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Abstract: Structures and infrastructure systems are subjected to various deterioration 

processes due to environmental or mechanical stressors. Proper performance assessment 

approaches capable of detecting potential structural damage and quantifying the 

probability associated with structural failure are required to formulate optimal 

maintenance and retrofit plans that minimize the risk of failure and maximize the safety 

of structures. However, due to the presence of several sources of uncertainty that can 

affect the performance assessment and decision-making processes (e.g., uncertainties 

associated with loading conditions and performance prediction models), applying 

probabilistic methods, such as Monte Carlo simulation, is essential. In this context, a 

large number of simulations is generally required to quantify the low failure probability 

associated with civil structures. Executing the required number of simulations may be 

computationally expensive, especially if complex and/or nonlinear structural models 

(e.g., finite element models) are involved. The use of surrogate modeling tools such as 

artificial neural networks, polynomial chaos expansion, and kriging can help in reducing 

the computational costs associated with simulation-based probabilistic analysis. The 

research proposed herein aims to develop probabilistic approaches for performance 

assessment and damage detection of structures using advanced simulation-based 

techniques coupled with surrogate modeling. The proposed methodology is applied to 

quantify the risk of bridge failure due to flood events considering the impact of climate 

change. The approach was extended to establish the time-variant flood fragility surfaces 

for bridges under flood conditions. This approach (a) integrates deep learning neural 

networks into a simulation-based probabilistic approach to predict the future river 

streamflow necessary for assessing the flood hazard at the bridge location and (b) 

simulates the structural behavior of the bridge foundation under sour conditions. In 

addition, the proposed methodology is used to quantify the reliability of bolted and 

welded steel connections by integrating finite element analysis and surrogate models. 

Low-rank tensor approximation and polynomial chaos kriging surrogate models are 

adopted to perform Monte Carlo simulation and quantify the reliability of the investigated 

combination connection. Finally, artificial neural networks were used to develop a 

statistical damage detection and localization approach capable of evaluating the 

performance of prestressed concrete bridge girders using fiber optic sensors. 
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CHAPTER I 
 

 

INTRODUCTION, RESEARCH NOVELTY, AND OBJECTIVES 

1.1. INTORDUCTION 

Structures and infrastructure systems are subjected to various deterioration processes due to 

natural hazards (e.g., seismic events, hurricanes, and floods), aging effects (e.g., fatigue and 

corrosion), and manmade hazards (e.g., blast events and collisions). Failure or loss of 

functionality of vital infrastructure components such as highway bridges may result in severe 

economic, social, and environmental impacts. Therefore, it is crucial to accurately quantify the 

performance of these structures. This can be achieved by employing structural health monitoring 

(SHM) in combination with damage identification methods to evaluate the current state of the 

structure and quantifying the time-variant reliability of the structure under various loading 

conditions that may be encountered throughout the service life. Proper performance assessment 

often requires integrated simulation-based probabilistic methods that are capable of considering 

complex structural interactions. Simulation-based methods can enable comprehensive 

consideration of randomness and uncertainties associated with loading conditions (e.g., extreme 

natural hazards due to climate change), current condition state of the structure (e.g., bias due to 

visual inspections), and performance prediction (e.g., underestimation or overestimation due to 

simplified mechanical models), among others. 
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In this context, a review of available literature indicates that there is a knowledge gap in 

quantifying bridge performance under extreme loading conditions; especially those encountered 

during floods. Moreover, current literature lacks methodologies that can consider the effect of 

climate change on bridge failure risk under flood conditions. Most of the current flood fragility 

models are based on analytical formulations that can carry significant uncertainties. Available 

simulation-based approaches can be computationally expensive and may be ineffective in solving 

complex problems. In addition, an approach for identifying the damage in bridge girders under 

variable loading is needed. Finally, the lack of a comprehensive approach suitable for assessing 

the reliability of steel connections is apparent in the literature. the main aim of the proposed 

research is to address these gaps through the application of efficient simulation-based 

probabilistic methods. The first section of this dissertation focuses on developing a probabilistic 

framework for risk and fragility assessment of bridges under the effect og climate change, the 

second section provides a framework for performance assessment of bridge girders using fiber 

optic sensors, artificial neural networks, and statistical damage detection techniques, while the 

third section focuses on sensitivity and reliability quantification of combination bolted-welded 

steel connection. This dissertation discusses available literature, provides solutions, and presents 

results related to the identified knowledge gaps under the following chapters: 

Chapter 2. Quantifying the Effect of Climate Change on the Risk of Bridge Failure Due to 

Floods and Flood-Induced Scour 

Chapter 3. Assessment of Time-Variant Flood Fragility of Bridges Using Deep Learning Neural 

Networks  

Chapter 4. Performance Assessment of Prestressed Concrete Bridge Girders using Fiber Optic 

Sensors and Artificial Neural Networks 
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Chapter 5. Sensitivity and Reliability Assessment of Concentric Combination Steel Connections 

Using Meta-Modeling Approach 

Chapter 6. Conclusions and Recommendations for Future Work 

1.2. RESEARCH OBJECTIVES 

The main objective of this dissertation is establishing an integrated simulation-based framework 

for assessing the performance and reliability of structures under gradual and sudden deteriorative 

effects. In particular, the research aims at solving the following research problems:  

 Incorporating climate change effects in risk quantification and performance assessment of 

bridges under flood and flood-induced scour. 

 Developing an efficient approach for establishing the time-variant flood fragility surfaces 

using deep learning neural networks. 

 Developing a non-destructive damage detection and localization framework for bridge girders 

using artificial neural networks and statistical damage detection. 

 Quantifying the reliability of concentric combination steel connections using a 

computationally efficient framework that integrates experimental test results, finite element 

modeling, and meta-modeling simulation. 

Chapter II to Chapter V of this dissertations aim to provide solutions for these objectives. 

1.3. TECHNICAL CONTRIBUTIONS OF THE RESEARCH 

 Developing the first probabilistic approach in literature for the assessment of time-variant risk 

of bridge failure due to floods and flood-induced scour considering (a) the results of 

downscaled global climate models to predict the future flood hazard and (b) the associated 

scour vulnerability under climate change. This framework considers various sources of 
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uncertainty associated with climate prediction, structural performance assessment, and 

consequences of bridge failure. 

