269 research outputs found

    Group method of data handling to predict scour depth around vertical piles under regular waves

    Get PDF
    AbstractThis paper presents a new application of the Group Method Of Data Handling (GMDH), to predict pile scour depth exposed to waves. The GMDH network was developed using the Levenberg–Marquardt (LM) method in the training stage for scour prediction. Scour depth due to regular waves was modeled as a function of five dimensionless parameters, including pile Reynolds number, grain Reynolds number, sediment number, Keulegan–Carpenter number, and shields parameter. The testing results of the GMDH-LM were compared with those obtained using the Adaptive Neuro-Fuzzy Inference System (ANFIS), Radial Basis Function-Neural Network (RBF-NN), and empirical equations. In particular, the GMDH-LM provided the most accurate prediction of scour depth compared to other models. Also, the Keulegan–Carpenter number has been determined as the most effective parameter on scour depth through a sensitivity analysis. The GMDH-LM was utilized successfully to investigate the influence of the pile cross section and Keulegan–Carpenter number on scour depth

    The Application of A Combined Computational Fluid Dynamics (CFD) Artificial Neural Network (ANN) to Increase The Prediction Accuracy of Sediment Grading in Subsea Pipes: A Literature Review

    Get PDF
    In recent years, the implementation of subsea pipelines for oil and gas transportation has increased. One of the important aspects of the design process of the subsea pipeline is scour prediction. Scouring causes the subsea pipeline to lose its support and is susceptible to failure due to deflection. This paper presents the result of a literature review of scouring-related research to obtain a method to increase scouring prediction accuracy. Based on the literature research, it is known that the errors found in Computational Fluid Dynamics (CFD) are mainly affected by the flow models. Existing flow models cannot fully represent the complexity of turbulent flow that occurs during the scouring process. Artificial Neural Network (ANN) can reduce the error value. But, the CFD-ANN hybrid methods can potentially decrease the error value by about 20% more than CFD. Therefore, the CFD-ANN hybrid method is expected to be a new method that could be used to predict subsea pipeline scouring in the oil and gas industry

    Application of surrogate modeling methods in simulation-based reliability and performance assessment of civil structures

    Get PDF
    Structures and infrastructure systems are subjected to various deterioration processes due to environmental or mechanical stressors. Proper performance assessment approaches capable of detecting potential structural damage and quantifying the probability associated with structural failure are required to formulate optimal maintenance and retrofit plans that minimize the risk of failure and maximize the safety of structures. However, due to the presence of several sources of uncertainty that can affect the performance assessment and decision-making processes (e.g., uncertainties associated with loading conditions and performance prediction models), applying probabilistic methods, such as Monte Carlo simulation, is essential. In this context, a large number of simulations is generally required to quantify the low failure probability associated with civil structures. Executing the required number of simulations may be computationally expensive, especially if complex and/or nonlinear structural models (e.g., finite element models) are involved. The use of surrogate modeling tools such as artificial neural networks, polynomial chaos expansion, and kriging can help in reducing the computational costs associated with simulation-based probabilistic analysis. The research proposed herein aims to develop probabilistic approaches for performance assessment and damage detection of structures using advanced simulation-based techniques coupled with surrogate modeling. The proposed methodology is applied to quantify the risk of bridge failure due to flood events considering the impact of climate change. The approach was extended to establish the time-variant flood fragility surfaces for bridges under flood conditions. This approach (a) integrates deep learning neural networks into a simulation-based probabilistic approach to predict the future river streamflow necessary for assessing the flood hazard at the bridge location and (b) simulates the structural behavior of the bridge foundation under sour conditions. In addition, the proposed methodology is used to quantify the reliability of bolted and welded steel connections by integrating finite element analysis and surrogate models. Low-rank tensor approximation and polynomial chaos kriging surrogate models are adopted to perform Monte Carlo simulation and quantify the reliability of the investigated combination connection. Finally, artificial neural networks were used to develop a statistical damage detection and localization approach capable of evaluating the performance of prestressed concrete bridge girders using fiber optic sensors

    Estimation of the Local Scour from a Cylindrical Bridge Pier Using a Compilation Wavelet Model and Artificial Neural Network

