.811 

MFO -2.6410e+03 -2.6410e+03 -897.3669 -2.5613e+03 243.4334 0.609 0.733 

SCA -1.9765e+03 -1.9765e+03 0 -1.8812e+03 133.6997 0.515 0.639 

DA -3.0145e+03 -3.145e+03 -1.3349e+03 -2.5636e+03 566.1670 10.870 21.586 

MVO -2.7450e+03 -2.7450e+03 -1.4355e+03 -2.3753e+03 361.4196 1.327 1701 

ALO -1.9258e+03 -1.9258e+03 0 -1.9002e+03 153.8352 0.858 15.238 

MGWO -1.4753e+03 -1.4753e+03 -1.4753e+03 -1.4753e+03 2.2775e-13 0.875 0.952 

DCSGWO -2.0578e+03 -2.0578e+03 -1.2804e+03 -1.9186e+03 137.3616 0.810 0.951 

FWAGWO -2.1944e+03 -2.1944e+03 -1.3215e+03 -2.0473e+03 216.2622 0.841 0.952 

HAGWO -3.0038e+03 -3.0038e+03 -1.3125e+03 -2.9084e+03 275.5093 1.513 1.622 

HSSASCA -4.1896e+03 -4.1896e+03 0 -3.9115e+03 606.3818 0.267 0.328 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time (s) 

Total 

Time (s) 

2. SSA 8.9546 0 81.7858 28.5519 19.9196 0.654 0.889 

PSO 10.9448 10.9448 127.4636 38.4682 26.3051 0.593 0.749 

MFO 18.9042 18.9042 122.8827 27.4775 20.6718 0.574 0.718 

SCA 8.7333e-08 0 124.1208 11.2527 26.3977 0.532 0.702 

DA 33.8302 33.8302 134.4354 52.2949 22.9888 11.188 20.123 

MVO 20.9123 20.9123 127.2166 34.9222 14.8151 1.436 1.935 

ALO 20.8941 0 107.3150 26.6767 14.8754 1.036 14.976 

MGWO 7.8697 7.8697 140.1540 12.8307 12.1917 0.922 1.077 

DCSGWO 9.6395 9.6395 118.3669 19.9249 13.5677 0.872 0.998 

FWAGWO 6.7601 6.7601 76.7524 13.4773 13.6135 0.967 1.061 

HAGWO 14.2713 14.2713 91.5892 25.4487 12.6885 1.544 1.716 

HSSASCA 0 0 159.8672 3.8438 11.3658 0.187 0.344 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time (s) 

Total 

Time (s) 

3. SSA 1.1551 0 16.8131 6.1739 5.2526 0.592 0.951 

PSO 5.6659e-07 5.6659e-07 19.8968 2.0283 3.0227 0.811 1.014 

MFO 1.6335e-04 1.6335e-04 20.1039 3.1792 5.3948 0.671 0.921 

SCA 7.2574e-05 0 18.3448 4.5073 6.9009 0.470 0.827 

DA 2.8165 2.8165 20.2293 7.6156 6.1782 13.477 24.025 

MVO 0.1112 0.1112 20.2943 5.5607 3.3157 1.569 2.309 

ALO 4.7989e-04 0 17.1075 2.5250 4.0269 1.051 15.304 

MGWO 3.4251 3.4251 19.8991 3.9145 1.7838 0.890 1.123 

DCSGWO 3.4093 3.4093 19.6077 3.9133 1.8934 0.856 1.061 

FWAGWO 3.5745 3.5745 20.6039 3.9387 1.6163 0.809 1.123 

HAGWO 7.9936e-15 7.9936e-15 16.7955 0.3859 2.0401 1.437 1.685 

HSSASCA 4.4409e-15 0 20.8976 0.3421 1.6766 0.234 0.453 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time (s) 

Total 

Time (s) 

4. SSA 0.2140 0 44.8338 8.6201 10.8585 0.656 0.827 

PSO 0.0910 0.0910 118.7388 14.6086 30.9800 0.595 0.780 

MFO 0.5658 0.5658 159.3326 12.6717 31.8605 0.577 0.811 

SCA 0.3985 0 127.9587 6.6873 21.4123 0.546 0.702 

DA 0.5188 0.5188 172.6721 18.2751 45.0597 12.817 22.678 

MVO 0.4759 0.4759 99.8207 4.4026 11.9767 1.280 1.810 

ALO 0.3320 0 45.6347 3.4729 9.0076 0.738 13.913 
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MGWO 0.3183 0.3183 95.7587 5.6985 1.1209 0.717 0.967 

DCSGWO 0.0199 0.0199 137.9988 8.1391 0.8978 0.792 1.014 

FWAGWO 0.2699 0.2699 142.6935 1.2146 8.5175 0.801 1.046 

HAGWO 0.0760 0.0760 137.0655 1.1758 9.3190 1.525 1.684 

HSSASCA 0 0 199.5720 0.9100 7.2836 0.186 0.359 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time (s) 

Total 

Time (s) 

