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Abstract This paper presents a new application of the GroupMethodOf DataHandling (GMDH), to predict
pile scour depth exposed to waves. The GMDH network was developed using the Levenberg–Marquardt
(LM) method in the training stage for scour prediction. Scour depth due to regular waves was modeled
as a function of five dimensionless parameters, including pile Reynolds number, grain Reynolds number,
sediment number, Keulegan–Carpenter number, and shields parameter. The testing results of the GMDH-
LMwere comparedwith those obtained using the Adaptive Neuro-Fuzzy Inference System (ANFIS), Radial
Basis Function-Neural Network (RBF-NN), and empirical equations. In particular, the GMDH-LM provided
the most accurate prediction of scour depth compared to other models. Also, the Keulegan–Carpenter
number has been determined as the most effective parameter on scour depth through a sensitivity
analysis. The GMDH-LM was utilized successfully to investigate the influence of the pile cross section
and Keulegan–Carpenter number on scour depth.

© 2013 Sharif University of Technology. Production and hosting by Elsevier B.V.
Open access under CC BY-NC-ND license.
1. Introduction

When a pile is placed in an erodible bed, scour phenomena
will take place around it, due to the action of waves and cur-
rents. The pile scour is a complex process, in which the main
element is the horseshoe vortex. This flow structure is formed
around the piles just above the bed surface. This process is an
important factor related to the stability of marine structures.
Development of the scour process around hydraulic structures
may reduce its stability, hence, leading to failure [1] (Figure 1).
Wave and current-induced scour around piles has been widely
investigated by several researchers. Local scour experiments
around hydraulic structures exposed towave or oscillatory flow
have attracted wide attention, due to their applications to off-
shore coastal structures, bridges, and sea templates [1–12].
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Extensive experiments have been carried out around small and
large pile scour depths under waves, and combined waves and
current. Also, studies have been conducted to analyze the in-
fluence of circular and square piles on the scour. Researchers
have proposed empirical equations through their experiments
[10–12]. For instance, Dey et al. [1] proposed easy and econom-
ical methods to reduce piles scour depth under waves and cur-
rents. They applied splitter pales, and the average reduction of
scour depth was 61.6%.

Recently, various artificial intelligent approaches, such as
Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy In-
ference Systems (ANFIS), data mining, Linear Genetic Program-
ming (LGP), and Genetic Programming (GP), were applied to
predict scour depth around hydraulic structures [13–17]. Re-
cently, GMDH networks were used to predict scour depth
around bridge piers, and the GMDH performance produced a
better estimation of scour depth than that of empirical equa-
tions [18–24].

In fact, the GMDH network is known as a system of iden-
tification methods implemented in various fields of engineer-
ing science. GMDH networks model and forecast the behavior
of unknown or very complicated systems, based on given in-
put–output data pairs [18,19,25–27].

The paper follows two main aims. First, the GMDH network
is developed using an LM algorithm to predict scour depth
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Figure 1: (a) Schematic diagram of a scour hole at a vertical circular pile under
wave. (b) Vortex shedding is the dominant mechanism for scour at piles under
waves.

around a vertical pile under regular waves. Also, the testing
results of the GMDH-LM are compared with those obtained
using the ANFIS model, RBF-NN, and empirical equations.
Second, limitations of data variations on the GMDH-LM are
studied.

2. Data presentation

Experimental and field investigations of scour prediction
have been carried out under clear-water and live-bed condi-
tions of flow. In the present study, used data sets were collected
fromDey et al. [1] (41 data sets), Sumer et al. [28] (43 data sets),
and Sumer et al. [10] (9 data sets) to train and test the mod-
els. According to the denoted experiments, the function of scour
depth can be expressed as follows:

S = f (d50, g,Um,Ufm, T , υ,D, ρ), (1)

where S, d50, g , Um, Ufm, T , υ , D, and ρ are scour depth, median
particle diameter, acceleration due to gravity, maximum value
of outer oscillatory velocity in the wave, maximum value of
undisturbed shear velocity in the wave period, wave period,
dynamic viscosity, pile diameter, and mass density of water,
respectively.

