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ABSTRACT 

Prediction of the scour around a group of pile in the field exposed to oscillatory waves is very 

important for many offshore structure and coastal engineering projects. Conventional predictive 

formulas for the geometric properties of scour hole, however, are not able to provide sufficiently 

accurate results. In this paper the ANNs approach is used to predict the scour depth around pile 

group using dimensionless groups of parameters, namely, Reynolds number Re, Keulegan 

Carpenter number Kc, Shields parameter θ, and, densimetric Froude number Ns. The results show 

that a three-layer normal feed-forward multilayer perceptron with quick propagation (QP) learning 

rule can predict the scour depth successfully. 
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1. INTRODUCTION 

   Piles are structures widely used in coastal and ocean engineering. Since many of these 

structures are located on erodible beds, the estimation of scour depth is an essential task, 

because failure of the bed or the toe could cause collapse of the entire structure. In order 

to predict the scour depth around piles, the effects of flow condition and the bed material 

have to be considered. The field study on scour pile group has been done by Bayram and 

Larson (2000). It is extremely difficult to formulate mathematical models that accurately 

represent the scour process and geometry of scour hole, which develop under the 

influence of wave and current. Thus it is a common practice to apply empirical 

relationships based on laboratory data for estimation of the scour around piles. Since 

there are numerous effective parameters, and the interaction of these parameters is highly 

complicated, therefore, the accuracy of the empirical relationships is very subjective and 

highly depends on the user’s ability and knowledge. An artificial  neural network, on the 

other hand, is an applicable and powerful tool to solve this problem. In addition, its 

ability to learn from examples and to generalize its learning makes it well suited to 

situations where the problem complexity precludes the development of empirical 

relationships. This technique was used to estimate the scour properties around a 

configuration of piles (Kambekar and Deo, 2002). Khosronejad et al. (2003) studied the 
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scour properties around vertical pile using ANNs. They used the dimensional parameters 

such as wave length, water depth, wave period, maximum flow velocity and maximum 

shear velocity as input parameters of network. 

    In this paper nondimensional parameters such as pile Reynolds number, densimetric 

Froude number, Shields parameter and Keulegan carpenter number have been used as 

input parameters for designed network.  

 

2. OVERVIEW OF ANNS 

The ANN is a simplified mathematical representation of the biological neural network. 

It has the ability to learn from examples, recognize the various pattern of input data and 

to process information rapidly. A neural network is characterized by its architecture that 

represents the pattern of connections among nodes, its method of determining the 

connection weights and activation function. A typical ANN consists of number of nodes 

that are organized according to a particular arrangement. These nodes are generally 

arranged in layers, starting from the first input layer and ending at the final output layer. 

There can be several hidden layer, each hidden layer having one or more nodes (Jain, 

2001). 

   Three types of the most commonly used ANNs are normal feed-forward neural 

network, recurrent neural network, and competitive neural network (Islam and Kothari, 

2000). In this study the normal feed-forward neural network is used. 

   Normal feed forward neural networks are the most common among other ANNs and 

are widely used in function approximation and pattern classification (Islam and Kothari, 

2000). The most commonly used types of normal feed-forward are the so-called 

multilayered perceptron (MPL) network and the radial basis function (RBF) network. In 

either of these two networks, the neurons are arranged in layered structure. Information 

passes from the input to the output side. The neurons in one layer are connected to those 

in the next layer. Thus, the output of a neuron in a layer is only dependent on the inputs it 

receives from pervious layer and the corresponding weights. 

   Consider a multilayered perceptron network with n inputs, an output layer with o 

neurons, and a hidden layer with m neurons as shown in Fig. 1. Index i is referred to the 

individual output layer neurons, the index j and k refer to the hidden layer neurons and 

the input neurons, respectively. Inputs, feed to the hidden layer neurons through weights 

jkW and the outputs of hidden layer neurons feed to output layer neurons through 

weights ijW . A hidden layer neuron produces as output: 
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where jh  is the output of jth neuron in hidden layer, js is the weighted sum of jth neuron 

in hidden layer, kx is the input of kth neuron in input layer, iy  is the output of ith neuron 

in output layer and *

is  is the weighted sum of ith neuron in the output layer. 

 

 

    xk(1,n)                   hj(1,m)                  yi(1,o) 

 
Fig. 1.  Schematic of multilayer perceptron network 

 

   In this study the activation function 'f  for hidden layer is taken to be the arctangent 

[ )arctan()(' xxf = ]. This non-linearity makes the mapping produced by the network 

nonlinear. Since the outputs s is greater than one, the linear function is selected for output 

layer. 

 

3. NETWORK TRAINING ALGORITHMS 

   There are two types of network training, supervised and unsupervised (ASCE Task 

Committee, 2000-a). In supervised training algorithm, an external supervisor is needed to 

guide the training process, while in an unsupervised training algorithm it is not so.  

   In this study, supervised training algorithm has been used to update the weight matrix 

of ANN. The training patterns proposed by Bayram and Larson (2000) are used for this 

purpose. The quick-propagation (QP) used and  it was showed that the training procedure 

is done well. The aim is to reduce the global error E: 
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where p is total  number of training patterns and pE  is error for training pattern p given 

by: 
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where N is total number of output neurons; ky  is network output  at the kth output 

neuron and kt   is target output  at the kth output neuron. 

