55,438 research outputs found

    Autobiographically Significant Concepts: More Episodic than Semantic in Nature? An Electrophysiological Investigation of Overlapping Types of Memory

    Get PDF
    A common assertion is that semantic memory emerges from episodic memory, shedding the distinctive contexts associated with episodes over time and/or repeated instances. Some semantic concepts, however, may retain their episodic origins or acquire episodic information during life experiences. The current study examined this hypothesis by investigating the ERP correlates of autobiographically significant (AS) concepts, that is, semantic concepts that are associated with vivid episodic memories. We inferred the contribution of semantic and episodic memory to AS concepts using the amplitudes of the N400 and late positive component, respectively. We compared famous names that easily brought to mind episodic memories (high AS names) against equally famous names that did not bring such recollections to mind (low AS names) on a semantic task (fame judgment) and an episodic task (recognition memory). Compared with low AS names, high AS names were associated with increased amplitude of the late positive component in both tasks. Moreover, in the recognition task, this effect of AS was highly correlated with recognition confidence. In contrast, the N400 component did not differentiate the high versus low AS names but, instead, was related to the amount of general knowledge participants had regarding each name. These results suggest that semantic concepts high in AS, such as famous names, have an episodic component and are associated with similar brain processes to those that are engaged by episodic memory. Studying AS concepts may provide unique insights into how episodic and semantic memory interact

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures

    The short and long of it: neural correlates of temporal-order memory for autobiographical events

    Get PDF
    Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events

    Reward prediction error and declarative memory

    Get PDF
    Learning based on reward prediction error (RPE) was originally proposed in the context of nondeclarative memory. We postulate that RPE may support declarative memory as well. Indeed, recent years have witnessed a number of independent empirical studies reporting effects of RPE on declarative memory. We provide a brief overview of these studies, identify emerging patterns, and discuss open issues such as the role of signed versus unsigned RPEs in declarative learning

    Age differences in encoding-related alpha power reflect sentence comprehension difficulties

    No full text
    When sentence processing taxes verbal working memory, comprehension difficulties arise. This is specifically the case when processing resources decline with advancing adult age. Such decline likely affects the encoding of sentences into working memory, which constitutes the basis for successful comprehension. To assess age differences in encoding-related electrophysiological activity, we recorded the electroencephalogram from three age groups (24, 43, and 65 years). Using an auditory sentence comprehension task, age differences in encoding-related oscillatory power were examined with respect to the accuracy of the given response. That is, the difference in oscillatory power between correctly and incorrectly encoded sentences, yielding subsequent memory effects (SME), was compared across age groups. Across age groups, we observed an age-related SME inversion in the alpha band from a power decrease in younger adults to a power increase in older adults. We suggest that this SME inversion underlies age-related comprehension difficulties. With alpha being commonly linked to inhibitory processes, this shift may reflect a change in the cortical inhibition–disinhibition balance. A cortical disinhibition may imply enriched sentence encoding in younger adults. In contrast, resource limitations in older adults may necessitate an increase in cortical inhibition during sentence encoding to avoid an information overload. Overall, our findings tentatively suggest that age-related comprehension difficulties are associated with alterations to the electrophysiological dynamics subserving general higher cognitive functions

    Brain mechanisms of successful recognition through retrieval of semantic context

    Get PDF
    Episodic memory is associated with the encoding and retrieval of context information and with a subjective sense of reexperiencing past events. The neural correlates of episodic retrieval have been extensively studied using fMRI, leading to the identification of a "general recollection network" including medial temporal, parietal, and prefrontal regions. However, in these studies, it is difficult to disentangle the effects of context retrieval from recollection. In this study, we used fMRI to determine the extent to which the recruitment of regions in the recollection network is contingent on context reinstatement. Participants were scanned during a cued recognition test for target words from encoded sentences. Studied target words were preceded by either a cue word studied in the same sentence (thus congruent with encoding context) or a cue word studied in a different sentence (thus incongruent with encoding context). Converging fMRI results from independently defined ROIs and whole-brain analysis showed regional specificity in the recollection network. Activity in hippocampus and parahippocampal cortex was specifically increased during successful retrieval following congruent context cues, whereas parietal and prefrontal components of the general recollection network were associated with confident retrieval irrespective of contextual congruency. Our findings implicate medial temporal regions in the retrieval of semantic context, contributing to, but dissociable from, recollective experience