 Employing deep leaning neural networks for establishing the time-variant fragility surfaces of 

bridges under floods, flood-induced scour, and corrosion effects considering the future 

variability in climate. Due to the computational expenses related to probabilistic analysis 

involving finite element modelling and Monte Carlo simulation, the available flood fragility 

models in the literature establish fragility curves based on qualitative measures, simplified 

reliability formulations, or approximate methods. In contrary, the proposed fragility approach 

enables the use of finite element analysis in probabilistic simulations while maintaining a 

reasonable computational cost.  

 Formulating a damage detection and localization approach for newly constructed prestressed 

concrete bridge girders using fiber optic sensing and artificial neural networks (ANNs). The 

presented approach employs ANNs to establish a relationship between the strain profiles 

recorded at different sensor locations across the investigated girder. The approach adds to 

existing literature by being capable of detecting the presence of damage at the sensor location 

without requiring detailed loading information; accordingly, it is suitable for long-term 

monitoring activities under normal traffic loads. 

 Evaluating the reliability of concentric combination connections through an integrated 

framework. Currently, the limited existing research in this area is mainly based on empirical 

reliability formulations. The presented framework combines finite element and meta-

modeling approaches to perform sensitivity analysis and quantify the reliability of bolted and 

welded connections. The framework uses the experimental data to evaluate the uncertainties 

associated with different parameters that may affect the load carrying capacity of the 

connections. 
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CHAPTER II 
 

 

QUANTIFYING THE EFFECT OF CLIMATE CHANGE ON THE RISK OF BRIDGE 

FAILURE DUE TO FLOODS AND FLOOD-INDUCED SCOUR 

2.1. OVERVIEW 

Climate change has been recognized as a significant threat for transportation infrastructure. The 

change in temperature profiles and precipitation patterns, and the increase in the intensity of 

weather related extreme events, are among the effects attributed to climate change. Additionally, 

it may also alter the frequency and intensity of flood events; which increases the complexity of 

assessing the risk of bridge failure due to flood-related failure modes. Flood occurrence generally 

increases the rate of river bed erosion and may cause the formation of scour holes around bridge 

piers leading to an increased risk of bridge failure. Several factors, such as future precipitation, 

basin parameters, flow direction, and drainage area affect the streamflow of a river; accordingly, 

the proper prediction of the long-term future flood hazard requires detailed and computationally 

expensive climate and hydrologic modeling, which can be prohibitive in assessing the life-cycle 

risk of bridges and other transportation structures. This chapter addresses these issues by 

proposing a comprehensive, yet computationally efficient, probabilistic framework for 

quantifying the risk of bridge failure due to flood events considering climate change. Statistical 

modeling is employed to draw a relationship between the downscaled climate data adopted from 

global climate models and the streamflow at a given location. The effects of different global 

climate models and carbon dioxide emission scenarios on failure risk due to flood hazard are
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taken into account. The results show that using traditional assessment approaches that does not 

properly consider climate change effects can lead to a considerable underestimation or over 

prediction in the predicted future risk. The approach is applied to an existing bridge in Oklahoma; 

however, it is equally applicable to bridges and other transportation structures located in other 

regions in the US. The work in this chapter is based on the published papers Khandel and 

Soliman (2018; 2019a; and 2019b). 

2.2. BACKGROUND 

Bridges are under continuous deterioration due to various mechanical and environmental 

stressors. Among the various extreme events which may affect the safety of bridges, hydraulic-

related ones have been identified as the leading cause of bridge failure (AASHTO 2010; Briaud et 

al. 2013). In the United States, statistical analysis estimates that 52% of bridge failures are 

attributed to hydraulic causes (e.g., flood and scour) (Cook et al. 2015). Hydraulic bridge failures 

are related to precipitation patterns and flood events at the bridge location. In this context, the 

National Oceanic and Atmospheric Administration (NOAA) reports an average increase of 612% 

in the number of floods in the United States since the 1960s and it is expecting a future increase 

in this percentage (NOAA 2015).  

The increase in flood frequency and intensity, which may be attributed to climate change, is 

expected to adversely affect the safety of our nation’s bridges, along with devastating 

consequences to our transportation systems and the communities which they serve. As an 

indication on the severity of this problem, the 2015 flooding in Texas and Oklahoma led to at 

least five reported complete or partial bridge failures (Fechter 2015; Danner and Fuller 2015). 

These 2015 flood events resulted in 31 deaths and more than 2.5 billion dollars in economic 

losses to the region (Smith et al. 2017). Accordingly, bridge design and management approaches 

should be constructed with the ability to account for climate change in the quantification of future 

flood hazard. In this regards, several studies (e.g., Camp et al. 2013; Schweikert et al. 2015; Ha et 
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al. 2017; Douglas et al. 2017) highlighted the significance of climate change adaptation strategies 

and their economic benefits on transportation infrastructure. 

Flooding can damage the bridge in several ways including overtopping, accelerated scour, debris 

impact, erosion of bridge approaches, and failure due to horizontal direct water pressure. Among 

those, scour is the most difficult deterioration mode from the management view point (Ettouney 

and Alampalli 2012). It can occur in any type of soil and undermines the stability of bridge 

foundation. Accordingly, its effects are generally global, where the failure of one footing may 

lead to the progressive collapse of the whole structure. Moreover, it is very difficult to detect and 

manage since most of its effects are hidden under water. Scour exposes the bridge foundations 

and reduces the buckling resistance of piles, as well as the lateral capacity of the foundations. 

Additionally, bridges subjected to scour become more vulnerable during floods (Hung and Yau 

2014) and may also be vulnerable under other extreme events such as seismic excitations and 

traffic overload (Banerjee and Ganesh Prasad 2013; Ganesh Prasad and Banerjee 2013). 

Over the past decades, researchers have formulated methodologies to evaluate the scour at 

bridges either deterministically (e.g., Govindasamy et al. 2008; Arneson et al. 2012) or 

probabilistically (e.g., Briaud et al. 2007; Bolduc et al. 2008), with detailed methodologies which 

can predict the performance of bridges deteriorated by scour under flood-induced loads (Hung 

and Yau 2014). Other studies focused on evaluating the effect of scour on the response of bridges 

under other hazards such as seismic events or traffic overload (e.g., Decò and Frangopol 2011; 

Wang et al. 2014b; Alipour and Shafei 2012; Yilmaz et al. 2016; Gehl and D’Ayala 2016; Zhu 

and Frangopol 2016a,b). Yilmaz et al. (2018) conducted a sensitivity study to identify the 

important parameters that govern the behavior of bridges under seismic and flood hazards. 

