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ABSTRACT 

 

Current advances in computational technologies such as machine learning combined 

with traffic data availability are inspiring the development and growth of intelligent 

transport Systems (ITS). As urban authorities strive for efficient traffic systems, traffic 

forecasting is a vital element for effective control and management of traffic networks. 

Traffic forecasting methods have progressed from traditional statistical techniques to 

optimized data driven methods eulogised with artificial intelligence. Today, most 

techniques in traffic forecasting are mainly timeseries methods that ignore the spatial 

impact of traffic networks in traffic flow modelling. The consideration of both spatial and 

temporal dimensions in traffic forecasting efforts is key to achieving inclusive traffic 

forecasts. This research paper presents approaches to analyse spatial temporal 

patterns existing in networks and goes on to use a machine learning model that 

integrates both spatial and temporal dependency in traffic flow prediction. The 

application of the model to a traffic dataset for the city of Singapore shows that we can 

accurately predict traffic flow up to 15 minutes in advance and also accuracy results 

obtained outperform other classical traffic prediction methods.   
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1. INTRODUCTION 

1.1 Motivation and Rationale 

Forecasting urban traffic flows is purposeful for overall traffic management, public health, and 

land use [1]. For major urban players, traffic forecasting guides the identification of future 

density areas that proceeds appropriate measures to mitigate traffic challenges [2]. For 

business domains, traffic forecasting provides indication for investment locations or rather 

movement of logistics and freight, and also, the public can better schedule their travel plans 

[3].  

Today, urban population escalation has subsequently posed great pressure on prevailing 

transport networks in the bid to meet mobility demand [4], The multi-modal transportation 

systems are characterised by traffic congestion with both solid social and environmental 

impact [5] . As a strategy to calming traffic congestion, various urban metropolitan expanses 

have implemented measures including laning, configuring traffic signals, delineating vehicle, 

and pedestrian paths etc., [6]   but there has been a challenge of striking a balance between 

the ever-growing car ownerships and traffic infrastructure [2],[7]. As urban growth speculations 

rise, experts and stakeholders in the transportation research domain are today continuously 

challenged by the ever-changing traffic mobility patterns [5]. The understanding of urban 

mobility involves the conceptualization of routes that greatly link the origins and destinations 

of travellers [8], in order to  achieve effective mobility systems.  Efficient urban mobility 

systems are crucial driving elements for achieving sustainable economic development for 

future growth cities [9].  

Modern cities are essentially adopting intelligent transportation systems (ITS) while others are 

considering ITS as future growth areas  as a strategy to assessing traffic mobility dynamics 

so as to provide solutions to traffic challenges [10]. ITS provide possibilities of capturing 

enormous traffic data [11], for example through; city traffic management systems that gather 

network traffic state data that comprises elements such as traffic volume, flow rate and speed. 

These traffic elements are collected using varied means including loop detectors, GPS 

sensors and probe vehicles trajectories[12].  Vehicle trajectories are today considered the 

most reliable traffic data collections for transportation research [9], [13], this is because of the 

leverage and inclusive supplication of user-centric movement behaviours such as; (vehicle 

speeds and travel times) and spatial-temporal trip accumulation [14], [15].  The growth of ICT 

has posed a great opportunity for major cities to strategize for Intelligent Transportation 

Systems (ITS), through the massive generation of traffic-related spatial-temporal data. This 

provides a good dimension of big data that can be analysed for a wider intuition of travel and 

mobility behaviour in urban transportation networks [14], [16].  
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Transportation studies focused on developing traffic information and management systems 

are taking advantage of this data to conduct analysis that importantly derive accurate short-

term traffic conditions such as traffic density , speed flow, travel time and flux [8]. Tracing back 

to the early 1970s [17],  transportation researchers have been finding ways of exploiting 

historical  traffic data to forecast short-term traffic flow by employing different prediction 

methods. These prediction methods have evolved from traditional statistical methods to 

modern statistical modelling approaches and machine learning methods that are mainly data 

driven [18]. As traffic related data hugely accumulates, it poses great opportunities and yet 

challenges for implementing more comprehensive and focused analyses for design, planning 

and subsequent management of transportation systems [19], [20]. Major challenges of big 

data volumes are linked to the complexity of examining both the spatial and temporal 

perspectives [2], [21].   

Most traffic flow prediction methods are designed to empirically fit the variational behaviour 

comprised in traffic data by putting emphasis on function concepts based on historic traffic 

data without considering mobility mechanisms in road networks [22].  Traffic flow mechanisms 

are as a result of confluences in road links that directly affect traffic flows in neighbouring roads 

[23]. The modelling of these confluences requires significant incorporation of all traffic 

characteristics ( spatial and temporal) in order to achieve more meaningful traffic flow analyses 

and  forecasts [21].  The modelling of traffic mechanisms and behaviour has been viewed as 

a complex task in transportation research, thus we see less research in this field [24].   

Data-Driven traffic studies have recently gained focus in the effort to achieving information-

based decision making for traffic monitoring and planning [8], [25]. Present day traffic 

modelling approaches that are statistical, or machine learning based mainly consider the 

temporal dimension of data [26]. Recently, studies are being undertaken to develop modelling 

approaches that exploit both the spatial and temporal characteristics embedded in traffic data 

so as to produces more accurate traffic forecasts [27]. Development in this field is still in its 

early stages [28] and therefore this paper undertakes a study to perform urban traffic flow 

prediction with a focus on the inclusion of spatial and temporal dimensions of traffic data. 

Using a machine learning approach, a Convolution Long Short-Term Memory (Conv_LSTM) 

model is proposed and implemented to achieve short-term traffic flow predictions starting from 

15minutes and next intervals.   

1.2 Knowledge Gap Identification 

 
Different approaches ranging from clustering methods, statistical methods to classic machine 

learning techniques have been applied in transportation research [3],[18]. In [29], 

authors designed  Logistic Regression and Spatial-Temporal Autoregressive Moving Average 
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statistic models that learn trajectory data to measure traffic conditions in networks. Machine 

learning methods such as Graph Neural Networks (GNNs), Artificial Neural Networks [30], 

have been applied to considerable traffic studies.  It can be appreciated that the 

aforementioned techniques have provided ways of extracting meaningful traffic patterns, 

however, there lies a gap in modelling both spatial and temporal characteristics in traffic 

related studies [27], [31]. Existing transport research highlights that transportation networks 

exhibit significant spatial and temporal characteristics [32],[33] that must be incorporated and 

simultaneously modelled in traffic forecasting. However, most traffic studies mainly implement 

time series methods only considering the temporal dimension without modelling the spatial 

aspect as most researchers consider it to be a complex task  [32], [34], [35].  The impact and 

importance of spatial-temporal dependencies in arterial networks is clear but it is often 

overlooked [36], and currently, it’s still a demanding area in need of further research and 

development in the traffic forecasting field [37].  More recently attempts have been made to 

integrate both spatial and temporal dependencies in the modelling process, [38] while 

integrating other exogenous variables like historical weather and geo-tagged tweets to 

improve forecasting accuracy. As traffic data such as vehicle trajectories accumulate, it 

presents challenges for exploring, analysing, and visualising embedded patterns in the traffic 

data [39]. This calls for subsequent solutions such as exploitation of big data computational 

tools that provide potentials of mining and modelling spatial-temporal traffic flow patterns that 

can aimfully accelerate meaningful decision making for traffic systems [40]. 

 1.3 Research Aim 

 
The main aim of this research is to implement machine learning techniques while harnessing 

vehicle GPS data, to proactively incorporate both spatial and temporal characteristics in 

performing traffic flow prediction. The following questions will guide the achievement of the 

research aim; 

1. How can we quantify spatial temporal patterns embedded in trajectory traffic data? 

2. How can we develop traffic flow prediction models by considering both spatial and 

temporal dimensions of traffic data? 

3. How can we assess the significance of integrating traffic spatial features on model 

performance?    

1.4 Thesis Structure  

 
The research is organized as follows:  

• Chapter 2 Presents literature review on traffic flow prediction modelling as well as techniques 

being implemented.   
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• Chapter 3 Highlights the case study area, datasets used in implementing this research.  

• Chapter 4 Demonstrates the implementation of our methodology approach and techniques 

used. 

• Chapter 5 Presents the analysis results from methodology implementation. 

• Chapter 6 Presents a discussion on research findings and also highlights some of the 

limitations to this research.  