Base on the preceding investigations, dimensionless pa-
rameters performed more accurate scour prediction than di-
mensional parameters [14–17]. The following dimensionless
Table 1: Ranges of original data set.

Parameter Range

d50 (m) 0.0006–0.0002
D (m) 0.01–0.08
T (s) 1.2–3.84
Um (m/s) 0.128–0.388
Ufm (m/s) 0.0143–0.0249
S (m) 0–0.0335
g (m/s2) 9.806
ρ (kg/m3) 1000
µ (Pa · s) 0.000001

parameters have been obtained using the Buckingham theo-
rem:

S/D = f (Re, Red,Ns, KC, θ), (2)

where Re, Red, Ns, KC , and θ are Reynolds number for pile, grain
Reynolds number, sediment number, Keulegan–Carpenter
number, and shields parameter. These dimensionless parame-
ters are presented as follows:

Re = UmD/υ, (3)
Red = Ufmd50/υ, (4)

Ns = Um/

g(Gs − 1) · d50, (5)

KC = UmT/D, (6)

θ = U2
fm/g(Gs − 1) · d50. (7)

Occasionally, the range of effective parameters on scour
depth is a limiting factor in the development of artificial
intelligence techniques [14,16]. For instance, Sumer et al. [11]
investigated the influence of pile cross section on the wave
scour. They carried out 54 pile scour experiments, in which
scour depth was not observed for seven runs. Also, Sumer and
Fredsoe [12] performed 27 experiments for flow conditions, in
which, waves and current have been combined. In this study,
their experimental data sets are not used for the development
of these soft computing tools, because experimental conditions
are significantly distinctive from that of Sumer et al. [28] and
Dey et al. [1] data sets.

It can be concluded that the selection of data sets depends
widely on the purpose of the research and the availability
of effective parameters on a phenomena. The dimensionless
parameters of Eq. (2) were used as input and output parameters
in the development of models. The ranges of data sets are
presented in Table 1. In the present study, about 75% data sets
(72 sets)were selected randomly for the training stage,whereas
the remaining 25% (21 sets) were used for the testing stage.

3. Description of models

In this section, development of the GMDH network, ANFIS
model, and RBF-NN will be discussed separately.

3.1. Descriptions of the GMDH network

The GMDH network is a learning machine based on the
principle of heuristic self-organizing, proposed by Ivakhnenko
in the 1960s. Also, it is a series of operations, such as seeding,
rearing, crossbreeding, and the selection and rejection of seeds,
corresponding to the determination of the input variables,
structure and parameters of the model, and the selection of the
model by the principle of termination [29,30].
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The GMDH network is a very flexible structure and it can
be hybridized using evolutionary and iterative algorithms, such
as the genetic algorithm, genetic programming, particle swarm
optimization, and back propagation [18,19,27,31–34]. Previous
research established that hybridizations were successful in
finding solutions of problems in different fields of engineering.

Bymeans of the GMDHnetwork, amodel can be represented
as a set of neurons, different pairs of which, in each layer, are
connected through a quadratic and triquadratic polynomial;
thus producing new neurons in the next layer. Such representa-
tion can be used in modeling, from map inputs to outputs. For-
mal definition of the system identification problem is to find a
function, f̂ , that can be approximately used instead of an actual
function, f , in order to predict the output, ŷ, for a given input
vector X = (x1, x2, x3, . . . , xn), as close as possible to its actual
output, y. Therefore, given n observations ofmulti-input-single-
output data pairs, so that:
yi = f (xi1, xi2, xi3, . . . , xin) (i = 1, 2, . . . ,M), (8)
it is now possible to train the GMDH network to predict the
output values, ŷi, for any given input vector X = (xi1, xi2,
xi3, . . . , xin), that is:

ŷi = f̂ (xi1, xi2, xi3, . . . , xin) (i = 1, 2, . . .M). (9)
In order to solve this problem, the GMDH builds the general

relationship between output and input variables, in the form of
a mathematical description, which is also called a reference.