However, these studies did not focus on examining the potential influence of climate change on 

scour- or flood-vulnerable bridges. In an attempt to address this issue, Khelifa et al. (2013) 

quantified the regional failure risk of bridges under scour by considering the percentage of 
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increase in the 100-year floods. Given the goal of establishing regional risk levels, the failure 

probability of bridges was estimated based on an assumed overtopping probability that is related 

to the bridge condition with no detailed performance assessment. Kallias and Imam (2015) 

performed a parametric investigation to quantify the change in the failure probability of bridges 

with the change in the mean and standard deviation of the river flow.  

In another effort, Dong and Frangopol (2016) presented an approach to quantify the risk of bridge 

failure and bridge resilience under multi-hazard exposure. Their study quantified the bridge risk 

under 100, 200, and 500 years flood hazard, however no future climate prediction was included. 

More recently, Mondoro et al. (2018) presented a multi-criteria optimization framework for 

bridges considering climate change. Although they have considered the effects of climate change 

on the floods with 100-year return period, no regional climate modeling, streamflow modeling, or 

scour analysis has been performed in their chapter. Dikanski et al. (2018) also considered the 

effects of climate change on scour depth prediction through the possible changes in the floods 

with 20- and 50-years return periods. However, no structural analysis, or risk quantification has 

been performed in their study. 

Due to climate change, the uncertainties in the future projections of precipitation, regional 

moisture, rainfall, and river streamflow significantly increase, causing the traditional methods of 

design and assessment of bridges based on the 50, 100, or 200 year floods to be highly unreliable 

(Anderson et al. 2015). This unreliability promotes using a more dependable method for future 

climate prediction in order to assess the flood hazard. Using the results of global climate 

modeling and downscaling techniques to derive the regional-scale data can help quantifying the 

flood hazard considering various climate related parameters (e.g., carbon dioxide emission).  

Global climate models (GCMs) are constructed using a general circulation model to simulate the 

atmosphere considering chemical, physical, and biological aspects of global climate system 
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(Sheffield et al. 2013a,b). Several GCMs exist such as FIO-ESM, MPI_ESM_LR, CCSM4, 

MIROC5 and BNU-ESM (Taylor et al. 2012). The global climate modeling data are in global 

scale and they should be converted to regional scale data in order to study climate patterns 

associated with a given river basin. This can be achieved through running a higher resolution 

GCM, using boundary conditions of surrounding global climate model, or using statistical 

downscaling methods. The first two methods are generally recognized as more complicated and 

computationally expensive in comparison to statistical downscaling methods, which can still 

achieve results with sufficient accuracy (Laprise 2008; Coiffier 2011). GCMs can also be 

constructed for different scenarios of future greenhouse gas (GHG) emission. Due to the presence 

of several GHG emission scenarios, different global climate modeling techniques, and 

downscaling methods, climate researchers recommend using several scenarios, each of which is 

characterized by its own future GHG emission level, global climate model, initial condition, and 

downscaling technique to quantify the highest and lowest critical bounds for future climate trends 

(Xue et al. 2014). 

After obtaining the prediction of future climate trends and precipitation data, different 

hydrological models such as Variable Infiltration Capacity (VIC) (Liang et al. 1994), RAPID 

(David et al. 2016), and Riverware (Zagona et al. 2001) can be used to estimate the time-

dependent river discharge and quantify the future flood hazard. This approach was implemented 

in McPherson (2016) to quantify the impact of climate change on the Red River basin in 

Oklahoma. In McPherson (2016), three GCMS, GHG emission scenarios, and downscaling 

techniques have been implemented leading to 27 different climate scenarios.  

However, the hydrologic modeling using these tools often requires significant effort in calibration 

and executing the analysis, significant experience in hydrologic modelling, and specialized 

software that may not be available to all engineers. Accordingly, applying such approaches for 

bridge risk assessment considerably increases the complexity of the analysis. Accordingly, an 
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efficient, yet accurate approach is still needed for bridge risk assessment considering climate 

change, which is the main focus of this chapter. 

This chapter presents a probabilistic framework for assessment of time-variant risk of bridge 

failure due to floods and flood-induced scour considering the future change in climate conditions. 

Risk assessment methodologies available in literature mainly rely on the return period assumption 

or assumed variations in the parameters of the streamflow distributions in an attempt to consider 

the effect of climate change. This chapter contributes to the state of art in bridge risk assessment 

by developing a performance-based risk assessment framework capable of employing the results 

of downscaled global climate models to predict the future flood hazard and the associated scour 

vulnerability. This framework considers various sources of uncertainty associated with climate 

prediction, structural performance assessment, and consequences of bridge failure. The 

framework uses downscaled GCM data to obtain future climate trends (e.g., precipitation and 

temperature profiles) under different climate scenarios. Statistical modeling is employed to draw 

a dynamic relationship between basin rainfall and the predicted future streamflow of the river, 

leading to the quantification of future flood hazard. The failure probability of the bridge due to 

flood and flood-induced scour is quantified using Monte Carlo simulation. Risk is computed by 

combining consequences of bridge failure including direct rebuilding cost and indirect losses 

arising from traffic delays due to road closure. The proposed approach is applied to a bridge 

located in Oklahoma; however, the proposed framework can be easily applied to bridges in other 

locations across the nation. 

2.3. CLIMATE MODELING 

The greenhouse gas emission has seen a considerable increase through the 20th century. The 

ozone layer depletion attributed to this increase causes noticeable change in climatic conditions 

including global temperature increase, sea level rise, and imbalance in precipitation patterns 

(Solomon  2007; Stocker et al. 2013). Over the past decade, significant research has been 
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conducted with a main goal of predicting future climate conditions in North and Central America 

(Sheffield et al. 2013a,b; Maloney et al. 2014; Hidalgo and Alfaro 2015). These studies mainly 

focused on constructing more precise methods for climate prediction; in particular, using the 

Coupled Model Intercomparison Project Phase 5 (CMIP5). CMIP5 provides a framework for 

coordinated climate change experiments. A main goal of the project was to provide projections of 

future climate change on a near timescale (up to 2035) and long term timescale (up to 2100 and 

beyond), and to evaluate their accuracy by comparing the projections to climate data observed in 

the short-term past (Taylor et al. 2012).  