    Get PDF
    In the present study, an artificial neural network and its combination with wavelet theory are used as the computational tool to predict the depth of local scouring from the bridge pier. The five variables measured are the pier diameter of the bridge, the critical and the average velocities, the average diameter of the bed aggregates, and the flow depth. In this study, the neural wavelet method is used as a preprocessor. The data was passed through the wavelet filter and then passed to the artificial neural network. Among the various wavelet functions used for preprocessing, the dmey function results in the highest correlation coefficient and the lowest RMSE and is more efficient than other functions. In the wavelet-neural network compilation method, the neural network activator function was replaced by different wavelet functions. The results show that the neural network method with the Polywog4 wavelet activator function with a correlation coefficient of 87% is an improvement of 8.75% compared to the normal neural network model. By performing data filtering by wavelet and using the resulting coefficients in the neural network, the resulting correlation coefficient is 82%, only a 2.5% improvement compared to the normal neural network. By analyzing the results obtained from neural network methods, the wavelet-neural network predicted errors compared to experimental observations were 8.26, 1.56, and 1.24%, respectively. According to the evaluation criteria, combination of the best effective hydraulic parameters, the combination of wavelet function and neural network, and the number of neural network neurons achieved the best results

    Effective planning of-end-of-life scenarios for offshore windfarm

    Get PDF
    Many offshore wind turbines (OWTs) are approaching the end of their estimated operational life soon. It is challenging to develop a general decommissioning procedure for all OW farms. Therefore, this research aims to comprehend the available end-of-life (EoL) scenario for OWTs to decide on their application procedures and propose an innovative systematic framework for considering the EoL scenario. The first part of the research critically reviewed the various end-of-life strategies for offshore wind farms, available technological options and the influencing factors that can inform such decisions. The study proposed a multi-attribute framework for supporting optimum choices in terms of main constraints, such as the possibility of end-of-life strategies based on unique characteristics and influencing factors. In the selection of techno-economic, the primary procedure parameters influencing the three major end-life strategies, i.e. life extension, repowering, and decommissioning, are discussed, and the benefits and issues related to the influencing variables are also identified. In the next part, an initial comparative assessment between two of these scenarios, repowering and decommissioning, through a purpose-developed techno-economic analysis model calculates relevant key performance indicators. With numerous OW farms approaching the end of service life, the discussion on planning the most appropriate EoL scenario has become popular. Planning and scheduling those main activities of EoL scenarios depends on forecasting leading environmental indicators such as significant wave height. This research proposes a novel probabilistic methodology based on multivariate and univariate time series forecasting of machine learning (ML) models, including LSTM, BiLSTM, and GRU. In the end, the role of optimum selection of end-of-life scenarios is investigated to achieve the highest profitability of offshore wind farms. Various end-of-life scenarios have been evaluated through a TOPSIS technique as a multi-criteria decision-making procedure to determine an appropriate way according to environmental, financial, safety Criteria, Schedule impact, and Legislation and guidelines. Keywords: Offshore Wind Turbine; Decommissioning; End-of-life scenarios; Decision making; Levelized Cost of Energy; Machine learning, ForecastingMany offshore wind turbines (OWTs) are approaching the end of their estimated operational life soon. It is challenging to develop a general decommissioning procedure for all OW farms. Therefore, this research aims to comprehend the available end-of-life (EoL) scenario for OWTs to decide on their application procedures and propose an innovative systematic framework for considering the EoL scenario. The first part of the research critically reviewed the various end-of-life strategies for offshore wind farms, available technological options and the influencing factors that can inform such decisions. The study proposed a multi-attribute framework for supporting optimum choices in terms of main constraints, such as the possibility of end-of-life strategies based on unique characteristics and influencing factors. In the selection of techno-economic, the primary procedure parameters influencing the three major end-life strategies, i.e. life extension, repowering, and decommissioning, are discussed, and the benefits and issues related to the influencing variables are also identified. In the next part, an initial comparative assessment between two of these scenarios, repowering and decommissioning, through a purpose-developed techno-economic analysis model calculates relevant key performance indicators. With numerous OW farms approaching the end of service life, the discussion on planning the most appropriate EoL scenario has become popular. Planning and scheduling those main activities of EoL scenarios depends on forecasting leading environmental indicators such as significant wave height. This research proposes a novel probabilistic methodology based on multivariate and univariate time series forecasting of machine learning (ML) models, including LSTM, BiLSTM, and GRU. In the end, the role of optimum selection of end-of-life scenarios is investigated to achieve the highest profitability of offshore wind farms. Various end-of-life scenarios have been evaluated through a TOPSIS technique as a multi-criteria decision-making procedure to determine an appropriate way according to environmental, financial, safety Criteria, Schedule impact, and Legislation and guidelines. Keywords: Offshore Wind Turbine; Decommissioning; End-of-life scenarios; Decision making; Levelized Cost of Energy; Machine learning, Forecastin

    Scour around Bridge Piers: Numerical Investigations of the Longitudinal Biconcave Pier Shape