5. SSA 3.7703 0 1.3683e+06 4.5741e+03 7.8999e+04 0.483 1.123 

PSO 5.6729e-16 5.6729e-16 3.3044e+07 1.6631e+05 2.0397e+06 0.764 1.342 

MFO 0.3110 0.3110 5.3700e+07 1.4316e+06 7.3381e+06 0.465 1.264 

SCA 0.1381 0 7.1577e+07 6.7998e+05 2.0068e+07 0.527 1.170 

DA 0.7992 0.7992 6.8721e+07 8.2586e+06 2.0728e+07 14.620 25.620 

MVO 0.4393 0.4393 8.5204e+07 8.0930e+05 6.2949e+06 1.713 2.527 

ALO 0.3864 0 8.0049e+05 1.5012e+04 4.2542e+04 1.203 16.023 

MGWO 0.9801 0.9801 8.2126e+07 2.7614e+05 4.7416e+06 0.734 1.419 

DCSGWO 1.2909 1.2909 5.7562e+06 2.1552e+04 3.3471e+05 0.858 1.467 

FWAGWO 2.5874 2.5874 4.5782e+07 1.5274e+05 2.6432e+06 0.878 1.467 

HAGWO 0.0396 0.0396 4.4526e+07 3.4605e+05 3.6925e+06 1.264 1.747 

HSSASCA 0.0294 0 8.8939e+07 1.0155e+05 4.3034e+06 0.251 0.702 

Fun. 

No. 

Algorith

m 

Best Score Min Value Max 

Value 

Mean S.D. Self 

Time (s) 

Total 

Time (s) 

6. SSA 0.0110 0 2.2956e+07 9.3937e+04 1.3308e+06 0.687 1.263 

PSO 5.4204e-14 5.4204e-14 1.1091e+08 7.9905e+05 8.1415e+06 0.608 1.248 

MFO 1.0427e-05 1.0427e-05 2.2890e+08 4.2415e+06 2.3843e+07 0.407 0.827 

SCA 0.3529 0 8.5715e+07 1.0342e+07 2.2772e+07 0.407 0.827 

DA 0.2926 0.2926 1.6085e+08 1.4400e+07 4.1299e+07 13.120 23.872 

MVO 0.0050 0.0050 1.3696e+08 1.1160e+06 1.0416e+07 1.343 2.231 

ALO 1.3600e-06 0 3.1454e+07 8.4060e+05 3.3873e+06 1.308 14.947 

MGWO 0.2892 0.2892 1.2595e+08 4.3471e+05 7.2744e+06 0.858 1.420 

DCSGWO 1.0270 1.0270 7.0615e+07 2.5140e+05 4.0809e+06 0.779 1.342 

FWAGWO 1.2499 1.2499 2.5434e+08 1.0215e+06 1.4858e+07 0.856 1.404 

HAGWO 0.5034 0.5034 1.1278e+08 4.7706e+05 6.6348e+06 1.343 2.231 

HSSASCA 1.0215e-07 0 9.4968e+08 1.0799e+05 6.3980e+06 0.248 0.608 
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Figure 3. Convergence graphs of algorithms on Multi-modal functions  

 

6.5 Fixed-Dimension-Multi-Modal-Test-Functions 
 

In this subsection, we discuss solution of the fixed dimension multimodal functions. All the solutions of meta-

heuristics have been illustrated in Table 9 and Figure 4. Table 7 reveals that the proposed variant is more competent 

and reliable to search the best and superior quality of the optimal results in the search area/or space of the functions. 

These solutions depict that in the modified method has been better characteristics in superior quality of the optimal 

results and also robustness of the optimal solutions. 

6.6 Exploitation Tendency  
 

As per experimental solutions of Table 7, Hybrid method is able to found best, possible and very completive 

solutions of the uni-modal tested problems. This approach outperforms than others in all problems/or functions. It 

could be noted that the uni-modal problems are more appropriate for-benchmarking exploitation. Hence, these 

optimal solutions show the better performance of newly method in-terms of exploiting the optimum. This is owing 

to the planned exploitation operators discussed earlier. 

6.7 Exploration Tendency  
 

In distinction to the multi-modal and uni-modal tested problems, there are several local optima, whose number is 

increasing with the dimension. This makes them suitable for testing functions the exploration capability of an meta-

heuristic. As per solutions of the Table 3 and 4, newly proposed algorithm is competent to find the best, possible and 

highly competitive solutions, on these test functions/or problems as well. The HSSASCA outperforms SSA, PSO, 

MFO, SCA, DA, MVO, ALO, MGWO, DCSGWO, FWAGWO and HAGWO on the majority of the tested 

problems. All statistical solutions reveal that the newly hybrid approach has highly merit in the terms of exploration. 
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Table 4. Results of SSA, PSO, MFO, SCA, DA, MVO, ALO, MGWO, DCSGWO, FWAGWO, HAGWO and 

HSSASCA algorithms on nine fixed dimension multi-modal functions at different iterations 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

1. SSA 0.9980 0 20.5960 2.9227 4.0735 0.581 2.980 

PSO 1.9920 1.9920 167.1864 2.9917 10.7484 0.640 3.168 

MFO 0.9980 0.9980 26.6434 4.4308 6.4538 0.363 3.137 

SCA 1.2776 0 21.0748 4.2044 4.4692 0.327 3.090 

DA 3.9683 3.9683 12.0260 5.9982 2.7965 10.021 17.210 

MVO 0.9980 0.9980 440.7209 2.6465 25.4380 0.468 3.043 

ALO 0.9980 0 16.4741 1.7857 3.3767 0.651 6.303 

MGWO 8.8408 8.8408 188.1171 9.5783 10.3986 0.329 2.871 

DCSGWO 12.6705 12.6705 172.1800 13.2671 9.26705 0.442 3.027 

FWAGWO 3.9683 3.9683 66.2492 4.2082 3.6046 0.157 2.825 

HAGWO 2.9821 2.9821 22.2761 3.1396 1.3548 0.716 3.527 

HSSASCA 0.9980 0 557.9979 1.0247 0.1809 0.249 2.309 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