The Couple Model Inter-comparison Project Phase 5 (CMIP5) includes more than 50 different 

models that are able to project the past and future climate data. CMIP5 is the newest set of 

coordinated climate model experiments conducted to provide a multi-model understanding of 

carbon cycle and clouds, evaluate climate prediction ability on decadal scales, and to determine 

the reasons that similarly forced climate prediction models lead to various responses (Taylor et al. 

2012).  Different types of climate scenarios vary based on their atmospheric horizontal resolution 

and their model types. These models also take the interaction of various natural effects such as 

oceans, vegetation, and land surfaces into account (Sheffield et al. 2013a, b; Maloney et al. 2014). 

It should be noted that these models may not provide appropriate results for every location of 

interest. Therefore, proper analysis should be performed to choose the best models for the 

location of interest. This is achieved by comparing historical results of the adopted climate model 

to the observed data at the location of interest; which can be performed using the risk 

quantification framework proposed in this chapter.  

Statistical downscaling is a widely used tool to convert the global scale climate data (e.g., 2 

degree scale) to regional scale (e.g.,1/8 or 1/16 degree scale). Several statistical downscaling 

methods such as bias correction and spatial downscaling (BCSD), constructed analogues (CA), 

and daily bias correction constructed analogs (BCCA) are available in the literature (Maurer et al. 
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2008 and 2010). The BCCA model is a hybrid downscaling method which uses a quantile 

mapping bias correction on large scale data. This method combines the bias correction and daily 

downscaling which are typically used separately in other methods. Due to the hybrid performance 

of BCCA, it was shown to produce more accurate prediction of climate data (Maurer et al. 2010). 

Variability in future GHG emission can be modeled in terms of Representative Concentration 

Pathways (RCPs) (Stocker et al. 2013). Different RCP values consider the change in radiative 

forcing of GHG from pre-industrial times to the 21st century. Radiative forcing can be described 

as the difference between absorbed insolation energy and the reflected radiation energy by the 

earth. Four RCP levels commonly used are RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5, where the 

number represents the range of radiative forcing values in the year 2100 with respect to pre-

industrial years. RCP values are presented with Watts per square meters of earth surface (W/m2) 

and their positive value indicates the increase in the net energy gained by earth, which may drive 

the global warming. Accordingly, different RCP values will lead to differences in climate 

prediction regardless of the adopted GCM and downscaling technique. Therefore, various 

scenarios of RCPs should be considered to account for the uncertainties associated with the future 

GHG emission (Shrestha et al. 2016a).  

In addition to uncertainties associated with global climate modeling and climate scenarios, the 

effect of internal variability of the climate models should be also considered. The internal 

variability of the climate system is defined as the natural fluctuations that arises without radiative 

forcing of the planet (Hawkins and Sutton, 2009). The effect of internal variability of the climate 

models can be assessed by using various ensemble runs for each model. Generally, there are 

several ensemble runs for each climate model; these ensemble runs represent different initial 

conditions associated with each model and RCP combinations. 
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Global climate modeling is generally a computationally expensive task. This is performed 

through general circulation model, which employs Navier–Stokes equations to simulate the 

interaction of different energy sources (e.g., radiation and latent heat) on land, earth, and oceans. 

Fortunately, due to the considerable research activity in climate change over the past few decades, 

meta-data for several GCMs is available in literature. For instance, the refined daily precipitation 

and temperature data for the time period 1960 to 2100 with BCCA downscaling method are 

available through Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive at 

Brekke et al. (2013). The BCCA climate projection covers the North American Land-Data 

Assimilation System which contains contiguous United States plus portions of southern Canada 

and northern Mexico, spanning from 25.125° N to 52.875° N and - 124.625° E to -67.000° E. 

These data sets are used in this chapter for quantifying the flood hazard at the bridge location. 

2.4. STREAMFLOW PREDICTION 

In general, three types of rainfall-runoff models can be used to draw a relationship between 

climate data and streamflow: metric, conceptual, and physics-based models. While metric models 

use the observed rainfall and streamflow data to characterize the response of a given basin, 

conceptual models use internal processes of the basins to describe the storage and movement of 

water between atmosphere, lithosphere and hydrosphere. In addition, Physics-based models use 

numerical simulation of equations of motion to characterize the catchment response. Conceptual 

and physics-based models are generally more involving than metric ones; they require specialized 

software and can be computationally expensive (Croke and Jakeman 2008). Several physics-

based hydrological models such as variable infiltration capacity (VIC) (Liang et al. 1994), 

RAPID (David et al. 2016), and Riverware (Zagona et al. 2001) have been developed in recent 

decades to estimate the response of a basin and the streamflow. In contrast, metric streamflow 

modeling tools are convenient in drawing a dynamic relationship between basin rainfall and 

streamflow of a river (Carcano et al. 2008).  
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For long-term streamflow prediction, considering stationary or nonstationary model parameters 

can have an effect on the prediction results. This chapter considers stationary parameters in the 

streamflow modeling module. Performing streamflow modeling with stationary model parameters 

is a common practice in literature; however, several factors can lead to non-stationarity in model 

parameters. Changes in channel flow geometry, systematic data errors, and changes in 

precipitation patterns in comparison with the calibrated model can be among the possible reasons 

behind non-stationarity (Westra et al. 2013). Several methodologies have been recently proposed 

to account for the effect of non-stationarity on streamflow modeling under changing hydrological 

conditions (Wallner and Haberlandt 2015; Pathiraja et al. 2016). 