• Chapter 7 Presents conclusion remarks and insights about possible future research works.  
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2. LITERATURE REVIEW 

Traffic related problems in urban areas, including accidents, congestion and, air pollution 

create a major impact on the livelihood quality of citizens and also directly affect sustainable 

development efforts of cities [39]. In the bid to alleviate traffic challenges, urban metropolitans 

are currently relying on  traffic data detection technologies, big data analysis, mining, 

computational  technologies, optimization concepts  and designing of Intelligent 

Transportation Systems (ITS) as the key tools to providing solutions that help relieve traffic 

challenges [12]. The exploration and analysis of patterns in traffic flow as well as predicting its 

dynamic traits are fundamental  actions to achieving applications of ITS [41], such as 

Advanced Traffic Signal Control Systems(ATSCS) and  Advanced Traffic flow Management 

and Control Systems (ATMCS) [40]. This chapter gives an overview on modelling approaches 

related to this research in the field of traffic flow forecasting. It gives light on both the history 

and advances in traffic prediction modelling with a major focus on progression in methods that 

are incorporating both spatial and temporal features in  traffic prediction.   

2.1 Background on Traffic Modelling Approaches 

 

Traffic flow modelling approaches can be divided into two major parts [42]. The first involves 

the specific modelling of the general traffic system itself by undertaking simulations that take 

into consideration of traffic parameters such as traffic signal control, vehicle counts and 

driver’s behaviour [43]. This approach is largely built on the foundations of traffic flow theory 

in which traffic models are developed from mathematical equations and scientific theories to 

derive relationships between variables such as signalling, congestion, traffic density and flow 

[18]. The advantage with these methods is that they consider traffic control measures in the 

prediction process and try as much to quantify traffic conditions in road networks [43]. 

However, this approach has several drawbacks especially to do with computational complexity 

of model prediction parameters, calibration of mathematical equations and lack of flexibility 

[44]. The prediction quality of these models largely lies on the quality of inputs that are 

manually determined; they cannot inherently learn latent traffic patterns from traffic datasets 

[36]. This research paper focuses on the second major approach for traffic prediction that is 

characterised by data driven methods such as statistical methods and machine learning. 

Machine Learning approaches perform to determine functional approximations between input 

features and output features and learn patent relations in traffic datasets to forecast variables 

such as traffic speed, volume, flow etc[3], [45].  

In recent years, advancements in traffic flow predictions have been majorly accelerated by 

improved traffic data collection in parallel with both progress in information technology and big 

data computation potentials [46]. Despite this, existing approaches have presented 
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considerable variations in traffic forecasts that still call for continued research and 

development in the traffic related studies as highlighted in [47].  One such area is the inclusion 

of both spatial and temporal relationships embedded in traffic data [21]. The following sections 

will give highlight on relevant literature related to traffic forecasting while giving emphasis to  

spatial temporal approaches for improving traffic forecasting. 

2.2 Traffic Prediction Modelling 

 

Traffic flow prediction approaches are majorly categorised as either parametric or 

nonparametric approaches [48]. Recent studies show that parametric models deliver powerful 

statistical results, however, nonparametric approaches that are mainly data driven have 

offered great advantages regarding handling of complexity and this has motivated continued 

investigations focused on improving nonparametric prediction models [49],[50]. 

2.3 Parametric Traffic Forecasting Approaches 

 

Parametric models are algorithmic and mainly mathematical based methods [41], whose 

structure is determined in advance by estimating a set of parameter values that are usually 

derived from empirical data [51]. Parametric models employ conventional statistical notions to 

capture temporal patterns and trends in timeseries data to be able to perform traffic flow 

predictions[48].  Some examples of such models include the Autoregressive Moving Average 

(ARMA) model, and the Kalman filter that are largely considered to be classical time series 

models [51]. As traffic prediction is considered a time series task [51],[52] , models such as 

the Autoregressive Integrated Moving Average (ARIMA) [53], are today applied to short-term 

traffic flow prediction tasks. In [54] they implemented an Autoregressive Integrated Moving 

Average (ARMA)  model by specifying ARMA’s key parameters to predict bottleneck traffic 

congestion, they assert that ARMA has powerful mathematical and statistical basis to derive 

predictive intervals. There are varied versions of ARIMA [51], [55], in [10] they implemented a 

Seasonal ARIMA model to predict traffic in which the prediction parameters were found by a 

maximum likelihood method. Furthermore, we see more advanced  statistical modelling 

methods applied in traffic flow prediction; In [56] they developed a hybrid prediction model that 

incorporates space time features by integrating  vector autoregression (VAR), and ARIMA for 

freeway  traffic speed prediction. In [57] , they designed Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) models to forecast road travel time by enhancing 

capabilities to learn and extract trend and seasonal characteristics in the decomposition 

modelling processes. Results  show that these models  are efficient in modelling uncertainties 

in traffic, however, due to their modest structure and applied theoretical assumptions, they are 

weak in capturing complex variations inherent in traffic flow patterns  especially in composite 
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non-linear situations, and are highly affected by the curse of dimensionality [58].  Other 

parametric models implemented in traffic forecasting include Historical averages (HA), 

Historical Mean (HM), and linear regression (LR), [59], [60]. 

Parametric methods provide simplicity in the modelling process, with low model complexity 

and are easy to understand as well as implement [50], however, road traffic is complex and is 

always dynamically changing,  which parametric approaches cannot learn as they don’t model 

uncertainty well [61]. Therefore, the performance of the parametric methods in traffic prediction 

is considerably influenced by underlaying external factors in traffic systems [62],[48]. 

2.4  Non-Parametric Traffic Forecasting Models  

 

To overcome the weakness of classical statistical modelling approaches, researchers have 

currently put their efforts on harnessing non-parametric approaches that are majorly machine 

learning techniques [45],[46],[62].   Non-parametric methods are more intelligent techniques 

that largely depend on training big data to build the model structure[19]. They perform to mine 

historic conditions that are similar to the conditions at prediction stages [44].  Most studies 

show that non-parametric methods have produced satisfactory results in traffic prediction and 

so there lies a trade-off between the non-complex parametric models and the complex but 

effective non-parametric techniques [59],[25]. Due to their  great learning capabilities and  

flexible structure, machine learning models  are today widely applied to traffic predictions and 

studies show that better results have been achieved compared to the classical parametric 

models [46].  

Renown nonparametric models applied in traffic prediction include Neural networks such as 

(Artificial Neural Networks (ANN) [22], Convolutional Neural Networks (CNN)[63], Recurrent 

Neural Networks (RNN)[64]), K-Nearest Neighbour (KNN) [65], Support Vector Regression 

(SVR)[66], and Bayesian network models. In [67] they implemented a Bayesian classifier and 

support vector regression to model traffic flow, first they define relations in the road network 

and finally estimate the traffic speeds for the next time step using multiple linear regression 

and SVR. In [5] ANN is implemented to ascertain average vehicle’ speeds on arterial roads as 

a way of quantifying traffic congestion.  

There are variants of Recurrent Neural Networks, and all have the potential to extract 

sequential patterns embedded in input features [68]. Since traffic speed in arterial roads has 

temporal traits, Recurrent Neural Network models such as Long Short-Term Memory (LSTM) 

[69] and Gated Recurrent Units (GRU) [70] can be considered in forecasting traffic flow. In 

[41], an LSTM model which implements attention mechanisms to encode long-term dense 

traffic flow is proposed. Nevertheless, road traffic systems have both temporal and spatial 
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aspects, but almost all parametric models and RNN models majorly focus on only temporal 

characteristics [64]. Convolutional Neural networks (CNNs) have shown possibilities of 

translating traffic flow into space-time matrices as images, the model is able to capture 

features from the image as well as learn the temporal-spatial in traffic flow [35].  

2.5 Spatial Temporal Traffic Forecasting 

 

Most recent studies have put more effort to studying how weather information can be 

incorporated in traffic studies and not how the spatial topology of roads can be incorporated 

in prediction modelling [21] .  Several pioneering techniques in traffic studies have focused on 

traffic observations of the target location which has been mainly characterised by time series 

modelling without considering neighbouring locations and road topology [13]. In effort to 

addressing this traffic influencing aspect, studies have recently started finding ways of 

incorporating both spatial and temporal dimensions in traffic prediction [21], [71]. 