2. SSA 0.0032 0 0.3935 0.0160 0.0340 0.420 0.608 

PSO 8.7454e-04 8.7454e-04 0.0869 0.0043 0.0098 0.420 0.640 

MFO 0.0015 0.0015 0.1614 0.0040 0.0168 0.406 0.546 

SCA 0.0016 0 0.1533 0.0050 0.0162 0.635 1.083 

DA 0.0017 0.0017 0.0563 0.0032 0.0074 10.233 16.353 

MVO 7.8148e-04 7.8148e-04 0.1850 0.0031 0.0170 0.637 1.092 

ALO 0.0012 0 0.0258 0.0016 0.0020 0.406 5.383 

MGWO 6.2455e-04 3.2455e-04 0.0273 6.3083e-

04 

0.0016 0.311 0.468 

DCSGWO 0.0204 0.0204 0.4823 0.0223 0.0268 0.484 0.546 

FWAGWO 0.0072 0.0072 0.0960 0.0061 0.0079 0.328 0.468 

HAGWO 6.0925e-04 6.0925e-04 0.01289 0.0013 0.0075 0.810 0.936 

HSSASCA 5.0974e-04 0 0.7326 0.0004 0.0091 0.077 0.218 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

3. SSA -1.0316 -1.0316 0 -1.0114 0.0625 0.451 0.483 

PSO -1.0316 -1.0316 0.5105 -1.0144 0.0958 0.375 0.421 

MFO -1.0316 -1.0316 -0.5932 -1.0261 0.0460 0.311 0.343 

SCA -1.0316 -1.0316 0 -1.0219 0.0625 0.265 0.265 

DA -1.0316 -1.0316 -0.1815 -1.0206 0.0667 9.776 14.988 

MVO -1.0316 -1.0316 -0.8003 -1.0131 0.0507 0.483 0.796 

ALO -1.0316 -1.0316 0 -1.0088 0.0846 0.513 3.696 

MGWO -1.0316 -1.0316 13.2415 -0.9795 0.8272 0.250 0.265 

DCSGWO -1.0316 -1.0316 -0.9555 -1.0310 0.0067 0.313 0.374 

FWAGWO -1.0316 -1.0316 1.7977 -1.0215 0.1637 0.265 0.296 

HAGWO -1.0316 -1.0316 8.0805 -0.9837 0.5404 0.623 0.686 

HSSASCA -1.0316 -1.0316 0 -1.0364 0.9637 0.093 0.125 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

4. SSA 3.0000 0 7.9274 3.1482 0.7718 0.405 0.452 

PSO 3.0000 3.0000 19.5874 3.3578 1.6602 0.359 0.390 

MFO 3.0000 3.0000 124.9686 5.7929 15.0834 0.266 0.390 
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SCA 3.0002 0 35.2907 3.8395 3.9662 0.280 0.328 