This chapter employs the hybrid conceptual-metric tool IHACRES (Croke et al. 2005) which uses 

statistical analysis to calibrate a streamflow prediction model and establish a relationship between 

the observed precipitation, temperature, and streamflow data. This relationship can be used to 

estimate the streamflow based on future precipitation and temperature profiles obtained from 

different GCMs. The tool uses a nonlinear module to convert observed rainfall into an effective 

rainfall and a linear module to convert the effective rainfall to streamflow. The model defines the 

effective rainfall, Uk as (Ye et al. 1997): 

  kkk prlcU ][                                (2.1) 
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in which c is the mass balance, ϕk is the soil moisture index, l represents the soil moisture index 

threshold, p is the nonlinear response term, and rk is the observed rainfall. τk is the drying rate, τw 

is the reference drying rate, f is the temperature modulation, and Tr  and Tk are the reference and 

drying temperature, respectively. The linear module finds the streamflow Qk as: 

   kkk UQQ 1
                                                    (2.4) 

Where α, β, and δ are the storage coefficient, fraction of effective rainfall, and the delay between 

the rainfall and streamflow, respectively. In addition, a second order transfer function is used to 

create a unit hydrograph as follows: 
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where z is the time-step shifter, ai and bi are fitted parameters that are defined based on the type 

of flow (i.e. quick or slow flow). Finally, the efficiency of the model is evaluated by computing 

the coefficient of determination that measures the fit between observed and modelled streamflow 

which is computed as follows:  
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where Qo is observed streamflow value and QM is modeled streamflow value. Generally, R values 

greater than 0.75 are acceptable for big basins (Croke et al. 2005). 

2.5. TIME DEPENDENT SCOUR PREDICTION 

Scour depth is a key variable that significantly affects the time-variant performance of bridges 

subjected to flood conditions. Scour modeling is a process affected by several sources of 

uncertainty (e.g., modeling uncertainty and randomness in soil properties, bridge geometry, and 
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river discharge, among others). Local scour at piers is a function of bed material characteristics, 

bed configuration, flow characteristics, fluid properties, and the geometry of the pier and footing. 

In the U.S. bridge design and assessment practice, design specifications such as the AASHTO 

LRFD (2010) include recommendations for design of bridge piers against scour, which requires 

this design to be performed on the basis of an approved method for scour predictions. These 

methods are generally empirical equations with parameters calibrated mostly using experimental 

flume tests. These equations provide the maximum expected scour depth; the foundations must be 

placed under this depth to avoid scour failure.  

In this chapter, the scour depth at piers is calculated based on Arneson et al. (2012). The time-

dependent scour prediction process starts with identifying the approach velocity Vappr representing 

the water velocity at the location of interest and the pier width a. Next, the maximum pier scour at 

each day Zmax is computed as 
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where λ is a factor accounting for modeling uncertainty, y1 is the flow depth upstream of the pier, 

K1 is correction factor for pier nose shape, K2 is correction factor for angle of attack of flow, K3 is 

correction factor for bed condition, a is the pier width, and Fr1 is the Froude number given by  
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in which Vappr is the mean velocity of the flow directly upstream of the pier, and g is the 

acceleration of gravity (9.81 m/s2).  

Several empirical equations can be used for drawing a relationship between the discharge volume 

and the water velocity and depth. However, these equations may not be reliable for all locations 
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and channel types. Accordingly, the proposed approach employs a curve fitting technique to 

establish the relationship between the river discharge and the water velocity and depth. The 

nonlinear fitting process is based on the observed velocity and depth versus discharge data, at the 

location of interest, available through the United State Geological Survey database (USGS 2017).  

Finally, the time dependent scour depth is calculated using multi flood accumulation model 

proposed in Briaud, et al. (1999a). The adopted scour depth prediction model is suitable for 

evaluating the time dependent scour depth in both cases of sand and clay (Briaud et al., 1999b). 

However, other scour prediction models can be easily accommodated in the proposed framework. 

Figure 2.1 presents the flowchart of the methodology implemented to establish time dependent 

scour depth prediction. 

 

Figure 2.1. Flowchart of the adopted time-dependent scour prediction process 
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2.6. CAPACITY OF BRIDGE FOUNDATION 

Although the proposed risk assessment approach is equally applicable to different types of bridge 

foundation, this chapter focuses on the capacity of pile foundation with steel H-piles. Lateral and 

axial limit states are considered to evaluate the behavior of this foundation type under horizontal 

and vertical loads. The ultimate lateral load carrying capacity HL of one pile is (Prasad and Chari 

1999) 

  )7.17.2(tan3.0 2 LaaBKKH PL                                        (2.9) 
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where η is shape factor to account for the non-uniform distribution of earth pressure, Kp is passive 

earth pressure coefficient, K is lateral earth pressure coefficient, δ is interface friction angle 

between the pile and the soil, γ is effective unit weight of soil, a is depth to the point of rotation, 

B is diameter or width of the pile, L is embedded length of pile, and e is eccentricity of loading. In 

this model, shear resistance contribution from both the front soil and side soil is taken into 

account. In order to evaluate the capacity of each pile in the pile group, a reduction factor is 

applied to the capacity of a single pile (Hannigan et al. 1997). An equivalent circular diameter of 

H-pile is computed based on Reese and Van Impe (2010). 

The ultimate axial load carrying capacity Rv is expressed as a sum of shaft resistance and toe 

resistance of a pile as: 

ppsspsV AqAfRRR                                                  (2.11) 
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where, Rs is the shaft resistance and Rp is the toe resistance of the piles. fs is unit shaft resistance 

over the pile surface area, As is pile shaft surface area, qp is unit toe resistance over the pile toe 

area, and Ap is pile toe area.  

2.7. BRIDGE RISK ANALYSIS 

In this approach, bridge piers are subjected to traffic live loads and dead loads computed using 

the AASHTO LRFD Bridge Design Specifications (AASHTO 2014). The adopted HL-93 live 

load model consists of the worst combination of the design truck plus design lane load or a design 

tandem plus design lane load. In addition, flood-induced lateral load FL acting on bridge pier is 

calculated as (Cuomo et al. 2008): 

ApFL                                                             (2.12) 
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where A is the area of accumulated debris, p is water pressure on piers, CD is drag coefficient, and 

Vappr is velocity of stream flow. 

The load effects and load carrying capacity, performance functions are defined as 

)()()( tFtRtG LLL                                                      (2.14) 

 )()()( tFtRtG VVV                                                       (2.15) 

where GL(t) and GV(t) are the lateral and vertical performance functions at time t, respectively, 

HL(t) and RV(t) represent the respective time-variant lateral and vertical capacities, and FL(t) and 

FV(t) are the respective lateral and vertical load effects at time t. These performance functions are 

used to evaluate the probability of failure and risk due to flood and flood-induced scour. 
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In order to assess the failure probability of bridge foundation considering the time-variant scour 

under climate change, Monte Carlo simulation of the scour model, given by equation 2.7, is 

conducted in MATLAB environment (Mathworks 2016).  This process uses the climate-based 

generated streamflow hydrographs and is used to draw samples from the scour depth at any time 

instance in the future given the climate scenario (i.e., for a certain GCM, downscaling method, 

and RCP value). The probability distribution function (PDF) of the time-variant lateral and axial 

capacity of the piles (given by equations 2.9 and 2.11, respectively) can be obtained using the 

simulation process. Next, the PDF of the time-variant flood loads are obtained from the generated 

climate-based river streamflow. 