Developments have been in finding ways of enriching timeseries modelling with spatial 

adapting models [46], [13]. Authors in [72] presented the first attempt in considering traffic 

conditions of neighbouring roads in their research based applying the Kalman Filter algorithm 

to predict traffic flow.  Basing on the first law of geography, that enlightens about how nearby 

things share relationships [73],  studies have based on this to explore possibilities of 

integrating road network inherent spatial dependencies in traffic forecasting [35]. Non-

parametric models especially deep learning models present possibilities of capturing important 

non-linear spatiotemporal associations in traffic forecasting [21],[74]. Studies such as in [75] 

performed time series analysis with geometric correlation techniques that resulted in 

producing 3D heatmap images to illustrate existing relationships of traffic states in nearby 

roads. In [35], authors developed a prediction framework that integrates Recurrent Neural 

Networks (RNN) and Convolutional Neural Networks (CNN) to simulate the extraction of 

spatial-temporal traffic traits in road networks. Patent models are being improved to learn both 

spatial and temporal patterns, in [67] they developed a spatial temporal Bayesian network for 

traffic forecasting in which they also employed a gaussian mixture model to define statistical 

relationships between input features and output features. Other spatial temporal traffic 

forecasting models Include Spatial Temporal Autoregressive Integrated Moving Average. In 

[76], they developed a deep learning architecture that combines Convolution and LSTM 

(Conv-LSTM) to forecast short term traffic, the structure was developed to fully fuse both 

spatial and temporal features of neighbouring links and regions of the target location. They 

then added another trait of LSTM to extract periodic traits in the traffic datasets. The 

combination of CNN and LSTM in traffic studies has considerably accelerated the capturing 

of sequential spatial and temporal dependencies [77]. In this research, we use a variant model 
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of LSTM called Convolutional LSTM (Conv-LSTM) that uses some that uses some CNN 

capabilities  to handle both spatial and temporal relations in road networks to predict traffic 

flow.   

2.6  Convolutional – Long Short-Term Memory (Conv_LSTM) 

 
Conv_LSTM is a variant of the LSTM neural network introduced by authors in [78] as they 

were modelling the nowcasting prediction task. It was introduced due to other variants of LSTM 

having redundancy for spatial features. Conv-LSTM is unique in a way that  it incorporates 

convolutional operators in every LSTM cell (Figure 1) The convolutional operation helps to 

extract and learn spatial characteristics embedded in input data. The application of convolution 

operators replaced internal matrix products in LSTM cells, to stimulate the model in reading of 

two dimensional (2D) spatial data inform of rows while observing their time dynamics and 

dependencies. The Conv_LSTM has convolutional structures (Conv_LSTM) in the input-to-

state as well as the state-to-state consecutive transitions. The model is achieved by stacking 

several Conv-LSTM layers thus creating an encoding- spatiotemporal sequence forecasting 

structure [79]. Defining components of the Conv_LSTM is that all the inputs features 𝑥1 … … 𝑥𝑡, 

cell output features 𝑐1  … … 𝑐𝑡, hidden state features 𝐻𝑖 … … … 𝐻𝑡, and its gates   𝑖𝑡 , 𝑓𝑡, 𝑜𝑡  are 

3D tensors having their last two dimensions as spatial dimensions in the form of  rows and 

columns. The input features and state features are better understood as vectors embedded 

on a spatial grid [80].  

The Conv_LSTM components perform to establish the future state of a particular cell in the 

spatial grid by incorporating both inputs and historical states of its neighbouring local cells.  

This operation is achieved by applying a convolution operator during the input-to-state as well 

as the state-to-state transitions as seen in the main equations of a Conv_LSTM shown in (eq. 

1) below, where the convolution operator is denoted by ‘∗’ and, the Hadamard product 

denoted by ‘◦’: 

     𝑖𝑡 = 𝜎(𝑊𝑥𝑖∗𝑋𝑡+𝑊ℎ𝑖∗𝐻𝑡−1+𝑊𝑐𝑖 0 𝐶𝑡−1+𝑏𝑖)                                  (1.a) 

    𝑓𝑡= 𝜎(𝑊𝑥𝑓∗𝑋𝑡+𝑊ℎ𝑓∗𝐻𝑡−1+𝑊𝑐𝑓0𝐶𝑡−1+𝑏𝑓)                                   (1.b) 

   𝑐𝑡=𝑓𝑡𝑂𝐶𝑡−1+𝑖𝑡 𝑂tanh (𝑊𝑥𝑐∗𝑋𝑡+𝑊ℎ𝑐∗𝐻𝑡−1+𝑏𝑐)                               (1.c) 

   𝑂𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜𝑜𝑐𝑡−1 + 𝑏𝑜)                             (1.d) 

   𝐻𝑡 = 𝑜𝑡𝑂 tanh (𝐶𝑡)                                                                         (1.e) 



10 
 

 

Figure 1: Internal Structure of Conv-LSTM 

Initial features fed as inputs to a  Conv-LSTM block, X , form a tensor whose shape is defined 

by the number of timesteps under consideration and the number of channels(T)  present in 

the initial input data ( 𝑁𝑐) as well as the height and width of the blocks inform of rows and 

columns defined by (𝑁𝐻 and 𝑁𝑊). 𝑋𝑡 defines the input at the tth time-step. This gives the shape 

of the tensor to be  (T, 𝑁𝐻, 𝑁𝑊, 𝑁𝑐). The output dimension shape of a Conv-LSTM block is 

similar to the input, though the number of channels is defined by the number in the convolution 

layers).  Figure  2 shows the structure of a Conv_LSTM subsequent.  In general, Conv-LSTM 

lattices apply convolution operations to the outputs of previous convolutions and  by doing 

this, subsequent Conv-LSTM blocks successively extract  and identify more hidden and  

complex relationships in data compared to  previous Conv_LSTM blocks .  

 

 

Figure 2: Operation Model structure of a Conv-LSTM model 

Authors In [76] Implement modelling for traffic flow using Conv_LSTM by structuring a number 

Conv_LSTM units to learn traffic spatial temporal features. The first Conv LSTM unit handles 

input traffic flow features while creating a hidden state at every time step and continues to 

feed the features into spatial attention convolution layer. Furthermore, a second Conv_LSTM 
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is placed to learn inherent spatial- temporal dynamics passed from the attention convolution 

unit. In [81], they developed a traffic demand forecasting structure basing on Conv_LSTM.  

Their structure treats historical travel demand data as a video series stream, and then employs 

a Conv_LSTM model to forecast demand. They efficiently used Conv_LSTM considering both 

spatial and temporal features during prediction and the process was effective. In [82], [83] 

authors present modifications to Conv_LSTM that would improve capturing both global and 

local dependencies in traffic data, thus supporting the long-range prediction of traffic 

conditions, they implemented this approach on traffic sensor data and their structural model 

proved effective.  Only a few studies have studied Conv_LSTM model tor traffic related studies 

with the most application to traffic demand [27]. Very little research has been done in the 

application of Conv_LSTM to traffic flow prediction. This research sets out to organise vehicle 

trajectory data and implement a Conv_LSTM model for traffic flow prediction for the city of 

Singapore.  
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3. STUDY AREA AND DATASET 

3.1 Study Area 

We chose the city of Singapore as our case study area; it is located southern of Malaysia 

which is the most southern part of  Asia. In particular, we undertook this research for the capital 

city of Singapore. Being a small city, it is densely populated with its population density 

estimated to be about 7800 inhabitants per square kilometre [84]. The continued economic 

growth in Singapore has triggered a lot of economic activity characterised by increase in 

movement and population all of which point to increase in travel demand [85]. Traffic 

authorities in Singapore identified that privately owned cars are the major contributors to traffic 

congestion events on city arterial roads during day peak hours. It is evident that slow traffic 

flow in most cities is experienced during peak movement and thus we take Singapore to 

predict traffic flow with approaches that can be implemented to other cities in the bid to manage 

urban traffic. 

 

Figure 3: Study Area-Singapore city 

 

3.2 Dataset  

We used the Grab-Posisi taxi trajectory dataset containing about 80 million observation 

records spanning over 1miilion km of travel length covered [86]. Grab Posisi is a taxi company 

operating in Singapore. The GPS trajectories are collected from Grab taxi drivers’ gadgets 

while in operation transit. Each trajectory is labelled with a trajectory ID, and for every ID 

attributes like coordinates, speed, timestamps are captured.  The temporal range of the data 

is two weeks starting form 8th April 2019 to 22nd April 2019 and includes a total of 84000 

trajectories.  
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Figure 4: Dataset extent 

For this research, we chose a (6kmX6Km) bounding box centrally to the capital of Singapore 

to carry out our analysis for prediction. For all the dataset temporal range, we extracted 20000 

trajectory events that took place within the bounding box in figure (6).  
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4. METHODOLOGY 

This chapter describes the methodology we implemented following a three-phase approach 

shown in figure (5) to stimulate the exploration of traffic flow patterns from exploiting pre-

processed large-scale vehicle trajectories and subsequently undertaking modelling for traffic 

flow prediction. In phase one, we describe the activities of data processing and transformation 

that improve the data quality for both traffic pattern analysis and traffic prediction. The second 

step includes activities for traffic pattern analysis and the final step involves activities done to 

predict traffic flow. 