The problem is nowdetermining the GMDHnetwork, so that
the square of difference between the actual and the predicted
output is minimized, that is:

M
i=1


f̂ (xi1, xi2, xi3, . . . ., xin) − yi

2
→ min . (10)

The general connection between input and output variables
can be expressed by a complicated discrete form of the Volterra
function, a series in the form of:

y = w0 +

n
i=1

wixi +
n

i=1

n
j=1

wijxixj

+

n
i=1

n
j=1

n
k=1

wijkxixjxk + · · · , (11)

which is known as the Kolmogorov–Gabor polynomial [29,30,
35,36]. In the present study, the quadratic polynomial of the
GMDH network is used, which is written as:
Quadratic : ŷ = G(xi, xj) = w0 + w1xi + w2xj + w3xixj

+ w4x2i + w5x2j . (12)
This network of connected neurons builds the general

mathematical relation of input and output variables given in
Eq. (11). The weighting coefficients of Eq. (12) are calculated
using regression techniques, so that the difference between
actual output, y, and the calculated one, ŷ, for each pair of xi and
xj, as input variables, isminimized [35,36]. Indeed, it can be seen
that a tree of polynomials is constructed using the quadratic
form given in Eq. (12), whose weighting coefficients can be
obtained by the least-squares sense. In this way, the weighting
coefficients of quadratic function Gi are obtained to optimally
fit the output in the whole set of input–output data pairs, that
is:

E =

M
i=1

(yi − Gi())
2

M
→ min . (13)
In the basic form of the GMDH algorithm, all the pos-
sibilities of two independent variables out of total n input
variables are taken, in order to construct the regression poly-
nomial in the form of Eq. (11) that best fit the dependent
observations (yi, i = 1, 2, . . . ,M) in a least-square sense. Con-
sequently, C2

n = n(n − 1)/2 neurons of quadratic polynomial
will be built up in the first layer of the feed forward network
fromobservations,


(yi, xip, xiq); (i = 1, 2, . . .M)


, for different

p, q ∈ {1, 2, . . . .n}. In other words, it is now possible to con-
struct M data triples,


(yi, xip, xiq); (i = 1, 2, . . .M)


, from ob-

servation, using such p, q ∈ {1, 2, . . . .n}, in the form of:x1p x1q y1
x2p x2q y2
xmp xmq ym


. (14)

Using the quadratic sub-expression in the form of Eq. (11)
for each row of M data triples, the following matrix equation
can be readily obtained as:

AW = Y , (15)

whereW is the vector of unknownweighting coefficients of the
quadratic polynomial in Eq. (15):

W = {w0, w1, w2, w3, w4, w5}
T . (16)

The superscript, T , representing the transpose of the matrix:

Y = {y1, y2, y3, . . . , yM}
T , (17)

is the vector of the observation values of outputs. It can be
readily seen that:

A =

1 x1p x1q x1px1q x21p x21q
1 x2p x2q x2px2q x22p x22q
1 xmp xmq xmpxmq x2mp x2mq

 . (18)

The least-squares technique from multiple-regression anal-
ysis leads to the solution of the normal equations in the form
of:

W = (ATA)−1ATY , (19)

which determines the vector of the best weighting coefficients
of quadratic Eq. (11) for the whole set ofM data triples.

3.1.1. Development of the GMDH network using Levenberg–
Marquardt algorithm

The Levenberg–Marquardt (LM) algorithm is an iterative
technique that locates the minimum of a function that is ex-
pressed as the sum of the squares of nonlinear functions. De-
tails of the Levenberg–Marquardt (LM) algorithm are presented
completely in the literature [37–39]. In this section, the learning
method of the improved GMDH network is explained in brief.
As one example, the following case is considered. In Figure 2,
xK and zs are the input and intermediate variables, respectively.
Wts denotes theweight vector. Furthermore,Xts is the input vec-
tor for the neurons (t = number of layers and s = number of
neurons in layer). These variables are defined as follows:

E =
(y − ŷ)2

2
, (20)

ŷ = W T
21 · X21, (21)

z1 = W T
11 · X11, (22)

z2 = W T
12 · X12, (23)
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Figure 2: Structure of the GMDH network.