The PDFs of the time-variant capacity and load effects are next used within the Monte Carlo 

simulation to obtain the point-in-time probability of failure of the bridge pier as: 

]0)([)(  tganyPtP if                                                       (2.16) 

where Pf (t) is point in time probability of failure and gi (t) is the i th performance function. The 

failure probability is computed as the failure probability of a system with failure modes connected 

in series. The cumulative annual probability of failure, representing the cumulative distribution 

function of the time to failure, is computed as (Decò and Frangopol 2011): 
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where TDP(y) and Pf are cumulative annual probability of failure and point-in-time annual failure 

probability of the piles.  The risk of structural failure is established based on evaluated 

consequences as: 

    CyTDPtRisk                                                        (2.18) 
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where Risk (t) is the time dependent risk, and C represents the monetary value associated with 

bridge failure and calculated considering rebuilding cost Creb, running cost Crun, and time loss Ctl 

due to the bridge failure and road closure. All of the costs are calculated in terms of U.S. dollars 

(USD) as (Stein et al. 1999) 

tlrunreb CCCC                                                                (2.19) 

where the rebuilding cost (Creb) is estimated as a function of bridge area considering length and 

width of the bridge. In some cases, only some parts of the structure needs to be repaired or 

replaced, therefore, this consequence is also known as repair cost and is calculated as follows: 

bbrcreb LWCC                                                                  (2.20) 

where  Creb is rebuilding cost ($) per unit area, Wb is bridge width (m), and Lb is bridge length 

(m). The running cost represents the additional expenses encountered through vehicle operation 

on the detour due to bridge closure and it is calculated as  

 

DADTdCC rvrun                                                              (2.21) 

where Crv is average cost of running vehicle ($/km), D is detour length (km), ADT is average 

daily traffic affected by bridge closure (vehicles/day), and d is duration of detour (days). 

The time loss cost Ctl represents the loss of time per passenger for travelling through detour. This 

cost is calculated as: 
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where C1 is value of time per adult ($/hr.), C2 is value of time for truck ($/hr.), S is average detour 

speed (km/hr.), T is average daily truck traffic (%), and O is occupancy rate. The flowchart of the 

risk analysis framework proposed in this chapter is shown in Figure 2.2. 

The proposed bridge risk assessment framework contains various sources of uncertainty. The 

uncertainty associated with the final outcome can be addressed by regression or propagation 

methods. Second moment, structural reliability, and stochastic methods are among the main 

classes of uncertainty propagation approaches (Sudret 2007). Monte Carlo simulation is one of 

the widely and commonly used second moment methods in uncertainty propagation. Accordingly, 

it has been implemented in the proposed framework to account for various uncertainties 

associated with risk quantification. 

The proposed framework contains four main modules: (a) flood prediction using climate 

modeling, (b) time-dependent scour prediction, (c) structural performance prediction considering 

floods and flood-induced scour, and (d) estimation of failure probability, failure consequences, 

and time dependent risk profile. As the first step of this framework, suitable global climate 

models for the region of interest should be selected along with associated downscaled 

precipitation and temperature profiles. Next, the discharge at the bridge location should be 

calculated using streamflow modeling techniques. This is performed herein through a hybrid 

conceptual-metric model which uses the historical records to establish a relationship between 

river discharge and precipitation and temperature patterns. The resulting river discharge profiles 

are then used to assess the scour propagation and structural performance. Next, the probability of 

bridge failure is computed using probabilistic simulations of the bridge performance function in 

terms of the resistance and load effects. The last module of this framework is focused on 

estimating the consequences of bridge failure and generating the time-dependent risk profile. As 

depicted in Figure 2.2, the proposed framework can identify the risk of bridge failure considering 

climate change. In this chapter, the framework has been applied to a steel girder bridge, However, 
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the framework can be applied to different bridges with various soil properties (clay, sand, etc.), 

scour types (pier scour, contraction scour, etc.), and structural systems. 

 

Figure 2.2. Flowchart of the proposed probabilistic approach for risk assessment under climate 

change 

 

2.8. ILLUSTRATIVE EXAMPLE 

The presented framework is illustrated on the South Bound I-35 Bridge over the Red River. The 

bridge serving a major freight route linking Southern and Northern US states is located on the 

Oklahoma-Texas border. This bridge accommodates an average daily traffic of 19,800 vehicles 

with 36% average daily truck traffic (FHWA 2016). During the past few decades, the Red River 
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has experienced several heavy floods which causing significant damage to surrounding areas. The 

most recent severe flood occurred in May 2015, in which the water reached the level of the 

superstructure. In addition, several other bridges along the Red River basin experienced partial or 

total failure during this flood (Fechter 2015; Danner and Fuller 2015). The I-35 bridge represents 

an ideal example due to its strategic location on a major freight route, the aggressiveness of 

flooding conditions on the Red River, the large daily traffic utilizing the bridge, and the lack of 

alternative routes in case of bridge failure.  

The I-35 bridge superstructure consists of five plate girders supporting a reinforced concrete 

deck, while the substructure is composed of multiple piers supported by steel H-piles (Figure 

2.3a).  The bridge is 118.3 m long and 9.5 m wide, with two traffic lanes. The bridge has 11 piers 

and 32.3 m long spans. Since not all the characteristics of the bridge could be obtained, some 

assumptions related to dimensions were placed. These include the thickness of the concrete deck 

(35 cm) and the width of the bridge piers (1.2 m). Based on the original construction drawings, 

the riverbed level is considered to be 10 m below the deck. In this study, the failure risk analysis 

has been performed considering a single pier. However, system analysis covering all the piers can 

be performed using series-system reliability formulation. A layout of bridge pier with pile 

configuration is shown in Figures 2.3b and 2.3c. The studied bridge pier has two groups of 9 steel 

H-piles (HP 12x53 steel piles), each is 11.2 m long. Piles are aligned such that their strong axis is 

perpendicular to the direction of streamflow. 