 

Figure 5: Methodology workflow 
 

4.1 Phase 1 - Data Processing. 

 

Python software and Quantum GIS (QGIS) were used to perform preliminary data pre-

processing on the trajectory dataset. Major functions done in the python environment were to 

facilitate improving of data quality by analysing primary variables and datatypes in the dataset 

as well as identifying and removing missing redundant values. Quantum GIS facilitated study 

area exploration, selecting, and clipping to study area. 
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4.1.1 Grid Generation and Spatial Aggregation:  

 
For the bounding box defining our study area, we created a 100X100m grid over the study 

area to facilitate the spatial joining of the road network and the GPS trajectories (Figure 7). 

This was done to infer the trajectory data to their relative road position, the result is that the 

trajectory data was joined to the grid cells intersecting the road network. This helped to 

overcome the tiresome map matching process for over 12 million data records. Thus, grid cells 

were made to contain GPS points if any trajectory event happened in that grid-cell. The points 

were all related to centre the grid cell whose centroid coordinate was stored as a geohash 

code that we later decode or encode at given points of data processing.  

Using the QGIS “join attributes by location” tool, we performed a spatial join between the grid 

layer and the GPS points basing on the intersection rule. The GPS points were assigned the 

centroid coordinate of the gird to which they belong, and this facilitated proceeding spatial 

aggregation of the traffic data. Given that every GPS point has a timestamp, we performed 

spatial aggregation for every cell to aggregate and resample the vehicle trajectories into time 

intervals of 15 mins, 30mins and 60 minutes for every date that a trajectory event happened 

in the grid cell. The result formed our primary traffic data in specific timesteps with their 

average speeds.   

 

Figure 6: Raw Trajectory Data 
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Figure 7: Spatial grid creation over trajectory data 

 

4.1.2 Exploratory Data Analysis 

 

Exploratory data analysis was carried out to gain more insights about the data, especially 

finding outliers. As we can see in figured 8, we encountered a high frequency of zero speed 

values, the zero values are because of vehicles stopping at traffic lights or at the end of 

journey.  we investigated to eliminate all zero speed values observed at the end of each trip. 

Also, as we can see that there were  several negative speed values, all these were eliminated 

from the dataset as we could not identify the cause of the negative values. Overall, the speed 

values in the dataset seem to form a normal distribution meaning that not so many values are 

varying from the mean speed values. We also analysed correlation between variables in the 

dataset ( see Annex 9.2)  and not much correlation was observed between the variables. 

 

Figure 8: Distribution of speed values 

4.1.3 Traffic Data Engineering:  

 

This phase involved data scaling and feature creation.  Data scaling was done to normalise 

speed values to lie between 0 to 1 using the formular in Equation 2. The timestamp variable 
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was further exploited to extract more features such as hour, day of week, weekends and  

holidays so as aid more focused analysis. Furthermore, we also transformed the time, latitudes 

and longitudes into normalised forms thus creating variables that suit the modelling process. 

We finally transformed the data into a matrix, and this formed our traffic dataset for the traffic 

pattern analysis and modelling stage.    

𝑍𝑖 =
𝑥𝑖−(min (𝑥)

max(𝑥)−min (𝑥)
                                             (2) 

Where, 𝑍𝑖  is the new normalised value, 𝑥𝑖  is the original variable value, min (𝑥) and 

max(𝑥)  are the minimum and maximum values of the entire variable under consideration.   

4.2 Phase 2 - Traffic Pattern Analysis 

 

The aim of this analysis is to identify spatial-temporal dynamics embedded in the dataset. 

Using python software, we set out to investigate traffic patterns at varied time scales to analyse 

how traffic patterns evolve over time in different locations of the study area. Using focused 

data manipulation and computations, we produced visualisations showing traffic behaviour at 

different times of the day in different locations. We also investigated to see if traffic patterns 

are the same across the days of the week. Using heat map analysis, we were able to visualize 

which areas experience traffic slowness at any time of the day. One of our goal was to 

investigate spatial autocorrelation and temporal autocorrelation in the traffic data, this  allowed 

us to ascertain whether traffic patterns on a given section share dependencies with patterns 

on neighbouring routes. The spatial autocorrelation was computed using the Global Moran’s I 

spatial autocorrelation tool in ArcGIS software.  The tool concurrently considers both the 

location and feature values to measure spatial autocorrelation, see equation (3).  Given a set 

of variable elements and related attributes, the tool investigates to ascertain if the existing 

pattern in the features is random, clustered, or dispersed. Important insight is gained from 

analysing the output values of the Moran's I Index, the Z-score value and the p-value which 

tell much about the significance the statistic. We analysed spatial autocorrelation for the thirty- 

minute and one-hour average speed variables.  

𝑙 =  
𝑁

𝑆0

∑ ∑ 𝑤(𝑖,𝑗)(𝑥𝑖−𝑥)( 𝑥𝑗−𝑥)𝑁
𝑗=1

𝑁
𝑖=1

∑ (𝑥𝑖−𝑥)2𝑁
𝑖=1

, 𝑗 ≠ 𝑖                (3)                                            

where 𝑥 is the mean of 𝑥𝑖  and 𝑤(𝑖, 𝑗) is the connectivity spatial weight between i and j. 

Since traffic prediction is a time series problem, we took on to assess if average speeds in the 

datasets are correlated with previous values. We examined the statistical significance of 

temporal autocorrelations contained in the dataset. The standard Autocorrelation Function 
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(ACF)  was applied to derive graphs depicting the  level of  autocorrelations between traffic 

flow speeds with lagged values at previous time-steps.  The Autocorrelation Function 

computes and plots  the mean correlation for varied lag length between time series dataset 

points and previous point values [87]. Given a time series analysis;  y1, y2, y3, y4, y5…....yt at 

a point under consideration,  the autocorrelation of lag k is derived by equation (4) below. 

       𝜌(𝑘) =  
𝐸[(𝑌𝑡−�̅�)(𝑌𝑡+𝑘−�̅�)]

𝜎𝑌𝑡𝜎𝑌𝑡−𝑘
 𝑘 = 0, ±1, ±2, … …                                           (4) 

Partial autocorrelation (PACF) was also examined, its similar to the standard autocorrelation  

though varies in such a way that it  considers the influence of correlation between immediate 

observations  in a time series. Given 𝑌𝑡  and 𝑌𝑡−1 observations in a time series, the Partial 

Autocorrelation Function is given by equation (5): 

      𝜌𝑌(𝐾) =
𝐶𝑜𝑣([𝑌𝑡|𝑌𝑡−1,𝑌𝑡−1 , … . , 𝑌𝑡−𝑘+1],[𝑌𝑡−𝑘|𝑌𝑡−1,𝑌𝑡−1, … . . , 𝑌𝑡−𝑘+1])

𝜎[𝑌𝑡|𝑌𝑡−1, 𝑌𝑡−1, … . , 𝑌𝑡−𝑘+1]𝜎[𝑌𝑡−𝑘|𝑌𝑡−1,𝑌𝑡−1,….,𝑌𝑡−𝑘+1]
                                 (5) 

4.3 Phase 3 - Modelling for Traffic Prediction 

 

The prediction process was implemented using Keras API and tensorflow in python software. 

Due to the high computation involved with modelling process, we conducted the modelling 

and training processes in  google collaboration cloud platform which is a platform that provides 

free computational hardware such as high performance GPUS and TPUs. The following 

highlights form the overall prediction process;  we can see in figure 11 that processed traffic 

plots are reshaped and passed into the model at the input phase. The model is tuned to 

observe six (6) hour traffic data (24 consecutive plots, representing 15minutes interval for a 

6hour period) and then finally predicts the next fifteen-minute traffic data  thus giving predicted 

traffic images for a given space and time.  The model’s performance is finally evaluated using 

some renown evaluation metrics for traffic flow prediction. 