W21 =

w0

21, w
1
21, w

2
21, w

3
21, w

4
21, w

5
21

T
, (24)

W11 =

w0

11, w
1
11, w

2
11, w

3
11, w

4
11, w

5
11

T
, (25)

W12 =

w0

12, w
1
12, w

2
12, w

3
12, w

4
12, w

5
12

T
, (26)

X21 =

1, z1, z2, z1z2, z21 , z

2
2

T
, (27)

X11 =

1, x1, x2, x1x2, x21, x

2
2

T
, (28)

X12 =

1, x1, x3, x1x3, x21, x

2
3

T
. (29)

The authors have defined the Jacobian matrix as the partial
differentiation taken for the error function, based on the chain
rule, that is:

[J2s] =


∂E

∂W2s

T

=
∂E
∂ ŷ


∂zs

∂w0
2s

,
∂zs

∂w1
2s

,
∂zs

∂w2
2s

,
∂zs

∂w3
2s

,
∂zs

∂w4
2s

,
∂zs

∂w5
2s

T

, (30)

[J1s] =


∂E

∂W1s

T

=
∂E
∂ ŷ



∂ ŷ
∂X2s

·
∂X2s

∂zs
·

∂zs
∂w0

1s
,

∂ ŷ
∂X2s

·
∂X2s

∂zs
·

∂zs
∂w1

1s
,

·
∂ ŷ

∂X2s
·
∂X2s

∂zs

∂zs
∂w2

1s
,

∂ ŷ
∂X2s

·
∂X2s

∂zs
·

∂zs
∂w3

1s
,

∂ ŷ
∂X2s

·
∂X2s

∂zs
·

∂zs
∂w4

1s
,

∂ ŷ
∂X2s

·
∂X2s

∂zs
·

∂zs
∂w5

1s



T

. (31)

Thus, the learning laws are obtained as follows:

W new
2s = W old

2s +

JT2sJ2s + µ · I


JT2sE, (32)

W new
1s = W old

1s +

JT1sJ1s + µ · I


JT1sE, (33)

where µ is learning rate between 0 and 1.
When increasing the layer, the update rules corresponding

to each layer are derived based on the same idea. The initial
layer is simply the input layer. The first layer is created by
computing regressions of the input variables and then choosing
the best ones. The second layer is created by computing
regressions of the values in the first layer, along with the
input variables. Thismeans that the algorithmessentially builds
polynomials of polynomials. Again, only the best are chosen
by Eq. (20). This mechanism will be continued until a pre-
specified selection criterion is met. In the output layer, errors
of the training network, estimated by Eq. (20), and the new
weighting coefficients, are calculated using Eqs. (30)–(33).
Again, the output of each neuron is estimated from the first
layer to the output layer. This process is called feed forward, and
the correction of weighting coefficients of a network is called
backward pass. This mechanism is to be continued until errors
in the training network (E) are minimized.

The value of the learning rate, µ, was adjusted to 0.01
for training the GMDH-LM. Furthermore, from adjusting the
weighting coefficients using Levenberg–Marquardt, the corre-
sponding quadratic polynomial neurons were presented as fol-
lows:

(S/D)12 = −0.1734 − 0.0266NS + 0.0488θ

+ 0.0129(NS)(θ) + 0.0182(NS)
2
+ 0.0406(θ)2, (34)

(S/D)18 = −0.0785 + 0.0213KC + 1.1734 × 10−5Re

+ 3.3563 × 10−7(KC)(Re)

− 1.1385 × 10−4(KC)2 + 4.0551 × 10−7(Re)2, (35)

(S/D)19 = −0.0306 − 0.0419KC + 6.3156Red
+ 1.8427(KC)(Red) + 7.577 × 10−4(KC)2

− 226.2307(Red)2, (36)

(S/D)21 = −0.012 + 0.1195(S/D)12 + 0.09(S/D)15
+ 0.0142(S/D)12(S/D)15 + 0.0074((S/D)12)

2

+ 0.0067((S/D)15)
2 (37)

(S/D)22 = 0.194 + 0.0068(S/D)12 − 3.064 × 10−4(S/D)18
+ 7.0109 × 10−5(S/D)12(S/D)18 − 1.2048
× 10−5((S/D)12)

2
− 1.6134 × 10−6((S/D)18)

2, (38)

(S/D)31 = −0.0266 + 0.9618(S/D)21 + 0.165(S/D)22
− 0.0643(S/D)21(S/D)22 − 0.0405((S/D)21)

2

− 0.0074((S/D)22)
2. (39)

Superscripts and subscripts of S/D from Eqs. (34)–(39)
indicate the number of layers and number of neurons in the
layer, respectively.