2.8.1. CLIMATE MODELING AND FLOOD PREDICTION 

The downscaled climate data for MPI_ESM_LR, CCSM4, and MIROC5 global climate models 

downscaled using BCCA method with RCP 2.6, RCP 4.5, and RCP 8.5 are adopted from Brekke 

et al. (2013). In this study, two ensemble runs for each model and RCP combination are adopted. 

It should be noted that the framework can easily accommodate any number of runs and models 
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for the location of interest. The precipitation and temperature during the time window ranging 

from 1960 to 2100 is utilized.  

 

Figure 2.3. Layout of bridge pier with investigated pile configuration: (a) piers and 

superstructure; (b) plan view of pile caps; and (c) side view of pile caps and H-piles 

The combination of three GCMs, three RCP values, and two model ensemble runs results in 

eighteenth different climate data sets. Table 2.1 shows the detailed information on the adopted 

climate scenarios. These selected GCMs were shown to provide reliable climate predictions for 

the location of interest (McPherson 2016). This has been performed through comparing the 

historical records of the region to the model predictions. The precipitation and temperature  

datasets are next used for streamflow prediction using IHACRES (Croke et al. 2005). 

For the I-35 Bridge, the observed precipitation, temperature, and streamflow time-histories 

corresponding to the period of 2000-2015 are imported to the IHACRES for evaluating the 

accuracy of the prediction model. The observed streamflow datasets are adopted from the United 

State Geological Survey station on the Red River near Gainesville, TX (USGS ID: 07316000) 

(USGS 2017) located 300 m upstream of the bridge. The observed temperature and precipitation 

data is acquired from NOAA dataset (NOAA 2017) for the same time period. With an area of 
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almost 70,000 km2 and 2200 km in length, the climate data within the Red River basin is subject 

to considerable variability due to the large basin size. IHACRES is a lumped model where the 

entire basin is treated as a single unit. Accordingly, the observed temperature and precipitation 

time-histories for 30 stations located throughout the basin are analyzed and their average time-

histories are used as the lumped input for the river flow prediction. Next, the downscaled climate 

data of the same stations are also lumped and used to generate the future streamflow data at the 

location of interest. 

Table 2.1. Adopted climate models for the investigated I-35 bridge 

Modeling Center (or Group) Institute ID 
Model 

Name 

RCP 

(W/m^2) 
Resolutions Datasets 

National Center for 

Atmospheric Research 
NCAR CCSM4 

2.6 

4.5 

8.5 

1/8 degree 

 

Max. temp. 

Min. temp. 

Precipitation 

Atmosphere and Ocean 

Research Institute (The 

University of Tokyo), 

National Institute for 

Environmental Studies, and 

Japan Agency for Marine-

Earth Science and 

Technology 

MIROC MIROC5 

2.6 

4.5 

8.5 

1/8 degree 

Max. temp. 

Min. temp. 

Precipitation 

Max-Planck-Institut für 

Meteorologie (Max Planck 

Institute for Meteorology) 

MPI-M 
MPI-

ESM-LR 

2.6 

4.5 

8.5 

1/8 degree 

Max. temp. 

Min. temp. 

Precipitation 

 

Selection of the calibration period for climate prediction is related to the application of the model, 

if the model applies to flood peaks, then the calibration period should contain enough flood peaks 

to attain proper model calibration. In case of humid catchments, a two- or three-year calibration 

period is appropriate, while in arid or semi-arid areas a longer calibration period is usually needed 

(Croke and Jakeman 2008). For the location of interest in this chapter, a five-year calibration 

period from September 2004 to August 2009 is selected. The linear and nonlinear modules are 

used to draw a relationship between the observed rainfall and streamflow. The predicted data has 

a monthly R2 value of 0.82 which meets the minimum recommended values (Croke et al. 2005). 
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Figure 2.4 shows a comparison between observed and modeled streamflow data from 2000 to 

2016. As shown, a reasonable agreement between the observed and predicted data is achieved. 

Since the framework relies on the statistical parameters of streamflow peaks within each year, it 

is more important to achieve accurate prediction of the peak discharge intensity rather than its 

exact time. 

 

Figure 2.4. Comparison between observed and the modeled streamflow (calibration period 

September 2004 to August 2008) 

After the calibration process, the downscaled temperature and precipitation datasets for the 

analyzed 30 stations are used and their average is calculated. These lumped values associated 

with each of the eighteenth climate scenarios (defined by different combinations of GCMs, RCPs, 

and ensemble runs) are used for predicting the streamflow. Next, the streamflow time-history 

associated with each climate scenario for the period of 1960 to 2099 is established using the 

achieved calibration parameters. Figures 2.5a, b, and c show the average precipitation, average 

temperature, and the predicted streamflow time series for CCSM4 model with RCP 2.6, 

respectively. Note that the users of the proposed framework can employ more detailed 

hydrological models to perform streamflow prediction for their location of interest. The results of 

such prediction can be easily implemented in the framework proposed in this chapter. 
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Figure 2.5. Average daily (a) precipitation; (b) temperature; and (c) streamflow based on 

CCSM4 model with RCP 2.6. 

The analysis of predicted streamflow resulting from the considered climate models for the 

location of interest indicates that although the mean annual discharge during the period 1960 to 

2100 is decreasing, the maximum annual discharge shows a steady increase. Figure 2.6a shows 

the annual discharge versus time for all of the adopted GCMs; additionally, it shows the mean 

and maximum annual discharge values, respectively. Figure 2.6b shows only the annual 



 

29 

 

maximum and mean discharge in addition the linear fit of these two profiles. The figure shows a 

clear trend indicating a decrease in the overall annual mean discharge. However, as indicated by 

the linear fit of the discharge peaks, the chance of having larger precipitation events is increasing. 

This highlights the importance of proper climate modeling during bridge risk assessment. 

 

Figure 2.6. River discharge resulting from different climate scenarios:(a) mean and maximum 

annual discharge; and (b) linear fit of mean and maximum annual discharge 

2.8.2. SCOUR PREDICTION AND RISK ASSESSMENT 

Scour modeling for each streamflow time-series, corresponding to a given climate scenario, is 

performed using the equation 2.7. The implemented maximum scour-depth formulation requires 

water velocity and water depth as input parameters. The water velocity and depth can be 

predicted using empirical equations or using the observed data. In this chapter, the later method is 
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employed and the historical velocity and discharge data are used to establish a relationship 

between the velocity and discharge. These relationships for the investigated location have been 

constructed using the curve fitting technique in MATLAB curve fitting toolbox (MathWorks 

2016). Figure 2.7 shows the results of the water velocity prediction. Water depth prediction is 

obtained in a similar manner.  