DA 3.0000 3.0000 180.3669 3.8784 10.5057 10.157 14.996 

MVO 3.0000 3.0000 13.5599 3.3639 1.8021 0.438 0.718 

ALO 3.0000 0 220.9587 4.1085 12.8038 0.425 3.246 

MGWO 3.0004 3.0006 40.2218 3.2219 2.6586 0.326 0.374 

DCSGWO 3.0007 3.0009 42.3056 3.2389 2.6805 0.313 0.328 

FWAGWO 3.0003 3.0000 59.3899 3.2371 3.3222 0.328 0.359 

HAGWO 3.0000 3.0006 80.3246 3.2815 4.4711 0.624 0.686 

HSSASCA 3.0000 0 199.1416 3.0233 6.4278 0.048 0.125 

 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

5.  SSA -3.8628 -3.8628 0 -3.8103 0.2302 0.484 0.702 

PSO -3.8628 -3.8628 -3.6959 -3.8611 0.0102 0.389 0.670 

MFO -3.8628 -3.8628 -3.4972 -3.8548 0.0478 0.391 0.702 

SCA -3.8512 -3.8512 0 -3.8103 0.2302 0.372 0.561 

DA -3.8628 -3.8628 -3.7891 -3.8611 0.0085 9.418 14.601 

MVO -3.8628 -3.8628 -3.7774 -3.8495 0.0190 0.596 1.061 

ALO -3.8628 -3.8628 0 -3.8412 0.2243 0.499 4.337 

MGWO -3.8627 -3.8627 -3.7996 -3.8596 0.0059 0.404 0.671 

DCSGWO -3.8627 -3.8627 -2.9422 -3.8573 0.0546 0.373 0.639 

FWAGWO -3.8626 -3.8626 -3.4605 -3.8503 0.0338 0.406 0.655 

HAGWO -3.8619 -3.8619 -2.8640 -3.8562 0.0583 0.749 1.108 

HSSASCA -3.8747 -3.8747 0 -3.8990 0.2625 0.078 0.405 

 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

6.  SSA -3.1891 -3.1891 0 -3.0012 0.3369 0.498 0.796 

PSO -3.3220 -3.3220 -1.9358 -3.2112 0.1981 0.529 0.812 

MFO -3.3220 -3.3220 -1.0571 -3.2213 0.3406 0.296 0.624 

SCA -2.9947 -2.9947 0 -2.7919 0.2863 0.278 0.577 

DA -3.1834 -3.1834 -0.8540 -2.8268 0.7628 10.001 16.927 

MVO -3.3220 -3.3320 -1.1084 -3.1077 0.4177 0.780 1.295 

ALO -3.3220 -3.3220 0 -3.2221 0.3272 0.392 7.566 

MGWO -3.2003 -3.2003 -0.8011 -3.1328 0.1728 0.498 0.733 

DCSGWO -3.220 -3.3220 -2.0937 -3.3008 0.0829 0.467 0.764 

FWAGWO -3.2005 -3.2005 -1.1022 -3.1428 0.1385 0.514 0.718 

HAGWO -3.3220 -3.3220 -1.2463 -3.2341 0.1915 0.875 1.217 

HSSASCA -3.3334 -3.3334 0 -3.3035 0.2012 0.188 0.375 

 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

7.  SSA -2.6305 -2.6305 0 -1.9516 0.0865 0.406 1.061 

PSO -10.1532 -10.1532 -0.3889 -8.2818 2.9933 0.484 0.998 

MFO -5.0552 -5.0552 -2.1183 -4.9041 0.5773 0.295 0.749 

SCA -0.8788 -0.8788 0 -0.8527 0.0697 0.392 0.874 

DA -5.1008 -5.1008 -0.2933 -4.5620 1.1286 10.366 16.692 

MVO -10.1517 -10.1517 -0.6883 -5.8217 3.1665 0.608 1.217 

ALO -2.6305 -2.6305 0 -2.5495 0.2579 0.502 5.132 

MGWO -2.6828 -2.6828 -1.0478 -2.4915 0.3078 0.265 0.936 

DCSGWO -10.1529 -10.1529 -0.4052 -8.7260 1.5970 0.265 0.936 

FWAGWO -10.1523 -10.1523 -0.5025 -8.5997 1.6691 0.594 0.936 

HAGWO -5.0551 -5.0551 -0.4099 -4.9000 0.5906 0.797 1.186 

HSSASCA -10.7670 -10.7670 0 -8.9083 1.9256 0.109 0.515 
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Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

8. SSA -10.4029 -10.4029 0 -6.6534 4.1686 0.502 1.155 

PSO -10.4029 -10.4029 -0.5261 -9.0420 2.5434 0.577 1.139 

MFO -2.7519 -2.7519 -0.4646 -2.6001 0.4474 0.425 1.061 

SCA -2.1206 -10.4029 0 -6.6534 4.1686 0.281 0.874 

DA -10.4029 -10.4029 -0.4527 -7.2501 3.6717 10.286 16.376 

MVO -10.4016 -10.4016 -0.7142 -6.7928 3.2783 0.590 1.419 

ALO -5.1288 -5.1288 0 -4.7426 1.1003 0.557 6.316 

MGWO -2.7518 -2.7518 -0.5219 -2.4939 0.2473 0.406 1.077 

DCSGWO -10.4007 -10.4007 -0.4564 -9.0084 1.4387 0.453 1.061 

FWAGWO -10.4018 -10.4018 -0.6443 -9.1005 1.7360 0.436 0.998 

HAGWO -10.4029 -5.0876 -0.9081 -4.9373 0.6288 0.639 1.358 

HSSASCA -10.4029 -10.4029 0 -9.8214 3.8687 0.124 0.640 

Fun. 

No. 

Algorithm Best 

Score 

Min 

Value 

Max 

Value 

Mean S.D. Self 

Time 

(s) 

Total 

Time (s) 

9. SSA -2.8711 -2.8711 0 -2.4130 0.7001 0.410 1.357 

PSO -10.5364 -10.5364 -0.6748 -5.7052 3.2818 0.465 1.389 

MFO -5.1756 -10.5352 -0.6100 -9.0959 1.8907 0.358 1.279 

SCA -4.5889 -4.5889 0 -3.4313 1.5506 0.298 1.123 

DA -10.5364 -10.5364 -0.5823 -9.0404 2.3700 10.318 17.037 

MVO -10.5350 -10.5350 -0.6869 -6.1065 3.0318 0.388 2.558 

ALO -2.8711 -2.8711 0 -2.7203 0.4816 0.646 6.786 

MGWO -10.5352 -10.5352 -0.6100 -9.0959 1.8907 0.372 1.310 

DCSGWO -10.5330 -10.5330 -0.9110 -9.2509 1.5787 0.310 1.310 

FWAGWO -2.8710 -2.8710 -0.8279 -2.5696 0.3489 0.360 1.279 

HAGWO -2.8711 -2.4211 -0.8496 -2.3135 0.2769 0.751 1.498 

HSSASCA -10.8569 -10.8569 0 -10.1080 1.5102 0.125 0.733 
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                 Figure 4. Convergence graphs of algorithms on fixed dimension multi-modal functions 

 

 

6.8 Performance Assessment of Hybrid SSASCA 

 

Concerning the consideration, the performance/or accuracy of the newly method has verified through applying 

the Wilcoxon signed ranks method for a superior assessment [14]. It is a non-parametric method that is utilized on 

two different samples, for finding the significance between them. On behalf of significance, we can easily choose 

the best one sample between them. In addition, the help of this method easily locates the significant difference of the 

behaviors of two meta-heuristics. The steps are shown as follows: 

i. Select the data of two samples ix and iy . 

ii. Calculate each and every paired difference: i i id x y  . 

iii. Take i i id x y  . 

iv. Rank the id , ignoring the negative sign’s (i.e. allot rank-1 to the highest least valve of id  and rank-2 to 

the next, etc.) 

v. Calculate the positive values  0,1, 1id    

vi. Find the signed rank of using  0,1, 1i id d    

vii. Calculate
1

n
R

i




and 
1

n
R

i




 the sum of the ranks of the positive and negative, further check the total, 

 1

21 1

n n n n
R R

i i

   
 

, where n is the strength of the sample.  