4.3.1  Plotting  Traffic Data into Space Time Images 

 

This phase demonstrates preparation of initial inputs for the prediction model. We translated 

traffic data into space time images were average traffic speed values are characterised by 

gradation colours showing the spatial intensity of the values for each 15-minute timestep of 

every day. The heatmaps are generated to represent the spatial dimension and temporal 

dimension of the traffic data for each day (Figure 9). The spatial dimension is in this case a 

graph depicting the spatial intensity of the average speed values using the same color-scale 

type to represent the hierarchy of the traffic data. The temporal dimension represents the 

timestep for which each is plot is generated. Given that we considered 6 hours, 24 images are 
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generated to represent the fifteen (15m) minute interval across one day. All geohashes (only 

those traversed by road segments), were decoded to come up with a total of 47 unique 

latitudes and 54 longitudes. This facilitated the resultant plotting of 47X54 grids of traffic 

average speed data. The plots are initially split by day and corresponding timesteps, thus, for 

a given day and each geohash 47X54 grids traffic data plots are created. The traffic dataset 

was split using a portion 80% as training data and while using 20% as test data.  A visualisation 

traffic data maps is shown in figure (10) below.  

 

Figure 9: Spatial and temporal dimension of heatmap 

 

   

Figure 10: Example of traffic images 

   

4.3.2 Encoding - Predicting Structure 

 

The Conv-LSTM can be deployed differently to design a building block for varied prediction 

complex structures but for this particular spatiotemporal sequence traffic forecasting scenario, 

we applied the structure described in section 2.6.  In the Conv-LSTM, intuitive features are 

extracted as feature vectors by CNN's potent feature extraction capability, while the LSTM is 

applied to replace the pooled layer usually used in the traditional CNN model to perform traffic 

prediction. The structure consists of both the encoding network and prediction network that 

are all made by stacking several convolutional layers. Similar to the approach employed in 

[88], the forecasting network copies its first states and cell outputs from the last state of the 
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result of the encoding structure. As our goal is to have the prediction output in the same 

dimensionality as the input features, initial input layers are stacked by the convolutional LSTM 

models and finally apply a three-dimensional (3) convolution (Conv3D) to produce the 

expected output layer. Throughout the encoding and prediction process, the LSTM captures 

temporal patterns and dynamics embedded in the traffic data, while the convolutional 

operation facilitates the extraction and inclusion of spatial dependencies embedded in the 

traffic patterns.  

The performance of the Conv-LSTM was enhanced by applying the batch normalization 

method. Batch normalisation implements a normalization and regularization effect and so we 

applied it at every layer transition. Since Conv-LSTM has few parameters requiring less 

regularization, we did not use dropout. Due to the spatial relations encoded in feature plots or 

maps, activations can become highly correlated thus rendering dropout ineffective. The 

resultant model is a 4 layered 2D Convolutional LSTM each having 32 filters, with batch 

normalization after each layer. The model gives an output layer as a Convolutional 3D layer, 

producing traffic plot predictions in a similar format as input 96 x 47 x 54 x 1. 

4.3.3 Tuning Model Hyperparameters:  

 

Hyperparameters are cognizant parameters whose values influence the learning process that 

would have an impact on the result of the model. Hyperparameter tuning is  essential for 

achieving best model performance on a given dataset [89]. In implementing the Conv_LSTM 

model, we explored a combination of different hyperparameters while analysing the 

performance results. This was done to achieve a suitable combination of hyperparameters 

that would simulate the learning process to enable us achieve good accuracy for the prediction 

task [90]. For our modelling framework, major hyperparameters tested include; The kernel 

size, learning rate, filters, batch size and number of layers, (see table 1). Setting the 

hyperparameters is done by tuning and interacting hyperparameters while measuring what 

performance accuracy can be earned by tuning it. The hyperparameters are manually tuned 

or rather adjusted while trying different hyperparameter combinations in machine learning 

platforms which in our case was TensorFlow with Keras API’s .  The hyperparameters that 

showed substantial impact on the training process and are easily tuned to our prediction goal 

were selected and implemented as final hyperparameters for our final model. In table (2) we 

give a summary of hyperparameters values as well as the performance values.  

As a strategy to improving model performance, we tried adding more filters as well layers. 

Adding more filters aids the detection of more features embedded in the inputs thus helping 

to capture more traffic flow patterns in the road networks. So, we increased filters from 32 to 

64 to see if there is improvement in the model prediction performance. Also, increasing more 
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layers was a strategy to aiding the extraction of abstract information from the traffic data, 

though in our implementation using more layers and filters showed no noticeable influence on 

the prediction performance as each accuracy results were almost the same. So, we finally 

used four layers.   

The Kernel size depicts the width and height of the convolution window, adjustments to 

increase the kernel size facilitates the observation of hidden information in Conv_LSTM blocks 

(grids). We tested both the 5*5 and 3*3 kernel size in the performance to see if this would 

improve our prediction performance. Both kernel sizes showed almost similar results and thus 

we used a 3*3 size as being sufficient for our model.  

 

Hyper Parame-
ters 

Value 

Number of Layers 3 & 4 

Kernel size (3,3) & (5,5) 

Filters 32 &64 

Learning rate 0.001 

Batch size 2 

Table 1 Hyperparameters Tested. 

 

No.  Kernel size Layers Filters Batch 
size 

Learning 
Rate 

Accuracy 
% 

1 3*3 3 64 2 0.001 94.83 
2 3*3 4 64 2 0.001 94.8 

3 3*3 4 32 2 0.001 94.88 
4 3*3 3 32 2 0.001 94.75 

5 5*5 4 64 2 0.001 94.78 
6 5*5 3 32 2 0.001 94.89 

7 5*5 3 64 2 0.001 94.8 
8 5*5 4 32 2 0.001 94.83 

Table 2 Showing hyperparameters combinations and accuracies achieved. 

We employed Adam as the optimization function while maintaining its learning rate for all the 

model hyper tuning. Recent studies assert that Adam optimizer exhibits powerful performance 

in accelerating model performance. Since optimizers together with their learning rates are key 

to achieving good prediction results, we maintained Adam as the optimizer. 

4.3.4 Performing Traffic Prediction  

 

The plotted  space time images gave a total of 24 images for each day (24 distinct time steps) 

and a total of 120 plots over 5 days. This forms our dataset for the prediction process and 

dividing it into 80% as training set and 20% as testing set. These traffic images (plots) are 
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then packed into 24 consecutive plots per training sample, meaning for every training sample 

is the tensor shape is given by 24 x 47 x 54 x 1 (24 consecutive traffic flow images in a single 

channel). They were then propagated to the Conv_LSTM neural network to train the model for 

precedent prediction of next plot see figure 11. 

Given a time T, the prediction approach we are implementing is utilizing the model to predict 

the traffic flow plot or pattern at T+1, in the event that its input data is comprised of 24 previous 

traffic plots (T-23 to T, equivalent to 6 hours day's data in 15-minute intervals). Using the input 

data, the model should predict T+1 plot. Next, the T+1 traffic plot is added to the input dataset 

and we remove the T-23 plot. The resultant input data is then applied to predict the T+2 (the 

next 30 minutes)  traffic flow plot. The process is then repeated until T+4 is predicted.  Figure 

11 below gives a simpler visualisation of how we achieve our prediction results after space 

time traffic plots are fed into the neural network. The operations to perform prediction are as 

explain in section 2.5.  

 

Figure 11: Workflow for implementing traffic prediction.  

 

4.4 Prediction with Different Models 

 

In order to analyse the performance of the Conv_LSTM model, we chose three statistical 

model algorithms and one neural network to act as comparison bases for our proposed model. 

The statistical algorithms include  Random Forest (F), Linear regression(LR) and 

XgBoost(XGB) while the neural network includes Convolutional Neural Networks. Random 

forest (RF) performs  predictions based on individual decision tree branches, each tree makes 

a class prediction vote  and predictions are achieved from the class having most votes [91]. 

Linear regression (LR) analyses the relationship between variables( response and explanatory 

variables) and performs predictions by making linear approximations [92]. Xgboost (XGB) also 

referred to as Extreme Gradient Boosting creates new weaker models and successively 

integrates their predictions to improve model performance [93].  Convolutional neural networks 

(CNN) architectures comprise a convolution layer, pooling layer and fully connected layer and 

these form a unique framework for extracting critical features in data [94]. The CNN was 

autotuned to get best model hyperparameters while for the statistical methods appropriate 

Conv_LSTM 

47x54x1 47x54x1 
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parameters were defined for better model performance. We performed  Linear regression,  

number of estimators used for the random forest regressor were 50,  while we used a number 

of 30 estimators for the Xgboost regressor. We applied testing data  to all comparison models 

and results from the prediction processes were recorded inform of accuracy measures of 

Mean Squared Error and Root Mean Squared Error. 