3.2. Adaptive neuro-fuzzy inference system

ANFIS, first introduced by Jang [40], is an approximator that
is capable of approximating any real continuous function on
a compact set to any degree of accuracy. The basic structure
of fuzzy modeling, commonly known as the Fuzzy Inference
System (FIS), is based on knowledge that can be inferred from
available data or verbal information [41,42]. In this study,
a Fuzzy Inference System (FIS) was generated for the scour
modeling. It has five inputs and one output. The ANFIS model
was trained using a hybrid algorithm, which is a combination
of gradient descent and the least squares method. In this way,
the best value of the learning rate in back propagation, µ, was
adjusted to 0.01 for the ANFIS model. Also, it was generated
using 4 rules for scour depth prediction (Table 2).

3.3. Artificial neural network

In this study, RBF-NN was used to predict scour depth. An
important property of RBF neural networks is that a high-
dimensional-space nonlinear-problem can be easily broken
down through a set of combinations of radial basis func-
tions [43]. The input layer is composed of n input neurons. The
hidden layer consists of j locally tuned units and each unit has a
radial basis function acting like a hidden neuron. In the present
study, the proposed RBF-NN has 5 neurons in the input layer, 5
neurons in the hidden layer, and 1 neuron in the output layer.
Also, this network was trained using 0.7 spread value.
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Table 2: Rules of ANFIS model.

Dimensionless Parameters

1.If (Re is Re mf1) and (Ns is Ns mf1) and (θ is θ mf1) and (KC is KC mf1) and (Red is Red mf1) then (S/D is S/D mf1)
2. If (Re is Re mf2) and (Ns is Ns mf2) and (θ is θ mf2) and (KC is KC mf2) and (Red is Red mf2) then (S/D is S/D mf2)
3.If (Re is Re mf3) and (Ns is Ns mf3) and (θ is θ mf3) and (KC is KC mf3) and (Red is Red mf3) then (S/D is S/D mf3)
4. If (Re is Re mf4) and (Ns is Ns mf4) and (θ is θ mf4) and (KC is KC mf4) and (Red is Red mf4) then (S/D is S/D mf4)
Table 3: Statistical results of the testing stage for proposed technique.

Method R RMSE MAE

ANFIS 0.954 0.0789 0.362
GMDH-LM 0.983 0.0697 0.33
RBF-NN 0.883 0.097 0.739
Empirical Equation 0.93 0.087 0.429

4. Result and discussion

The best performances of the GMDH network, RBF-NN,
and ANFIS model for testing stages are validated in terms of
the common statistical R (correlation coefficient), MAE (Mean
Absolute of Error), and RMSE (Root Mean Square Error):

R =

M
i=1

(Yi(Actual) − Y (Actual))(Yi(Model) − Y (Model))
M
i=1

(Yi(Actual) − Y (Actual))2.
M
i=1

(Yi(Model) − Y (Model))2

, (40)

MAE =
1
M


M
i=1

Yi(Actual) − Yi(Model)

Yi(Actual)




, (41)

RMSE =


M
i=1

(Y i(model) − Y i(Actual))
2

M


1/2

, (42)

where Yi(model) is the predicted values (network output), Y (Model)
is the average of predicted values, Yi(Actual) is the observed values
(target), Y (Actual) is the average of observed values, and M is
the total of events. Sumer et al. [10] proposed the following
empirical equation using experimental data for predicting the
scour depth around a vertical pile due to oscillatory flow:

S/D = 1.3(1 − exp(−0.03(KC − 6))). (43)

This equation was suggested for live-bed conditions and
KC ≥ 6.

The statistical results of the proposed artificial intelligence
approaches for training and testing stages are presented in Ta-
ble 3. From Table 3, the performance of the GMDH network
provided a scour depth prediction with a lower error (R =

0.983, RMSE = 0.0697, and MAE = 0.33) than those obtained
using the ANFIS model and RBF-NN. The testing results indi-
cated that the ANFIS model predicted scour depth with a rel-
atively lower error (RMSE = 0.0789 and MAE = 0.362) and
higher correlation coefficient (R = 0.954) in comparison with
the RBF-NN and Eq. (43).