viii. Calculate  max ,W R R
 

 , if two or more differences/observations may be equal, In that case we 

handle the tied problem by using 

3

48

t t
, where ~t is a total number of tied. 

ix. Use normal approximation and calculate 
 1

4

n n

W



 , 

 1 (2 1)

24

n n n

W


 
 and we get  

 
 

max ,

31 (2 1)

24 48

R R W
z

n n n t t

  


  


 

x. Finally find out the p-value by using the value of z.  
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Here, these steps give the p-value after using the z-value. Here if 0.05p  , then it represents a rejection of the 

0
H hypothesis, whereas 0.05p  represents a failure to reject the null hypothesis. Hence p-values are less than 

0.05, it can be determined that HSSASCA is significantly superior to the other optimizer. If not, the obtained 

improvements are not statistically significant. The obtained p-values are presented in Tables 8-10. 

Table 5. Results of the median values of the meta-heuristics on uni-modal functions 

MGWO DCSGWO FWAGWO HAGWO 

iI iJ iK iL

0.0164 0.0144 5.1721e-21 3.6892e-21 

2.51149e-05 6.0572e-05 4.8253e-21 5.3105e-21 

2.1497e-04 6.9505e-04 3.8811e-09 3.6718e-09 

0.0099 0.0169 1.8890e-10 2.3853e-10 

188.9512 8.9608 8.5523 7.2447 

1.0130 2.0044 0.0310 0.0249 

0.0048 0.0062 0.0045 0.0022 

Benchmar

k 

functions 

HSSA

SCA 

SSA PSO MFO SCA DA MVO ALO 

Ai Bi Ci Di Ei Fi Gi Hi

1. 25.0237 2.5703e+0

3 

114.294

9 

1.7984e+0

4 

2.3657e+0

4 

2.9852e+0

3 

1.5149e+0

3 

4.1311e+0

3 

2. 0.0021 3.5665 2.9704 8.4573 0.7450 3.3260 2.7573 2.0038 

3. 0.2966 163.1911 15.3970 428.8130 1.8709e+0

3 

2.3374e+0

3 

67.6860 370.9822 

4. 0.0051 3.8484 0.7070 23.5791 40.7947 30.4155 5.7345 3.6395 

5. 8.9537 485.4100 150.539

5 

2.0845e+0

4 

2.4126e05 3.2456e+0

4 

3.3311e+0

3 

273.0672 

6. 0.8525 38.9567 0.6935 490.7669 103.2815 1.9025e+0

3 

115.8474 266.6742 

7. 0.0013 0.0122 1.3338 0.2139 0.0292 0.0768 0.0137 0.1274 

Table 6. Results of the median values of the meta-heuristics on multi-modal functions 

MGWO DCSGWO FWAGWO HAGWO 

Benchmar

k 

functions 

HSSASC

A 

SSA PSO MFO SCA DA MVO ALO 

Ai Bi Ci Di Ei Fi Gi Hi

1. -

3.4018e+03 

-

2.6326e+0

3 

-

2.0588e+0

3 

-

2.9877e+0

3 

-

2.0790e+0

3 

-

2.6500e+0

3 

-

2.5711e+0

3 

-

2.4516e+0

3 

2. 35.3485 35.0121 36.8090 59.8340 35.0813 78.9501 34.2582 11.5555 

3. 0.0034 3.8557 3.9293 10.7276 0.3835 9.8998 5.8717 3.1587 

4. 0.3222 1.3386 16.5049 3.4179 1.2529 2.5839 2.4355 0.7592 

5. 0.0906 6.2432 8.2092 9.1456 2.5472 17.2437 3.5896 7.4915 

6. 0.2277 3.9453 10.4227 2.5091e+0

4 

4.1417 4.4351 5.6141 17.0240 
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iI  iJ  iK  iL  

-1.4753e+03 -1.9437e+03 -2.0941e+03 -2.9867e+03 

99.6272 104.9259 68.4197 71.7602 

3.5123 3.4430 3.6518 7.9936e-15 

95.7587 137.9988 142.6935 137.0655 

1.0071 1.4176 2.8629 0.0434 

1.2595 7.0615e+07 2.5434e+08 1.1278e+08 
 
 

 

Table 7. Results of the median values of the meta-heuristics on fixed dimension multi-modal functions 

 

 

MGWO DCSGWO FWAGWO HAGWO 

iI  iJ  iK  iL  

8.8408 12.6705 3.9683 2.9821 

4.6689e-04 0.0204 0.0073 3.2167e-04 

-1.0316 -1.0316 -1.0316 -1.0316 

3.0013 3.0019 3.0000 3.0018 

-3.8604 -3.8624 -3.8624 -3.8619 

-3.1494 -3.3174 -3.1740 -3.3006 

-7.6340 -9.0251 -8.9404 -8.0504 

-9.5044 -9.2157 -9.8197 -7.0860 
 

Benchmark 

functions 

HSSASC

A 

SSA PSO MFO SCA DA MVO ALO 

 Ai  Bi  Ci  Di  Ei  Fi  Gi  Hi  

1.  12.6705 0.9821 1.9920 0.9980 2.0276 0.9983 0.9980 12.6705 

2.  7.8992e-

04 

0.0257 0.0013 0.0022 9.1590e-

04 

4.0039 7.9026e-

04 

0.0088 

3.  -1.0300 -1.0250 -1.0316 -1.0316 -1.0284 -1.0297 -1.0294 -1.0316 

4.  3.0529 3.0201 3.0022 3.0000 3.0174 3.0128 3.0018 3.0001 

5.  -3.7823 -3.8540 -3.8626 -3.8628 -3.8301 -7.8427 -8.8557 -3.8628 

6.  -3.0889 -3.1547 -3.2250 -3.2026 -2.8229 -8.9627 -8.2420 -3.3217 

7.  -2.3183 -5.4771 -9.1597 -5.0251 -0.8898 -11.1008 -9.1150 -5.0502 

8.  -6.5662 -10.6754 -6.0874 -3.7210 -2.0809 -9.7860 -6.7621 -10.3705 

9.  -2.2071 -6.7476 -3.7724 -2.8710 -0.9363 -8.3825 -2.8710 -10.5186 

 