4.5 Model Evaluation 

 

In [95], [96] they mention that the standard evaluation metric for traffic prediction are Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE). Most studies assert that RMSE 

is the standard metric for forecasting model errors [97]. This study only used MSE (Mean 

Square Error) and RMSE as basis for evaluating our model performance. The RMSE can be 

described as the square root of the mean of the squares of differences between actual and 

predicted values.  The MSE and RMSE error evaluations are good measures of accuracy that 

help to tell how well the model can predict a given aspect.  

                                                    𝑀𝑆𝐸 =
1

𝑛
∑ |𝑒𝑖|

𝑛
𝑖=1                                                                                 (6) 

                                                              𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑖

2𝑛

𝑖=1
                                                                    (7) 
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5.   RESULTS 

This chapter presents results obtained from implementing our methodology workflow. The 

source code for works implemented in python software can be found here.  

5.1 Traffic Pattern Analysis 

 

5.1.1 Spatial Autocorrelation Investigation 

 

Spatial autocorrelation was investigated for one hour aggregated average speed (AvgSPD60) 

and thirty-minute aggregated average speed (AvgSPD30). Results for the Global Moran´s I 

statistic show a statistically significant Moran´s index  that is equal to 0.447236 and 0.0.532554 

for the AvgSPD60 and AvgSPD30 Variables, respectively. A  P-value = 0.000000 and 0.00000 

for AvgSPD60 and AvgSPD30 respectively is lesser than the accepted 0.05 alpha level which 

shows that the spatial autocorrelation is statistically significant for both temporal intervals. 

   

Figure 12: Spatial autocorrelation analysis 

          

The resultant Z-score = 24.732706 and 84.244442 for the AvgSPD60 and AvgSPD30 

respectively that are greater than +1.96 indicate the presence of a clustered pattern for the 

traffic flow speeds. A p-value can represent the probability of having the observed spatial 

pattern to be random, therefore, a P-value = =0.000000 and 0.0000 for AvgSPD60 and 

AvgSPD30 respectively that is lower than the accepted alpha level of 0.05 is considered low 

meaning that there is a low probability that the observed spatial pattern is random which 

justifies the existence of a global cluster of the traffic flow speed variables in the study area.  

With the resultant p-values, we may conclude that there is a 95% confidence level to reject 

the complete spatial randomness hypothesis and that the spatial distribution of the AvgSPD60 

and AvgSPD30 is not created by random spatial process. These results indicate that there is 

https://drive.google.com/drive/folders/1aVoKut5XqTw0msdSsyxuqYrjl8d8UtcH?usp=sharing
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a high degree of spatial dependence of traffic flow speed across the study area and this proves 

that across different times of the day, there is spatial dependence in traffic patterns across 

road networks.  

5.1.2 Temporal Autocorrelation Investigation 

 

Basing on a fifteen-minute interval of aggregated traffic data, temporal autocorrelation in the 

dataset was analysed. The relationship between one observation and fifteen minutes prior 

was tracked across the whole traffic dataset. The resultant correlation in the data is plotted as 

bar charts between +1  and -1. Looking at figure(13) in the autocorrelation curve, statistically 

significant observations are above 0.2.  We can thus see at the start that there is a statistically 

significant positive autocorrelation to a time lag of about 20 minutes. The Partial auto 

correlation graph also shows that there are statistically significant relationships for a lag of 

upto  1,2,3 and 4 (four) periods. This indicates there is temporal autocorrelation embedded in 

traffic patterns across the different day time intervals. 

 
Figure 13: Showing Autocorrelation and Partial Autocorrelation in dataset 

 

5.1.3 Spatial Temporal Analysis 

 

Figure 11 shows hourly time of day and week-day variations of traffic patterns across the road 

network. During working days (day 1-5, and day 8-12) starting from 8:00- 22:00, we can 

observe low speed patterns across all days. Severe congestion patterns can be observed at 

in the rush hours for example between 7:00 to 10:00 morning period and 17:00 and 19:00 



26 
 

evening period with flow speeds dropping significantly. The patterns on weekends vary 

especially on Sundays for Day 7 and Day 14 were we see an increase in speed across the 

day hours compared to other days. Day 12  was a public holiday on Friday  and therefore we 

see less congestion compared to other days. Fridays and Saturdays do not vary much from 

other normal working days which could mean that most people like to rest on Sundays.  The 

traffic patterns observed during day hours indicate that movement speeds are highly 

influenced by daily commuting behaviour of the population. Figure (15) shows the maximum 

speeds observed across days and there is no significant variation in daily maximum speed 

observed. This could be due to speed limit guidelines in the study area. High flow speed 

patterns can be seen in early day mornings beginning the hour of mid night to about 6:00am. 

 
Figure 14: Day hour heatmap 

 

 
Figure 15: Box plot showing daily average speeds. 

 

Figure 15 is a box plot showing average daily traffic flow speeds across the road network. The 

box plots showing many outliers for given days and big interquartile ranges in speed 

observations indicate that there can be extreme variations in traffic flow speeds not only in 
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different times of day but also total aggregated daily speeds. The variations could be as a 

result of changes in the road network such as road accidents, big events, or weather.   

With insights given from figure (11&12), we went ahead to investigate location traffic patterns 

by hour. We try to observe how traffic patterns evolve across the study area by analysing 

spatial distributions of average speeds at midnight (00:00), mid-day (12:00) and evening 

(18:00) as shown in figures (1.2.3. respectively). We used the aggregate traffic speed for all 

the days considered in the study.  

    

(a) 00:00 Hour                               (b)     12:00 Hour                                             (c) 18:00 Hour 

                                         Figure 16: Traffic spatial distribution at different times. 

From Figure 16 we can see that the slowest speeds are experienced in the evenings almost 

across the wholes study area. Congestion levels are more pronounced in the evening hours 

than in the afternoon hours. The slow speeds seem not  to be evolving from a given point, this 

shows that the is some degree of spatial connectivity in the study and that people may have 

the same travel behaviour across locations. Though in Figure 16 a.  we can see a relief in the 

traffic speed, we also learn that congestion levels can extend past normal commuting hours. 

This gives insight into how congestion evolves in urban areas and it could guide precedent 

traffic measures.  

5.2 Traffic Modelling and Prediction  
 

During the training process, we tried a set of hyper parameters and for each set we recorded 

the resulting metrics. We Increased the number of Conv_LSTM layers and Kernel size to allow 

more extraction of features though results after every implementation was the same.  The 

resultant model is a 4 layered 2D Convolutional LSTM each having 32 neurons, with batch 

normalization after each layer. This is because it showed a lot of stability in learning the input 

features see table 2 . 

The prediction process was to predict traffic flows at T+1 which is next 15 minutes as well T+2, 

T+3, T+4, which is in the next 30 minutes, 45 minutes, and 60 minutes time respectively from 

the first instance using 15-minute aggregated traffic data. The prediction was performed for a 



28 
 

time period 6:00am to 12:00pm giving us 24 timesteps. Prediction performance of the model 

yielded promising results as we can see in table 3,  but most noticeable is that the prediction 

performance of the model decreases as prediction time interval increases.   

Time T MSE RMSE 

T+1 (15 minutes ) 0.0189  0.1375  

T+2 (30 minutes ) 0.0281  0.1677  

T+3 (45 Minutes)  0.0284 0.1685  

T+4 (60 minutes)  0.0288 0.1687 

Table 3: Prediction Results 

 

 

Figure 17: A Plot  for MSE prediction  results 

 

 

Figure 18: A Plot  for RMSE prediction  results 

As the model performs prediction, when the time interval goes from T+1 to T+2, which is 

predicting the next 30 minutes, the MSE increases from 0.0189 to 0.0281, and the RMSE 

increases from 0.1375 to 1.677. Thereafter, we see the MSE increase in the next interval from 

30 minutes to 45 minutes where the MSE increases by 0.0003 and the RMSE increases by 

0.01 similar observation is observed between the 45 minutes and 60 minutes interval.  
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            Figure 19: Actual and predicted traffic flow images 

The model performs very well for the first instance (T+1). The model works by predicting T+1 

future plot, and then the predicted plot is fed back into the model to predict successive plots 

in the next time intervals. This model method gives an accurate result at T+1 which is in this 

case is next 15 minutes, but the accuracy gradually reduces as it makes prediction at next 

T+1 

T+2 

T+3 

T+4 

Traffic predictions at T+1 
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time intervals. This is due to the fact that the MSE and RMSE errors get amplified for each 

prediction iteration as predicted plots are re-fed into the prediction process. 