Eq. (43) can be said to fail in scour depth prediction with
relatively high error (RMSE = 0.0087 and MAE = 0.429),
compared to the GMDH-LM and ANFIS model.

The scatter plot between predicted and observed scour
depth values for testing stages has been illustrated in Figure 3.
Figure 3: Scatter plot of observed values versus predicted values for the testing
stage.

Table 4: Results of sensitivity analysis for independent dimensionless
parameters.

Model R RMSE

S/D = f (Re, Red, KC, θ) 0.959 0.085
S/D = f (Red,Ns, KC, θ) 0.888 0.124
S/D = f (Red,Ns, KC, θ) 0.941 0.0965
S/D = f (Re, Red,Ns, KC) 0.938 0.107
S/D = f (Re, Red,Ns, θ) 0.74 0.184

Through the qualitative comparisons, Figure 3 indicates that
most data points are concentrated on the best fit line. It should
be noted that some of the predicted values are to be out of
trend. For scour prediction of the zero values, the GMDH-LM
and ANFIS model produced S/D with a relatively lower error
than that of the RBF-NN and Eq. (43). For scour prediction of
0.11 and 0.2 values, the ANFIS model and RBF-NN predicted the
S/D with quite higher error, compared to the GMDH-LM.

Also, it can be seen that the performance of the RBF-NN
is lacking a generalization capacity. The generalization capac-
ity is a common problem which has been described in pre-
ceding investigations [17]. Furthermore, the main advantage
of the GMDH is that only six weighting coefficients are avail-
able in each neuron. The GMDH network has been developed
using 6 quadratic polynomials neurons through trial and error
processes, in order to reduce the calculations of each neuron
[18,19].

5. Sensitivity analysis

To assign the relative significance of each of the effective
parameters on scour depth, the GMDH-LM was applied to
carry out a sensitivity analysis. The analysis was conducted in
the absence of every parameter in dimensionless parameters.
Results of the sensitivity analysis were given in Table 4. From
Table 4, it is found that the Keulegan–Carpenter number, KC ,
(R = 0.74, RMSE = 0.184), is the most effective parameter on
the scour depth. The other effective parameters on normalized
scour depth, S/D, are seen to be ranked (from higher to lower)
in the order: Re, θ , Red, and Ns. To develop the results of the
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Figure 4: Variations of S/D versus KC using the GMDH-LM and RBF-NN.

Figure 5: Variations of S/D versus KC using the GMDH-LM and ANFIS model.

sensitivity analysis, a parametric analysis was conducted using
the GMDH-LM, RBF-NN, and ANFIS model. Variations of S/D
versus KC were plotted in Figures 4 and 5. From Figure 4, it was
found that the scour depth predicted using the ANFIS model
is to be out of trend for the KC values of 13.2 and 32.64. Also,
Figure 5 indicated quite a higher error of scour depth prediction
for 32.64 of KC . As seen, the GMDH-LM is the most consistent
with the underlying physical processes, while it was found that
the other methods are too sensitive to variations of KC values.

The scour depth under regular waves was predicted using
data mining and linear genetic programming [14,16]. The
fundamental restriction of these approaches is the range
of applicability that is restricted to the range of effective
parameters utilized for training and testing stages. Hence, the
efficiency of the GMDH-LM was investigated to cover these
restrictions using experimental data sets that were not used
in the training and testing of the models. The influence of
cross section pile and the Keulegan–Carpenter number on scour
depth have been considered. In this way, 44 data sets from
the Sumer et al. [11] experiments were selected to study the
influence of pile cross section on the scour depth. The live-
bed experiments were carried out around a square pile with
two arrangements of 90° and 45°. Schematic arrangements of
square piles are illustrated in Figure 6. Ranges of data sets
are presented in Table 5. Evaluation of the GMDH-LM for
the square pile with a 45° arrangement produced the lower
error of scour depth prediction, compared to that of the 90°
arrangement. Results of the performances were compared with
those obtained using empirical equations. Sumer et al. [11]
presented two empirical equations for the square piles as
follows:

S/D = 2(1 − exp(−0.015(KC − 11))) For KC ≥ 11, (44)

S/D = 2(1 − exp(−0.019(KC − 3))) For KC ≥ 3. (45)

Eqs. (44) and (45)were validated for the square pilewith 90°
and 45° orientations, respectively.
Figure 6: Square piles with (a) 0° orientation, and (b) 45° orientation.