 

4. EFFECTIVE PARAMETERS ON THE SCOUR DEPTH 

The significant parameters controlling the scour depth around a pile exposed to 

oscillatory waves are: pile diameter D, wave height H, water depth h, wave period T, 

maximum flow velocity mU , maximum shear velocity fmU , specific gravity of sediment 

s, mean diameter of sediment d, acceleration due to gravity g and kinematic viscosity of 

fluid ν. Thus the maximum scour depth S may be expressed as follows (see Fig. 2): 

 

                                   S ),,,,,,,,,( υgdsUUThHDf fmm=                                      (5) 

 

The maximum shear velocity fmU  is defined as (Sumer et al., 1992 and Herbich, 1991): 

 

                                                        mfm UfU 2/1)5.0(=                                                    (6) 

 

where mU  is amplitude of the oscillatory flow velocity;  f is wave friction factor. By 

applying dimensional analysis, the significant nondimensional parameters controlling the 

scour depth around a pile exposed to oscillatory waves may be identified. Thus the 

equilibrium maximum scour depth S normalized by the pile diameter D expressed as 

follows (Herbich 1991; Sumer, et al 1992 b): 
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D

S
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   Where NRe is pile Reynolds number, Ns is densimetric Froude number, θ  is Shields 

parameter and KC is Keulegan-Carpenter number. These nondimensional numbers are 

defined as follows: 

 

                                                              
ν

DU
N m=Re                                                     (8) 

 

                                                             
dsg

U
N m

s
)1( −

=                                            (9) 

 

                                                            
dsg

U fm

)1(

2

−
=θ                                                 (10) 

 

                                                            
D

TU
KC m=                                                      (11) 



5 

 

The above parameters were employed in the present study to investigate various 

nondimensional parameters describing the scour depth.  

   The data set that were used for designing the networks were the field data reported by 

Bayram and Larson (2000). The range of variables is summarized in Table 1. These 

parameters have been employed in the present study as input vectors to train the designed 

neural network and describe the scour depth around vertical pile. Therefore, the numbers 

of input layer neurons are equal to four (NRe, Ns, Ө and KC) and the output neuron is S. 

The number of data is 58, out of which 48 were used for network training and 10 for 

testing the performance of trained network. 

 

 

 

 
 

 

 

Table 1. Range of data set used for training and testing the Network (Bayram and Larson, 

2000) 

Variables Range 

Shields parameter θ  0.08-0.64 

Pile Reynolds Number(NRe) 3.4*105-1.1*106 

Densimetric Froude number (Ns) 1.2-12.5 

Keulegan-Carpenter Number 7.6-22.5 

Scour depth     S(m) 0.42-2.1 
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5. DESIGNING AND TRAINING THE ANNs 

   This important step involves the determination of the ANN architecture and selection 

of a training algorithm. An optimal architecture may be considered the one yielding the 

best performance in term of error minimization, while retraining a simple and compact 

structure. A trial-and-error procedure is generally applied to decide on the optimal 

architecture. The number of input and output neurons is problem dependent. 

   In the current study, first we used two neurons at output layer and four neurons at input 

layer and ten or more neurons in hidden layer. In this case the network was trained with 

different architectures and results showed that the network can not learn accurately. The 

result is shown in table 2. As shown in Tables 2 the normal feed-forward architecture 

with quick-propagation learning rule and one hidden layer is the best choice for this case, 

because the network learning was obtained with the least epochs and with minimum rms 

error.  

 

 

Table 2. Results of designed neural network with one neuron in output layer for relative scour depth (S/D) 

 

6. THE ANNS OUTPUT RESULT VALIDATION 

   Similar to other modeling approaches in hydraulics, the performance of the trained 

ANN can be fairly evaluated by subjecting it to the new patterns that have not been seen 

during training process. The performance of the network can be determined by 

computing the error between predicted and observed values. In order to assess the 

networks ability, the outputs of networks for new patterns is shown in Fig. 3.  As shown 

in Fig. 3, the trained networks could learn desired mapping successfully.  

 

 

 

Network 

 

Learning 

rule 

No. of 

neurons 

(1st 

hidden 

layer) 

 

No. of  

epochs 

Mean  

training  

error 

Mean  

testing  

error 

Multilayer 

perceptro

n 

networks 

Quick-

propagation 

(QP) 

10  

12 

15 

20000 

32000 

34000 

0.015  

0.0011 

0.00012 

 

0.51 

0.014 

0.008  
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Fig. 3 Comparison of observed and computed (ANN results) nondimensional scour depth 

 

 

7. CONCLUSION 

   The multilayer perceptron network is applied to estimate scour depth around vertical 

piles. It was shown that use of nondimensional  parameters as input pattern produce 

accurate results.  The designed network could learn successfully and the rms error was 

very small. The designed ANN model with normal feed-forward architecture and quick-

propagation learning rule and a single hidden layer with ten neurons provide sufficiently 

good training and testing acuracy. 
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