    Get PDF
    The flow pattern around a bridge pier and the scouring phenomenon are very complicated. The basic mechanism causing local scour is the down-flow at the upstream face of the pier. It is understood that the horseshoe vortex is the key mechanism that leads to the local scour around pier; existing literature revealed that the strength of the down-flow, horseshoe vortex and the wake vortex are greater in the case of square piers compared to circular piers. In this paper we have investigated a new longitudinal biconcave bridge pier shape that reduces better the bed shear stress. For that purpose, a number of numerical simulations have been carried out using a Finite Volume Method (FVM) and for the turbulence model we have chosen the Detached Eddy Simulation (DES) for its capability to capture the rich dynamics of the horseshoe vortex at the upstream junction between the pier and the bed.The present study shows that the new longitudinal biconcave bridge pier shape reduces 10 % to 12 % the bed shear stress at the junction between the pier and the bed in other hand this shape increases the bed shear stress about 20 % but at a distance of D downstream the bridge pier in the flow direction

    Comparative Deterministic and Probabilistic Modeling in Geotechnics: Applications to Stabilization of Organic Soils, Determination of Unknown Foundations for Bridge Scour, and One-Dimensional Diffusion Processes

    Get PDF
    This study presents different aspects on the use of deterministic methods including Artificial Neural Networks (ANNs), and linear and nonlinear regression, as well as probabilistic methods including Bayesian inference and Monte Carlo methods to develop reliable solutions for challenging problems in geotechnics. This study addresses the theoretical and computational advantages and limitations of these methods in application to: 1) prediction of the stiffness and strength of stabilized organic soils, 2) determination of unknown foundations for bridges vulnerable to scour, and 3) uncertainty quantification for one-dimensional diffusion processes. ANNs were successfully implemented in this study to develop nonlinear models for the mechanical properties of stabilized organic soils. ANN models were able to learn from the training examples and then generalize the trend to make predictions for the stiffness and strength of stabilized organic soils. A stepwise parameter selection and a sensitivity analysis method were implemented to identify the most relevant factors for the prediction of the stiffness and strength. Also, the variations of the stiffness and strength with respect to each factor were investigated. A deterministic and a probabilistic approach were proposed to evaluate the characteristics of unknown foundations of bridges subjected to scour. The proposed methods were successfully implemented and validated by collecting data for bridges in the Bryan District. ANN models were developed and trained using the database of bridges to predict the foundation type and embedment depth. The probabilistic Bayesian approach generated probability distributions for the foundation and soil characteristics and was able to capture the uncertainty in the predictions. The parametric and numerical uncertainties in the one-dimensional diffusion process were evaluated under varying observation conditions. The inverse problem was solved using Bayesian inference formulated by both the analytical and numerical solutions of the ordinary differential equation of diffusion. The numerical uncertainty was evaluated by comparing the mean and standard deviation of the posterior realizations of the process corresponding to the analytical and numerical solutions of the forward problem. It was shown that higher correlation in the structure of the observations increased both parametric and numerical uncertainties, whereas increasing the number of data dramatically decreased the uncertainties in the diffusion process

    Development of numerical and data models for the support of digital twins in offshore wind engineering