    Access to consciousness of briefly presented visual events is modulated by transcranial direct current stimulation of left dorsolateral prefrontal cortex

    Get PDF
    Adaptive behaviour requires the ability to process goal-relevant events at the expense of irrelevant ones. However, perception of a relevant visual event can transiently preclude access to consciousness of subsequent events — a phenomenon called attentional blink (AB). Here we investigated involvement of the left dorsolateral prefrontal cortex (DLPFC) in conscious access, by using transcranial direct current stimulation (tDCS) to potentiate or reduce neural excitability in the context of an AB task. In a sham-controlled experimental design, we applied between groups anodal or cathodal tDCS over the left DLPFC, and examined whether this stimulation modulated the proportion of stimuli that were consciously reported during the AB period. We found that tDCS over the left DLPFC affected the proportion of consciously perceived target stimuli. Moreover, anodal and cathodal tDCS had opposing effects, and exhibited different temporal patterns. Anodal stimulation attenuated the AB, enhancing conscious report earlier in the AB period. Cathodal stimulation accentuated the AB, reducing conscious report later in the AB period. These findings support the notion that the DLPFC plays a role in facilitating information transition from the unconscious to the conscious stage of processing

    Content reinstatement and source confidence during episodic memory retrieval

    Get PDF
    Abstract from public.pdf.Episodic retrieval is the process of bringing information about a past experience from memory into conscious awareness. Variation in the retrieval process, in regard to content and quality of the information retrieved, is believed to rely on the reactivation of neural patterns of activity elicited during the original experience -- a process called neural reinstatement. Research in support of this idea has relied on participant reports of retrieval quality, but not content, to assess variation in retrieval. Without measuring the content of retrieval, it is unclear whether reinstatement underlies retrieval per se, or merely the evaluation of retrieval quality. The current study addressed this issue by examining the relationship between the magnitude of neural reinstatement during retrieval, and a direct behavioral measure of both retrieval content and quality. Participants viewed a series of words in the context of three encoding tasks, and then completed a memory test on a series of words in which they first identified the encoding task completed for a given word, and next rated their confidence in that decision. Pattern classification analyses were performed on fMRI data acquired during encoding and retrieval phases to index reinstatement, and reinstatement effects were examined according to the behavioral and neural correlates of source confidence. The findings support a relationship between reinstatement and variation in the content and quality of retrieval, and also suggest a role for regions such as left posterior parietal cortex in monitoring reinstated activity to guide decisions about retrieval quality

    The physiologic correlates of learning in the classroom environment

    Full text link
    This study served to further investigate learning and memory, and to offer a potential tool to support educational interventions. More specifically, this was accomplished by an investigation of the physiologic changes in the brain that occurred while students learned medical anatomy. A group of 29 students taking the Gross Anatomy course at Boston University School of Medicine participated in the study. Testing occurred in two sessions: prior to the course and at the completion of the course. For each session, scalp EEG was recorded while participants were shown 176 anatomical terms (132 relevant to the course and 44 obscure) and asked to respond with "Can Define", "Familiar", or "Don't Know". Behavioral results indicated a positive correlation between participants' course grades and performance on the experimental tasks. EEG results were analyzed for event-related potential (ERP) components related to two memory components: familiarity and recollection. Results had a number of indications. For Don't Know responses, a stronger early frontal, late parietal, and late frontal effect occurred more so for terms of Session 1 compared to Session 2. For an analysis of just Session 2 data, results indicated increased activity of the early frontal, late parietal, and late frontal effects for Can Define responses only. Session 2 Can Define responses elicited a stronger early frontal ERP, occurring between 300 and 500 milliseconds yet, the most post-retrieval processing and monitoring appeared for Can Define terms of Session 2. Ultimately, we focused on investigating two points: 1) the effect of classroom learning on memory, and 2) the examination of ERPs as a tool to guide education interventions. Specifically, ERPs would potentially indicate markers to predict whether students would retain materials long before behavioral measures indicate these results. This has potential to determine whether long-lasting or transient learning will occur; as well as the potential to support early intervention strategies for not just students, but also individuals with learning disabilities or memory impairments
    • …
    corecore