Table 8. Wilcoxon test for comparison results in Table 5 

Compared Techniques Solution Evaluations 

Proposed 

variant 

Compared 

variant 

Sum of 

rank 

(
7

1 Ri i


  ) 

Sum of 

rank 

(
7

1 Ri i
 


) 

Difference 

(D) 

z- 

value 

p- 

value 

Accept 

( 0.05p  ) 

1H  

Reject 

( 0.05p  ) 

0H  

 

 

 

 

 

HSSASCA 

 

SSA 28 0 
A Bi i to 

Li  

2.366432 0.0180  yes Yes 

PSO 27 1 2.197401 0.0280  yes Yes 

MFO 28 0 2.366432 0.0180  yes Yes 

SCA 28 0 2.366432 0.0180  yes Yes 

DA 28 0 2.366432 0.0180  yes Yes 

MVO 28 0 2.366432 0.0180  yes Yes 

ALO 28 0 2.366432 0.0180  yes Yes 

MGWO 16 12 0.338062 0.735363 no no 

DCSGWO 15 13 0.169031 0.865797 no no 

FWAGWO 0 26 -2.02837 0.02802 yes yes 

HAGWO 1 27 -2.1974 0.02802 yes yes 
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Table 9. Wilcoxon test for comparison results in Table 6 

Compared Techniques Solution Evaluations 

Proposed 

variant 

Compared 

variant 

Sum of 

rank 

(
6

1 Ri i


  ) 

Sum of 

rank 

(
6

1 Ri i
 


) 

Difference 

(D) 

z- 

value 

p- 

value 

Accept 

( 0.05p  ) 

1H

Reject 

( 0.05p  ) 

0H

HSSASCA 

SSA 20 1 
A Bi i to 

Li

1.991741 0.0464 yes yes 

PSO 21 0 2.201398 0.0277 yes yes 

MFO 21 0 2.201398 0.0277 yes yes 

SCA 20 1 1.991741 0.0464 yes yes 

DA 21 0 2.201398 0.0277 yes yes 

MVO 20 1 1.991741  0.0464 yes Yes 

ALO 16 5 1.153113 0.2489 no no

MGWO 21 0 2.201398 0.027715 yes yes 

DCSGWO 20 1 1.991741  0.046404 yes yes 

FWAGWO 21 0 2.201398 0.027715 yes yes 

HAGWO 18 3 1.572427 0.115858 no no 

Table 10. Wilcoxon test for comparison results in Table 7 

Compared Techniques Solution Evaluations 

Proposed 

variant 

Compared 

variant 

Sum of 

rank 

(
9

1 Ri i


  ) 

Sum of 

rank 

(
9

1 Ri i
 


) 

Difference 

(D) 

z- 

value 

p- 

value 

Accept 

( 0.05p  ) 

1H

Reject 

( 0.05p  ) 

0H

HSSASCA 

SSA 3 42 
A Bi i to 

Li

2.310161 0.0209 yes yes 

PSO 7 38 1.836282 0.0663 no no

MFO 9 36 1.599342 0.1097 no no

SCA 29 16 -0.77005 0.4413 no no

DA 5 40 2.073221 0.0382 yes yes

MVO 3 42 2.310161 0.0209 yes yes

ALO 4 41 2.191691 0.0284 yes yes

MGWO 0 45 2.66557 0.007687 yes yes 

DCSGWO 4 41 2.191691 0.028408 yes yes 

FWAGWO 2 43 2.42863 0.015157 yes yes 

HAGWO 0 45 2.66557 0.007687 yes yes 

Hence, we implement the Wilcoxon test for the newly hybrid method against the several meta-heuristics that 

appears in Tables 5-7 and the obtained statistical solutions for Wilcoxon test is represented in Table 8-10. On this 

basis of these statistical results, it is realized that the HSSASCA method has better characteristics such that 

superiority of the optimal solution and strength of the global optima goal. Also, significant importance may be 

placed in local exploitation and global exploration. Results illustrate based on Wilcoxon test proved the better 

performance/or accuracy of the newly method among-others-in-comparison. Hence, the-obtained solutions by the 

HSSASCA method are-statistically superior and this has not happened by likelihood/or chance. 

