815 research outputs found

    Public Transit Arrival Prediction: a Seq2Seq RNN Approach

    Full text link
    Arrival/Travel times for public transit exhibit variability on account of factors like seasonality, dwell times at bus stops, traffic signals, travel demand fluctuation etc. The developing world in particular is plagued by additional factors like lack of lane discipline, excess vehicles, diverse modes of transport and so on. This renders the bus arrival time prediction (BATP) to be a challenging problem especially in the developing world. A novel data-driven model based on recurrent neural networks (RNNs) is proposed for BATP (in real-time) in the current work. The model intelligently incorporates both spatial and temporal correlations in a unique (non-linear) fashion distinct from existing approaches. In particular, we propose a Gated Recurrent Unit (GRU) based Encoder-Decoder(ED) OR Seq2Seq RNN model (originally introduced for language translation) for BATP. The geometry of the dynamic real time BATP problem enables a nice fit with the Encoder-Decoder based RNN structure. We feed relevant additional synchronized inputs (from previous trips) at each step of the decoder (a feature classically unexplored in machine translation applications). Further motivated from accurately modelling congestion influences on travel time prediction, we additionally propose to use a bidirectional layer at the decoder (something unexplored in other time-series based ED application contexts). The effectiveness of the proposed algorithms is demonstrated on real field data collected from challenging traffic conditions. Our experiments indicate that the proposed method outperforms diverse existing state-of-art data-driven approaches proposed for the same problem

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Big Data for Traffic Estimation and Prediction: A Survey of Data and Tools

    Full text link
    Big data has been used widely in many areas including the transportation industry. Using various data sources, traffic states can be well estimated and further predicted for improving the overall operation efficiency. Combined with this trend, this study presents an up-to-date survey of open data and big data tools used for traffic estimation and prediction. Different data types are categorized and the off-the-shelf tools are introduced. To further promote the use of big data for traffic estimation and prediction tasks, challenges and future directions are given for future studies

    Data Fusion for MaaS: Opportunities and Challenges

    Get PDF
    © 2018 IEEE. Computer Supported Cooperative Work (CSCW) in design is an essential facilitator for the development and implementation of smart cities, where modern cooperative transportation and integrated mobility are highly demanded. Owing to greater availability of different data sources, data fusion problem in intelligent transportation systems (ITS) has been very challenging, where machine learning modelling and approaches are promising to offer an important yet comprehensive solution. In this paper, we provide an overview of the recent advances in data fusion for Mobility as a Service (MaaS), including the basics of data fusion theory and the related machine learning methods. We also highlight the opportunities and challenges on MaaS, and discuss potential future directions of research on the integrated mobility modelling

    Multi-headed self-attention mechanism-based Transformer model for predicting bus travel times across multiple bus routes using heterogeneous datasets

    Get PDF
    Bus transit is a crucial component of transportation networks, especially in urban areas. Bus agencies must enhance the quality of their real-time bus travel information service to serve their passengers better and attract more travelers. Various models have recently been developed for estimating bus travel times to increase the quality of real-time information service. However, most are concentrated on smaller road networks due to their generally subpar performance in densely populated urban regions on a vast network and failure to produce good results with long-range dependencies. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database and the vehicle probe data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. This study developed a multi-headed self-attention mechanism-based Univariate Transformer neural network to predict the mean vehicle travel times for different hours of the day for multiple stations across multiple routes. In addition, we developed Multivariate GRU and LSTM neural network models for our research to compare the prediction accuracy and comprehend the robustness of the Transformer model. To validate the Transformer Model's performance more in comparison to the GRU and LSTM models, we employed the Historical Average Model and XGBoost model as benchmark models. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. Only the historical average bus travel time was used as the input parameter for the Transformer model. Other features, including spatial and temporal information, volatility measures (e.g., the standard deviation and variance of travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were captured from our dataset. These parameters were employed to develop the Multivariate GRU and LSTM models. The model's performance was evaluated based on a performance metric called Mean Absolute Percentage Error (MAPE). The results showed that the Transformer model outperformed other models for one-hour ahead prediction having minimum and mean MAPE values of 4.32 percent and 8.29 percent, respectively. We also investigated that the Transformer model performed the best during different traffic conditions (e.g., peak and off-peak hours). Furthermore, we also displayed the model computation time for the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's findings demonstrate that the Transformer model showed its applicability for real-time travel time prediction and guaranteed the high quality of the predictions produced by the model in the context of a complicated extensive transportation network in high-density urban areas and capturing long-range dependencies.Includes bibliographical references

    Urban traffic flow prediction, a spatial-temporal approach

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesCurrent advances in computational technologies such as machine learning combined with traffic data availability are inspiring the development and growth of intelligent transport Systems (ITS). As urban authorities strive for efficient traffic systems, traffic forecasting is a vital element for effective control and management of traffic networks. Traffic forecasting methods have progressed from traditional statistical techniques to optimized data driven methods eulogised with artificial intelligence. Today, most techniques in traffic forecasting are mainly timeseries methods that ignore the spatial impact of traffic networks in traffic flow modelling. The consideration of both spatial and temporal dimensions in traffic forecasting efforts is key to achieving inclusive traffic forecasts. This research paper presents approaches to analyse spatial temporal patterns existing in networks and goes on to use a machine learning model that integrates both spatial and temporal dependency in traffic flow prediction. The application of the model to a traffic dataset for the city of Singapore shows that we can accurately predict traffic flow up to 15 minutes in advance and also accuracy results obtained outperform other classical traffic prediction methods

    Prediction of Traffic Flow via Connected Vehicles

    Full text link
    We propose a Short-term Traffic flow Prediction (STP) framework so that transportation authorities take early actions to control flow and prevent congestion. We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology. To cope with the fact that existing approaches do not adapt to variation in traffic, we show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of the various events that CV realistically encountered on segments along their trajectory. We solve the STP problem with a Deep Neural Networks (DNN) in a multitask learning setting augmented by input from CV. Results show that our approach, namely MTL-CV, with an average Root-Mean-Square Error (RMSE) of 0.052, outperforms state-of-the-art ARIMA time series (RMSE of 0.255) and baseline classifiers (RMSE of 0.122). Compared to single task learning with Artificial Neural Network (ANN), ANN had a lower performance, 0.113 for RMSE, than MTL-CV. MTL-CV learned historical similarities between segments, in contrast to using direct historical trends in the measure, because trends may not exist in the measure but do in the similarities

    A Systematic Literature Review on Machine Learning in Shared Mobility

    Get PDF
    Shared mobility has emerged as a sustainable alternative to both private transportation and traditional public transport, promising to reduce the number of private vehicles on roads while offering users greater flexibility. Today, urban areas are home to a myriad of innovative services, including car-sharing, ride-sharing, and micromobility solutions like moped-sharing, bike-sharing, and e-scooter-sharing. Given the intense competition and the inherent operational complexities of shared mobility systems, providers are increasingly seeking specialized decision-support methodologies to boost operational efficiency. While recent research indicates that advanced machine learning methods can tackle the intricate challenges in shared mobility management decisions, a thorough evaluation of existing research is essential to fully grasp its potential and pinpoint areas needing further exploration. This paper presents a systematic literature review that specifically targets the application of Machine Learning for decision-making in Shared Mobility Systems. Our review underscores that Machine Learning offers methodological solutions to specific management challenges crucial for the effective operation of Shared Mobility Systems. We delve into the methods and datasets employed, spotlight research trends, and pinpoint research gaps. Our findings culminate in a comprehensive framework of Machine Learning techniques designed to bolster managerial decision-making in addressing challenges specific to Shared Mobility across various levels
    corecore