    Get PDF
    Error on title page. Date of award is 2022.As offshore wind farms grow there is a continued demand for reduced costs. Maintenance costs and downtime can be reduced through greater information on the asset in relation to its operational loads and structural resistance to damage and so there is an increasing interest in digital twin technologies. Through digital twins, an operational asset can be replicated computationally, thus providing more information. Modelling these aspects requires a wide variety of models in different fields. To advance the feasibility of digital twin technology this thesis aims to develop the multi-disciplinary set of modelling domains which help form the basis of future digital twins. Throughout this work, results have been validated against operational data recorded from sensors on offshore structures. This has provided value and confidence to the results as it shows how well the mix of state-of-the art models compare to real world engineering systems. This research presents a portfolio of five research areas which have been published in a mix of peer-reviewed journal articles and conference papers. These areas are: 1) A computational fluid dynamics (CFD) model of an offshore wind farm conducted using a modified solver in the opensource software. This work implements actuator disk turbine models and uses Reynolds averaged Naiver Stokes approaches to represent the turbulence. This investigates the impact of modelling choices and demonstrates the impact of varied model parameters. The results are compared to operational site data and the modelling errors are quantified. There is good agreement between the models and site data. 2) An expansion on traditional CFD approaches through incorporating machine learning (ML). These ML models are used to approximate the results of the CFD and thereby allow for further analysis which retains the fidelity of CFD at comparatively negligible computational cost. The results are compared to operational site data and the errors at each step are quantified for validation. 3) A time-series forecasting of weather variables based on past measured data. A novel approach for forecasting time-series is developed and compared to two existing methods: Markov-Chains and Gradient Boosting. While this new method is more complex and requires more time to train, it has the desirable feature of incorporating seasonality at multiple timescales and thus providing a more representative time-series. 4) An investigation of the change in modal parameters in an offshore wind jacket structure from damages or from changing operational conditions. In this work the detailed design model of the structure from Ramboll is used. This section relates the measurable modal parameters to the operational condition through a modelling approach. 5) A study conducted using accelerometer data from an Offshore Substation located in a wind farm site. Operational data from 12 accelerometers is used to investigate the efficacy of several potential sensor layouts and therefore to quantify the consequence of placement decisions. The results of these developments are an overall improvement in the modelling approaches necessary towards the realisation of digital twins as well as useful development in each of the component areas. Both areas related to wind loading as well as structural dynamics have been related to operational data. The validation of this link between the measured and the modelled domains facilitates operators and those in maintenance in gaining more information and greater insights into the conditions of their assets.As offshore wind farms grow there is a continued demand for reduced costs. Maintenance costs and downtime can be reduced through greater information on the asset in relation to its operational loads and structural resistance to damage and so there is an increasing interest in digital twin technologies. Through digital twins, an operational asset can be replicated computationally, thus providing more information. Modelling these aspects requires a wide variety of models in different fields. To advance the feasibility of digital twin technology this thesis aims to develop the multi-disciplinary set of modelling domains which help form the basis of future digital twins. Throughout this work, results have been validated against operational data recorded from sensors on offshore structures. This has provided value and confidence to the results as it shows how well the mix of state-of-the art models compare to real world engineering systems. This research presents a portfolio of five research areas which have been published in a mix of peer-reviewed journal articles and conference papers. These areas are: 1) A computational fluid dynamics (CFD) model of an offshore wind farm conducted using a modified solver in the opensource software. This work implements actuator disk turbine models and uses Reynolds averaged Naiver Stokes approaches to represent the turbulence. This investigates the impact of modelling choices and demonstrates the impact of varied model parameters. The results are compared to operational site data and the modelling errors are quantified. There is good agreement between the models and site data. 2) An expansion on traditional CFD approaches through incorporating machine learning (ML). These ML models are used to approximate the results of the CFD and thereby allow for further analysis which retains the fidelity of CFD at comparatively negligible computational cost. The results are compared to operational site data and the errors at each step are quantified for validation. 3) A time-series forecasting of weather variables based on past measured data. A novel approach for forecasting time-series is developed and compared to two existing methods: Markov-Chains and Gradient Boosting. While this new method is more complex and requires more time to train, it has the desirable feature of incorporating seasonality at multiple timescales and thus providing a more representative time-series. 4) An investigation of the change in modal parameters in an offshore wind jacket structure from damages or from changing operational conditions. In this work the detailed design model of the structure from Ramboll is used. This section relates the measurable modal parameters to the operational condition through a modelling approach. 5) A study conducted using accelerometer data from an Offshore Substation located in a wind farm site. Operational data from 12 accelerometers is used to investigate the efficacy of several potential sensor layouts and therefore to quantify the consequence of placement decisions. The results of these developments are an overall improvement in the modelling approaches necessary towards the realisation of digital twins as well as useful development in each of the component areas. Both areas related to wind loading as well as structural dynamics have been related to operational data. The validation of this link between the measured and the modelled domains facilitates operators and those in maintenance in gaining more information and greater insights into the conditions of their assets

    Coastal Geohazard and Offshore Geotechnics

    Get PDF
    With rapid developments being made in the exploration of marine resources, coastal geohazard and offshore geotechnics have attracted a great deal of attention from coastal geotechnical engineers, with significant progress being made in recent years. Due to the complicated nature of marine environmnets, there are numerous natural marine geohazard preset throughout the world’s marine areas, e.g., the South China Sea. In addition, damage to offshore infrastructure (e.g., monopiles, bridge piers, etc.) and their supporting installations (pipelines, power transmission cables, etc.) has occurred in the last decades. A better understanding of the fundamental mechanisms and soil behavior of the seabed in marine environments will help engineers in the design and planning processes of coastal geotechnical engineering projects. The purpose of this book is to present the recent advances made in the field of coastal geohazards and offshore geotechnics. The book will provide researchers with information reagrding the recent developments in the field, and possible future developments. The book is composed of eighteen papers, covering three main themes: (1) the mechanisms of fluid–seabed interactions and the instability associated with seabeds when they are under dynamic loading (papers 1–5); (2) evaluation of the stability of marine infrastructure, including pipelines (papers 6–8), piled foundation and bridge piers (papers 9–12), submarine tunnels (paper 13), and other supported foundations (paper 14); and (3) coastal geohazards, including submarine landslides and slope stability (papers 15–16) and other geohazard issues (papers 17–18). The editors hope that this book will functoin as a guide for researchers, scientists, and scholars, as well as practitioners of coastal and offshore engineering
    • …
    corecore