The convergence performance of Hybrid HSSASCA and comparative algorithms has been verified on basis of 

statistical and numerical results of uni-modal, multi-modal, fixed dimension multi-modal and constrained 

engineering functions in this section. The major motivation of the superior accuracy and working performance of the 

newly hybrid method lies after the optimal result create strategy induced by integrating the important SSA phase 

with SCA phase. In the presented method, the position of the each salp swarm in the entire group is improved by 

applying the position equations of sine and cosine; hence the superior optimal solutions have been tried to update 

based on the sine or cosine function, which means that the exploration ability/or capability can be even more 

powerful. Indeed, in HSSASCA algorithm, the sine and cosine phase of the SCA algorithm can helps SSA algorithm 

to find the superior optima value in the search space more rapidly and also refine the working accuracy/or 

performance and enhance convergence rate. During this research methodology, it certifies that the internal quality of 
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this development is regulated to include the SCA as a local research strategy that accelerates the behavior of the 

transformation and without any amendments in the results of meta-heuristic avoids the systematic. The HSSASCA 

approach has proven its own significant accuracy during the search procedure, and also reduced the immature 

convergence inaccuracies of the SSA algorithm by using SCA phase. About the offered analytics, it certifies that the 

internal quality of this development is regulated to include the SCA as a local research strategy that accelerates 

convergence behavior, and ignores the meta-heuristics routine tour without any modifications in the results. Thus, 

there is an important precision and performance in the proposed HSSASCA algorithm and the inefficiency of the 

inaccessible transition of SSA approach is reduced powerfully. 

 

Further, in order to do a fair comparison of a proposed algorithm with standard PSO, SSA, MFO, SCA, DA 

MVO, ALO, MGWO, DCSGWO, FWAGWO and HAGWO algorithms, mean and standard deviation for multiple 

runs have been reported. Here, a least statistic value indicates that the proposed algorithm is more robust, is capable 

to reproduce the solution with minimum discrepancy and has less dependency on initial population as comparison to 

other comparative approaches. In the assessment with other meta-heuristics, it seems that the new method performed 

more significantly. Further, the ability and capability of the proposed algorithm has been verified on the basis of 

taking a least time during searching of the optimal values in the search space of the functions. Results indicate that 

the proposed algorithm take a least time during searching the best and possible optimal solution of the problems 

outperforms than others. Hence, it can be concluded that the proposed algorithm is competent for searching the best 

optimal solution in the least time. 

For testing the convergence performance of the algorithms such as PSO, SSA, MFO, SCA, DA MVO, ALO, 

MGWO, DCSGWO, FWAGWO, HAGWO and HSSASCA have been plotted the graphs with respect to number of 

iterations. In the graphs, x-axis represents the number of iterations and y-axis represents the best score obtained so 

far. Black line represents the performance of the proposed algorithm and on the basis of others colors we identifies 

the performance of rest of the algorithms. In these graphs, it can be easily seen that the proposed algorithm takes 

least time for convergence and search the best optimal solution in the least number of iterations as comparison to 

others. All the convergence graphs, numerical and statistical solutions of the proposed version assert that it is 

competent to improving the strength, accuracy, exploration, exploitation in dimensionality reduction tasks and 

reducing the complexity time of the standard versions. We trust that sine cosine algorithm helps to overcome the 

drawback of salp swarm. 

To summarize, all experimental solutions reveal that the new hybrid method is more supportive in improving the 

competence of the standalone algorithms in the terms of global optimal result/or solution worth as well as 

computational efforts. Lastly, we expect that this method will motivate scientists and researchers in meta-heuristics 

and global optimization areas. 

7. APPLICATIONS 
 

7.1 Three-bar Truss Design 
 

In this section, we apply the proposed method to-solve the three-bar-truss-design-function/or problem [26]. The 

main aim of this function is to achieve the minimum weight subjected to buck constraints, stress and deflection (see 

figure 5). The pseudo code of newly method has been run for searching the completive or best solution of this 

function on the setting of parameters mentioned in section 4.  Three-bur truss design function has been solved by 

HSSASCA and compared with recent comparative algorithms. The mathematical explanation of this function has 

been described as following: 

Minimize    2 2 *
1 2

f x x x r  , 
(10) 

Subject to          
2 1 2 0

1 22 2 1 21

x x
l x P d

x x x

 
 
 
 
 


   


 

(11) 
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 
2

2 0
22 2 1 21

x
l x P d

x x x

 
 
 
 
 

   


(12) 

 
1

3
2

0
2 2 1 2

l x P d
x x x

 
 
 
 

   


(13) 

where 

1 20 , 1x x  , 100r cm , 
2

2 /M KN cm and 
2

2 /d KN cm . 
(14) 

Figure 5.The three-bar truss design problem 

Table 11. Best solutions of the three-bar truss design by different algorithms 

Algorithm 
1

x
2

x  f x

CS 0.78867 0.40902 263.9716 

DEDS 0.78867513 0..40824828 263.8958434 

SC 0.7886210370 0.4084013340 263.8958466 

MBA 0.7885650 0.4085597 263.8958522 

MFO 0.788244770931922 0.409466905784741 263.895979682 

PSO-DE 0.7886751 0.4082482 263.8958433 

LSA-SM 0.7886136 0.4084224 263.8958 

HSSASCA 0.7885923 0.4083256 263.8801451585985 

The obtained results of the algorithms have been described in Table 11 including the comparison between the 

proposed algorithm and others namely Cuckoo search algorithm (CS) [19], Differential-evolution-with-dynamic-

stochastic-selection-(DEDS) [60], Society and civilization (CS) [40], Mine blast algorithm (MBA) [41], Moth Flame 

Optimizer (MFO) [33], Hybridizingparticleswarmoptimizationwithdifferentialevolution(PSO-DE) [24] and lightning 

search algorithm-simplex method (LSA-SM) [26]. Here, it-can-be easily seen that the newly method provides the 

minimum value (263.8801451585985) of the objective function of this problem in comparison to those of the others. 

Hence, it can be concluded that the HSSASCA is highly competent for this function than others. 