Figure 19 Shows resultant traffic flow plots, all images both predicted and actual are plotted 

to a similar hierarchical scale color scale. we can see the predictions accuracy gradually 

reduce as we predict up to T+4. Looking at plot T+1, the results are promising for predicting 

traffic flow. Regions were we see low traffic speeds predicted are at the central part of the 

study area that in the preliminary findings we saw that those areas experienced low speeds 

especially in morning hours which in this case  T is at 6:00am. The model was trained using 

five-day data, if the model is trained with more day data, the model would achieve even more 

great results especially at T+1. 

5.3 Comparison with Other Models 

 

Here we compare results obtained from the Conv_LSTM model with other models: With the 

Conv_LSTM, we considered both the spatial and temporal aspect, here we compare with 

models that predict traffic flow without accounting for both spatial and temporal characteristics. 

 

Time T MSE RMSE 

Conv_LSTM 0.0260  0.161  

CNN 0.0289  0.168 

Random Forest 0.0293 0.1712  

XGboost 0.0330 0.181  

Linear Regression 0.0335 0.183 

Table 4: Model comparison results 

 

 

Figure 20: Comparison of models (MSE). 
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Figure 21: Comparison of models (RMSE) 

 

Table 3 gives an overview of results from predicting 15minutes traffic flow by using other 

prediction algorithms. The CNN models the spatial component to some extent, and It can be 

seen that CNN MSE value of 0.029 is quite close to the MSE of the Conv_LSTM (0.026). The 

CNN too has a lower RMSE compared to other algorithms. The second-best algorithm that 

achieves an MSE of 0.029 is Random forest., we completely ignored the spatial component 

as it’s really hard to work with the random forest algorithm. Linear regression and xgboost 

achieved the lowest accuracy with their MSE’s at 0.0335 and 0.0330.  respectively. We can 

conclude that CNN too outperformed the other parametric algorithms, and with proper hyper 

parameterisation it could achieve even better results. Overall, the Conv_LSTM outperformed 

all the comparison algorithms achieving MSE and RMSE values of 0.026 and 0.161 

respectively. This shows that the inclusion of spatial dependence in traffic modelling improves 

model performance. 

 

 

 

 

 

 

 

 

 

 

 



32 
 

6. DISCUSSION 

6.1 Discussion 

 

To recap the research questions formulated for this study, they include; How can we quantify 

spatial temporal patterns embedded in trajectory traffic data? How can we develop traffic flow 

prediction models by considering both spatial and temporal dimensions of traffic data? How 

can we assess the significance of integrating traffic spatial features on model performance? 

The results obtained from this research provide resourceful answers to the questions. 

The exploration and analysis of traffic flow spatial temporal patterns enlightened us about 

spatial and temporal dependencies in traffic data. Results from performing spatial 

autocorrelation investigation by using inclusive average speed variables of 30minutes and one 

hour aggregation achieved p-values less than 0.05 indicating existence of spatial 

dependencies in the road network. This affirms that patterns embedded in traffic data 

observations (trajectories) are  as a result of underlaying spatial processes inherent in the 

road network. Analysis of temporal autocorrelation achieved statistically significant positive 

autocorrelation to a time lag of about 20 minutes. This means that for a given  scenario were 

traffic congestion is increasing at a given location, there is high probability that the congestions 

will continue to increase for the next 5 minutes, and slightly high probability in the next 10 

minutes all the way to 20 minutes. Authors in [32] studied the autocorrelation structure of traffic 

across day periods especially across different peak and non-peak hours and results showed 

that traffic patterns vary in each time periods and this is indicated by the ACF and PACF 

graphs were we see positive and negative statistically significant autocorrelations.  

The spatial-temporal patterns observed in the analysis are dynamic and vary both in space 

and time across the study area and this can be attached to the daily human behaviour in 

making travel decisions [20]. Though the study showed that traffic patterns are almost the 

same during peak hours, traffic patterns during mid days slightly vary and this can be linked 

to the population being busy with work. It is evident in figure 16.b that the city of Singapore 

experiences severe congestion during evening peak hours, Singapore’s transport website  

shows that it has put in place some traffic management systems such as road pricing as a 

way of discouraging private movements, this analysis can be used to further guide on how to 

manage or ease traffic movement. The location of road links significantly contributes to traffic 

volumes, depending on whether the links are located in the Central Business District, in 

residential areas, or just highways. The central business district will have high traffic volumes 

due to its  characteristic  high travel demand. This was also studied in [49] [60] were they 

discovered the relationships between traffic volume and street locations and results showed 

that  some links majorly contributed to hourly evolving traffic patterns.  
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This study put focus on incorporating both the spatial and temporal dimension as it is a major 

research focus in current transportation studies. Also, we had a sub goal to predict city wide 

flow since most studies model road traffic by considering a single road as a continuous 

location. Traffic studies assert that  traffic related data depicted by both  space and time 

dimensions should reciprocally be considered in predicting city-wide traffic patterns . This 

study transformed  traffic variables into matrix elements (Conv_LSTM blocks) in which the 

elements are space and time traffic data traits.  The generated space time matrix is viewed as 

a channel of images in which  every pixel inhibits a corresponding value in the matrix. The 

resultant images have M (Number of unique latitudes)  pixels width and N (Number of unique 

longitudes) pixels height.  In our case,  we had 47 unique Latitudes and  54 unique longitudes.  

M and N form the final two dimensions for the space time matrix. Using concepts introduced 

in [77] in which they design model structures to learn traffic as images, we implemented one 

of the most recent machines learning algorithms (Conv_LSTM) [78] to model traffic flow by 

developing a modelling structure that takes traffic flow space -time images as inputs to perform 

short term traffic flow. Final model selection was majorly done by selecting the model that 

showed  best hyperparameter combination and as well showed stability in learning the training 

data.  Model results are promising for predicting city wide flow especially if predicting traffic 

flow for the next one step (T+1). We got more accurate results for T+1 (15minutes prediction) 

and the prediction accuracy kept reducing in attempts to predict the next 30 minutes, 45 

minutes and so on.  Some studies have come across the same challenges for example, in [37] 

were the RMSE value increased at each next interval prediction. An alternative solution to this 

challenge would be to reprocess the training data in a way that the model can learn all four 

(T+1-T+4) future plots at once. If considering a 24-hour time step (6hours), it means that we 

will feed T-24 to T as input data, then we predict to get  results as T-19 to T+5 giving us T-24. 

This method would possibly alleviate the recurring prediction error problem. However, due to 

long modelling and training times i will could not try out the solution before the deadline.  

The model was trained with only 5 days data, increasing the temporal extent for the input data  

to the model would provide more samples for the prediction model to learn from. This would 

improve prediction performance for areas with less observation trajectory data. we observed 

one thing that the model performs best for locations having adequate trajectory observations 

for each 15minute interval across the day, in other words roads frequently traversed by taxis 

will be highly predicted compared to those with insufficient trajectory data for some time 

intervals. We take an example of “Outram road” see figure 22 below.  
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Figure 22: Frequently traversed road. 

The highted road section (Outram Road),  had trajectory data for almost all time intervals  

including late nights as well as early mornings. This shows taxis frequently use this part of the 

road network.   For all predictions conducted T+1 to T+4, the road stands out in being a 

representation of both the actual and predicted traffic values. Even as the error affected T+1 

to T+4, its traffic flow speed was predicted to some accuracy. Also, we can see that it has high 

traffic speed, it could be a major road connecting people in and out of the city centre. The city 

centre is predicted to have low speeds, and this is because we are predicting morning peak 

hours and low speeds are expected at that time. More training samples had low values for that 

time interval. Overall insights drawn from this scenario are that trajectory data can be used to 

predict Urban traffic flow and its effective in predicting frequently traversed routes. Rich 

analysis and modelling can be gained if we have more vehicles capturing trajectory data or if 

different taxi companies can come together to form a resourceful collection of trajectory data 

for all their cars thus achieving wide traffic data coverage. In our case, we were able to obtain 

data from one company as other companies do not collect trajectory data. 

The level of aggregation of traffic data may affect the level of prediction result one would get. 

As we can see in Figures 23a-b, all maps represent the same hour but due to the level of 

aggregation, the traffic patterns look different. The one-hour speed map shows great 

coverage, this is because all other intervals are aggregated to one hour and within one hour 

almost all roads have been traversed by vehicles capturing trajectory data. The 30-minute 

aggregation flow map is almost similar to the one-hour map. And this is because more 

observations are collected as the hour goes on. The 15-minute map shows very little coverage. 