Table 5: Ranges of original data sets for robustness of proposed GMDH-LM.

Parameter Sumer et al. [10] Sumer et al. [11]
Range Range

d50 (m) 0.00018–0.00058 0.00018
D (m) 0.01–0.1 0.009–0.141
T (s) 1.19–4.5 1.4–4.5
Um (m/s) 0.112–0.533 0.17–0.469
Ufm (m/s) 0.013–0.025 0.016–0.025
S (m) 0–0.031 0–0.076
g (m/s2) 9.806 9.806
ρ (kg/m3) 1000 1000
µ (Pa · s) 0.000001 0.000001

Table 6: Accuracy of the proposed model for the square cross section.

Model R RMSE MAE

GMDH-LM (with 45° orientation) 0.9 0.18 0.108
GMDH-LM (with 90° orientation) 0.85 0.25 1.3
Eq. (44) 0.93 0.253 0.43
Eq. (45) 0.3 0.35 1.68

The statistical results of the proposed techniques indicated
that the GMDH-LM predicted scour depth with lower error
(RMSE = 0.25 andMAPE = 1.3) and relatively higher accuracy
(R = 0.85), compared to those performed using Eq. (44). For
the square pile with 45° orientation, the GMDH-LM produced
more a accurate prediction than that of Eq. (45). Meantime,
the GMDH-LM provided quite a good prediction for the square
pile with 45° orientation, compared to that of 90° orientation
(Table 6).

Another robustness of the GMDH-LM is related to the
influence of the Keulegan–Carpenter Number, KC , on the scour
depth. In this way, 40 data sets from Sumer et al. [10] were used
which have been classified into three groups, based on ranges
of KC . Ranges of data sets are presented in Table 6. Results
of performances indicated that the GMDH-LM has a higher
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Table 7: The RMSE values of the KC ranges using proposed GMDH-LM and
Eq. (27).

5 ≤ KC < 10 10 ≤ KC < 20 20 ≤ KC < 50

GMDH-LM 0.0401 0.103 0.32
Eq. (27) 0.064 0.112 0.8

accuracy of scour prediction in 5 ≤ KC < 10, compared to
those of other ranges (10 ≤ KC < 20 and 20 ≤ KC < 50). Pile
scour due to regular waves is dependent on lee-wake vortices
and the horseshoe vortex for 5 ≤ KC < 10 and 20 ≤ KC < 50.
The statistical results of the GMDG-LM for the three ranges of
KC are given in Table 7.

6. Conclusions

This paper presented a new approach in predicting scour
depth around vertical piles due to waves. A new scheme of the
GMDH network was proposed using the Levenberg–Marquardt
method. In this study, the quadratic polynomial was selected
as a transfer function to investigate the efficiency of the GMDH
network for scour prediction. Also, the ANFIS model, RBF-NN,
and empirical equations were utilized to indicate the capability
of the scour depth prediction. Development of the models was
carried out using dimensionless parameters. The testing results
of the proposed soft computing tools indicated that the GMDH-
LM has a more accurate prediction than the ANFIS model, RBF-
NN, and empirical equations. Through a sensitivity analysis,
the Keulegan–Carpenter number was determined as the most
effective parameter on scour depth modeling. Performances of
the GMDH-LM were proven flexible to variations of data set
ranges. From the performances, it was found that the GMDH-
LM predicted scour depth with lower error in 5 ≤ KC < 10,
compared to other ranges. Another interesting point drawn is
that the GMDH-LM covered well the limitations of data set
ranges that had been faced by previous investigations. In this
way, the GMDH-LM was applied successfully to investigate
the influence of square pile on scour depth. In particular,
the GMDH-LM produced the best realization of the inductive
approach to predict the complexity of the scour process.
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