7.2 Tension/Compression-Spring-Design 

The Tension-Spring-Design-function/or Problem [26] has been solved in this section. The origin motive of this 

function is to reduce the weight of tension spring design. The pseudo code of newly method has been run for 

searching the completive or best solution of this function on the setting of parameters mentioned in section 4. A 
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graphic view of Tension/Compression Spring design is shown in figure 6. The proposed algorithm and several 

comparative algorithms in the literatures have been applied for searching the best global optima result/or solution of 

this function. The mathematical formulas involved are as follows: 

Minimize     2
23 2 1

f x x x x   
(14) 

Subject to:   
3
2 3minimumdeflection: 1 0

1 4
71, 785

1

x x
m x

x
    

(15) 

  
 

2
4 12 1 2shear stress 1 0

2 23 4 510812,566 12 1 1

x x x
m x

xx x x


   


 

(16) 

  
 

2
4 12 1 2shear stress 1 0

2 23 4 510812,566 12 1 1

x x x
m x

xx x x


   


 

(17) 

   1 2limit on outside diameter 1 0
4 1.5

x x
m x


    

(18) 

where 0.05 0.25
1

x  , 20.25 1.30x  and 32.00 15.0x  .  

 

Figure 6. a) 3D view of the spring b) 2D view of the spring c) displacement heat map d) stress heat map 

There are three design variables: wire diameter  1
d x , mean coil diameter  2D x and the number of active coils

 3N x . Table 12 compares the best optimal solution obtained using HSSASCA algorithm with those reported in 

the literature. It can be easily seen that the minimum weight value (0.12533670077042) obtained by the proposed 

method is better than those of the others. 

Table 12. Best solutions of the tension/compression spring design by different algorithms 
 

Algorithm 
1

x  
2

x  
3

x   f x  

IHS [49] 0.05115438 0.34987116 12.0764321 0.0126706 

ABC [38] 0.051749 0.358179 11.203763 0.012665 

MFO [8] 0.051994457 0.36410932 10.868421862 0.0126669 

GWO [13] 0.05169 0.356737 11.28885 0.012666 

AFA [50] 0.0516674837 0.3561976945 11.3195613646 0.0126653049 

BA [51] 0.05169 0.35673 11.2885 0.01267 

LSA-SM [43] 0.05170453 0.3570899 11.26718 0.01266524 

HSSASCA 0.051591 0.3569458 11.19253 0.12533670077042 
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7.3 Cantilever Beam Design 
 

This Cantilever beam problem [26] has been solved in this section. The main objective is to find the best and 

possible minimum weight of this function.  The section 4, presents all parameter settings on which a newly approach 

code has been run for searching the completive or best solution of this function. Figure 7, represents a schematic 

view of this function. The mathematical explanation of this function has been presented as following. 

   Minimize: 0.0624 1 2 3 4 5f x x x x x x      
(19) 

 
61 37 19 7 1

Subject to: 1 0
3 3 3 3 3

51 2 3 4

g x
x x x x x

      
 

(20) 

where 0.01 100; 1, 2, ..., 5.x jj    

 

ib width  

ih height  

p load  

 

 

Figure 7.  The cantilever beam design problem 

For the purpose of comparison, we use the results of the recent comparative algorithms i.e. Method of moving 

asymptotes (MMA) [20], cuckoo search (CS) [20], generalized convex approximation -I (GCA-I) [10], generalized 

convex approximation-II (GCA-II) [10], symbiotic organisms search (SOS) [9], Moth Flame Optimizer (MFO) [33] 

and lightning search algorithm simplex method (LSA-SM) [26].Hence, after assessment of the results can be easily 

concluded that the HSSASCA algorithm provides in comparison to others the minimum value of weight of the 

Cantilever Beam Design problem. The minimum weight value of HSSASCA algorithm achieves the overall best 

design of 1.338896 (See Table 13). 

Table 13. Best solutions of the Cantilever Beam Design by different algorithms 
 

Algorithm I II III IV V Minimum 

Weight Value 

 
1x  2x  3x  4x  5x   

MMA 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

CS 6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 

GCA-I 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

GCA-II 6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 

SOS 6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 

MFO 5.98487177 5.316726924 4.49733258 3.51361646 2.16162029 1.33998808 

LSA-SM 6.021636 5.310859 4.490882 3.497403 2.152906 1.339958 

HSSASCA 6.012534 5.301452 4.491546 3.496582 2.154526 1.338896 
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8. CONCLUSION 

 

In this paper, we developed a new hybrid algorithm that integrates salp swarm (SSA) and sine cosine algorithms 

(SCA) for enhancing exploitation of the standard algorithms. The performance of the hybrid algorithm has been 

assessed and compared against seven feature selection approaches including SSA, PSO, MFO, SCA, DA, MVO, 

ALO, MGWO, DCSGWO, FWAGWO and HAGWO. Different criteria have been reported namely the minimum 

and maximum objective function value, standard deviation, best score, average, self and total time. On the basis of 

convergence performance of the proposed algorithm, we can conclude that the new hybrid approach is highly 

capable for maintaining balance amid exploitation and exploration. At the end, the proposed algorithm has been 

applied to solve three engineering design problems in reality namely three-bar truss, tension/compression spring and 

cantilever beam design problems. The experimental numerical and statistical results/or solutions reveal that the 

proposed hybrid method is better to other competitors in terms of convergence speed, quality of solutions and can 

serve as an efficient and capable computer aided tool for real life tasks with complex search area. 

Future studies will investigate a new method to accelerate the speed of HSSASCA as well as apply it for solving 

other constrained nonlinear optimization functions [62-75]. 
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Table B. Multi-modal functions 
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Table C. Fixed-dimension multi-modal benchmark functions 
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