Predictions in lower timeframes may experience low performance especially for roads not 

frequently traversed by taxis due to low training samples.  
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a) One-hour average speed Map                             b) 30-minute average speed map  

 

                               
b) 15 -minute average speed map   

                                                      
Figure 23(a-c):Traffic flow maps for different aggregation levels 

 

We also assessed the benefit of including both spatial and temporal features in the prediction 

process. Figure 20, 21 and table 4 demonstrate results obtained from other prediction 

algorithms when applied to the traffic data in the prediction  tasks. When applied on testing 

data, the Conv_LSTM model achieves better accuracy than other prediction algorithms, this 

indicates that the CONV_LSTM is more efficient in learning and adapting to new traffic data 

samples. A possible reason as to why LR, RF, XGB and CNN are outperformed in the 

prediction task is that they handle traffic flow speeds in a given link section as independent 

occurrences and also assume that the link speeds are self-affected. This assumption  

disregards inherent  spatial and temporal  relationships  among network links thus ignoring 

significant mutual effects of neighbouring roads or deeper traffic flow characteristics. Some 
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existing deep learning frameworks, such as;  RNN, and LSTM NN still remain inferior to 

Conv_LSTM and CNN   as they cannot amicably incorporate spatial aspects from a road 

network perspective and yet high correlations exist in most urban congestion bottlenecks [98]. 

The choice of a deep learning machine learning Neural Network algorithm for our 

implementation approach provided possibilities for (i) simultaneously processing high-

dimensional numerous time series data; (ii) handle nonlinearity instincts of the traffic data; and 

(iii) tacitly capturing both spatial and temporal correlations embedded in city traffic flow 

patterns.   

A comparison of the Root Mean Squared error (RMSE) results shown in table 4 show that the 

Conv_LSTM model outperformed other models by a small margin i.e. Conv_LSTM = 0.161, 

CNN = 0.168, RF = 0.171, LR = 0.183, XGB, = 0.181. A look at results from other traffic 

forecasting studies that aimed at modelling both spatial and temporal characteristics indicate 

that deep learning models achieve better results without varying so much from traditional 

prediction methods. For example, in [99] they employed a Deep Convolutional Neural Network 

(DCNN) to forecast traffic flow  and RMSE results slightly out competed baselines. The same 

situation is seen in [100] where their approach combines a one-dimensional Convolutional 

Neural Networks and Gated Recurrent Units (GRU) to capture space and time facets and the 

model achieved upto 11% accuracy better than the other baseline models.  

The performance of machine learning models is significantly affected by insufficient training 

samples [62], the quality of prediction results is dependent on representative input data. For 

our approach, we had a good spatial coverage, but the temporal domain had gaps as some 

time intervals had no traffic data and so our prediction results were mainly highted by roads 

that are frequently traversed by taxis considered in this study. A rich trajectory dataset with a 

temporal span of over a month for most intervals, our model performs even better for most 

road sections.  

One aspect in the performance of the Conv_LSTM  is the training time, depending on how 

many epochs you set, the Conv_LSTM takes longer time, this is because of the convolutional 

operations that perform to capture spatial and temporal patterns embedded in traffic patterns. 

The CNN and Random forest regressor take more training  time than linear regression and 

XgBoost algorithms and they achieve second - third best prediction MSE accuracy. 
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6.2 Limitations  

 

One of the limitations in this  project were to do with unsuccessful map-matching tasks, we 

managed to conduct map matching for initial attempts but as we progressed, map matching 

over 12 million observations kept on bringing errors and this made us drop some approaches. 

This is because we needed to rightly link trajectory data to segments. We opted for a grid 

generation approach such as that applied in [28] to enable a spatial aggregation between the 

road network and the data. This facilitated further data aggregations to time intervals of 

15minutes, 30 minutes, 60 minutes for analysis at those time scales. Ongoing research if 

successful with big data map matching, can similarly implement our approach for traffic 

prediction though data reduction techniques should be applied to improve input training data 

quality. 

There are several open-source trajectory datasets most of which are over 5 years. Though 

these datasets have significantly supported initial transport related studies, they had  many 

gaps especially to do with low sampling rates. Present day trajectory data capturing produces 

more enriched trajectory data with sampling rates of up to one second, however, these 

datasets are not freely available. Attempts to getting more comprehensive datasets were 

fruitless, we were able to acquire a trajectory dataset with a high sampling rate but spanning 

only two weeks. More temporal coverage of traffic datasets would give better intuition of traffic 

patterns and traffic tasks. Also, more access of trajectories would enable testing our model on 

other cities to further eulogise the performance of our model . While there is a huge amount 

of traffic data collected daily by different parties, limitations lie in accessing this data. 
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7. CONCLUSION AND FUTURE WORKS  

This research performed short- term traffic flow forecasting by using a modelling approach 

that extracts both spatial and temporal traffic patterns from the traffic data to model traffic flow. 

A four-layer Convolutional LSTM structure was achieved and to the urban traffic prediction 

problem, the Conv-LSTM provides the following potent properties: (a) convolutional operations 

aid the automatic extraction of spatial-temporal traffic patterns thus bypassing manual feature 

extraction; and (b) inputs to the Conv_LSTM represents city wide traffic information inform of 

high-level space time images that are employed to perform traffic flow speeds predictions for 

a wide road network, thus enabling prediction for various road at once instead of  handling 

one road link at a time. Model results gave promising contribution in efforts for traffic flow  

prediction especially for the immediate time step (T+1). We got more accurate results  for T+1 

(15minutes prediction) and though prediction accuracy keeps reducing in attempts to predict 

the next 30 minutes, 45 minutes and so on. Overall, the model achieved  the best prediction 

accuracy. In comparison to other models such as, CNN, RF, XGB and LR results show that 

the Conv_LSTM model out-performs  other models and as we can see in table 4 there is 

accuracy  promotion in both prediction accuracy, MSE and RMSE. This shows that the 

incorporation of both spatial and temporal characteristics significantly improves urban traffic 

prediction accuracies.  Furthermore, the exploration of traffic patterns revealed that there are 

strong spatial and temporal autocorrelations in road network traffic patterns, and that these 

autocorrelations vary across different day time periods. 

The proposed model implemented in this study can be applied to other cities though its 

important that the model be trained with traffic data specific to a given city as different cities 

have different traffic patterns. It is important to note that traffic patterns have considerable 

relationship with prevailing urban growth and development rates. Depending on whether urban 

growth is slowly or highly increasing, it would affect prevailing traffic patterns. For example, 

today a city may be experiencing peak movement by 9:00am, but in the next months,   peak 

movement may begin by 7:00am; it is important to keep on training the model depending on 

how traffic patterns change so as achieve accurate prediction results  for a given season. 

While this study tried to predict traffic flow, there is need to research more about some aspects 

related to our model approach. Such as: 

1. The grid size chosen for this research was a 100x100m grid, grid size influences the 

level of aggregation. We used a 100X 100m grid to minimize the generalisation of the 

traffic data. There is no clear literature about appropriate grid sizes for aggregating 

traffic data and so more research would guide on how best to select grid size thus  

improving traffic prediction efforts. 
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2. The issue of considering network topology in traffic prediction is still a hurdle. Though 

some studies are trying to do it, they are not explicitly doing it. It may involve some 

mathematical modelling other than machine learning. We tried it to some extent though 

it was so complex. The integration of both mathematical modelling techniques and 

machine learning techniques would provide for topology analysis and modelling  in 

traffic flow forecasts. 

3. The other issue with the approach used in this study is that it does not account for road 

hierarchy, this may be considered to be under network topology. For example, some 

cities have flyover interlinked road networks and so analysing how each hierarchy 

performs is a great analysis for traffic improvement efforts. 

4. This study has shown the potentials of modelling traffic flow at a large-scale using 

trajectory data, today, most studies are centred on using sensor traffic data. With 

sensor data, one is limited to modelling only roads that have sensors and yet there is 

a lot of traffic transitions taking place in road networks. With vehicle trajectory data, we 

are able to get wider view of overall movement at different locations. Increase in 

interest of using trajectories would drive more organizations to collect this data thus 

driving more resourceful traffic predictions. 

5. Further, more future works can look into aspects of incorporating ancillary data such 

as (weather, holidays, events) in Using Conv_LSTM models to predict Traffic flow. 
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9. ANNEXES 

9.1 Conv_LSTM 2D structure 
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9.2 Correlation Matrix of traffic data variables 

 

 

 