 

Figure 2.7. Curve-fitting results for establishing a relationship between water velocity and river 

discharge at the investigated location 

The generated water velocity and depth time series for each climate scenario are then used to 

predict the maximum scour depth based on equation 2.7. The mean and coefficient of variation of 

the modeling uncertainty factor are assumed to be 0.44, and 0.79, respectively (Johnson et al., 

2015).  Time-dependent scour depth associated with different climate scenarios is then 

established. Figure 2.8 shows the time dependent scour depth profiles for all climate scenarios. 

As shown, there is a considerable variability in the scour depths among the considered scenarios. 

The results depict up to 30% difference in final scour depth between different climate datasets. 

This highlights the significant uncertainty associated with the scour prediction considering 

climate change and justifies the need for probabilistic analysis. In addition, the results of the 

scour depth show an increasing trend until it reaches the equilibrium scour level. Reaching the 

equilibrium level generally occurs in the first few decades and the subsequent increase is not 
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significant and is limited to 10-20% of the maximum scour depth. This increases after reaching 

the initial equilibrium level can be also justified by climate change effects. 

 

Figure 2.8. Time-dependent scour depth resulting from different climate scenarios 

In order to consider this variability in the risk assessment, Monte Carlo simulation with 100,000 

samples is used to draw samples from the time-variant scour depth at the investigated bridge pier. 

Next, each sample from the distribution is used to perform the time dependent scour depth 

prediction. In this chapter the soil is assumed to be coarse sand with medium erodibility which 

falls within category III of the erosion category proposed by Briaud (2008). The internal friction 

angle of soil is considered as a random variable that follows a normal distribution with mean 

value of 36° and standard deviation of 1.33 (Fellenius 1991). The unit weight of saturated soil is 

assumed 124 lbs /ft3, and coefficient of lateral earth pressure is assumed 0.4. In addition to soil 

parameters, the streamflow is treated as a random variable. A probabilistic investigation is 

performed in order to establish the appropriate distribution parameters of the peak annual flow at 

the location of interest. A peak extraction analysis performed using MATLAB (Mathworks 

2016) is carried out to isolate the peaks within each year. The best distribution type at 95% 

confidence level that fits the peaks is found. In this specific case study, the exponential 

distribution fits best the peak data. It should be noted that other probabilistic distribution 
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functions (e.g., generalized extreme value distribution or Pearson distribution) that fits the data of 

a given basin can be integrated into the framework. The predicted streamflow of each year is used 

to predict the parameter of the exponential distribution and the Monte Carlo simulation is used to 

find the annual histograms of the time-variant scour depth. The probabilistic scour depth is next 

used to calculate probability of failure using the performance functions given by equations 2.14 

and 2.15.  

Axial and vertical load capacity of the piles are calculated using equations 2.9 and 2.11. The 

shape factors η and ξ associated with the H-piles are assumed 1.0 and 2.0, respectively (Reese 

and Van Impe 2010).  Monte Carlo simulation is used to estimate the load carrying capacity of 

the piles in axial and lateral directions. The results of scour depths are used to calculate the 

embedded length of the piles during each year. Next, axial and lateral load carrying capacities 

associated with each embedded length are then computed based on Equations 2.9 to 2.13. The 

profiles in Figure 2.9 show the mean and standard deviation of the probabilistic time-variant 

capacity of the piles in lateral and axial directions. In addition, the PDFs of resistance at the years 

2000, 2030, and 2060 are shown in the figure. In addition, the PDFs of resistance at the years 

2000, 2030, and 2060 are shown in the figure. It is shown that reduction in the lateral capacity 

reaches 50% at the end of the service life while the maximum reduction in axial capacity is 30%. 

Vertical loads from traffic and dead load of the structure are calculated based on AASHTO LRFD 

Specifications (AASHTO 2014) considering HL-93 loading to obtain maximum vertical forces on 

the bridge supports. Lateral load due to discharge is calculated using equation 2.12. With the 

probabilistic load and capacity terms in the limit state functions identified, the annual probability 

of failure can be obtained using the Monte Carlo simulation results. 

After establishing the failure probability profiles, consequences due to bridge failure are 

evaluated considering repair cost, running cost, and time loss cost, calculated using equations 

2.20, 2.21, and 2.22, respectively. The failure risk is then computed using equation 2.18. All the 
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parameters used in calculating the consequences are considered random variables, except the 

detour length (D) and the duration of detour (d). Table 2.2 presents the values of deterministic 

parameters and the descriptors of randomly distributed parameters used in calculating the failure 

risk.  

 

Figure 2.9. Time-variant resistance of piles in (a) axial direction; and (b) lateral direction 

In this chapter, it is assumed that the effect of inflation negates the money interest; accordingly, 

the discount rate of money is assumed to be zero. The detour length is derived by analysis of the 

transportation network to which the bridge belongs. The area on the I-35 before and after the 

bridge is analyzed to identify alternative routes in case of bridge failure. The analysis indicates 

that the average travel time is 25 minutes with the intact bridge, while the detour will result in an 

average of 60 minutes travel time in case of bridge failure. 
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Table 2.2. Parameters for evaluating the rebuilding, running, and time-loss costs 

Parameter Notation Value Probabilistic Parameters References 

Rebuilding 

cost ($/m2) 
Crc $894 / m2 Lognormal, COV= 0.2 

Deco & Frangopol 

(2011) 

Average cost of 

running vehicle 

($/km) 

Crv $0.08 / km Lognormal, COV = 0.2 
Deco & Frangopol 

(2011) 

Detour Length D 90 km Deterministic 

Estimated based on 

analysis of traffic 

network 

Average Daily 

Traffic 
ADT 

19,800 

vehicles/day 
Lognormal, COV = 0.2 FHWA (2016) 

Duration of 

detour 
d 

182.5 days 

( 6 months ) 
Deterministic Assumed 

Cost of time 

per adult 

($/hr.) 

C1 $22.82 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Cost of time 

for truck 

($/hr.) 

C2 $26.97 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Average 

detour speed 

(km/hr.) 

S 64 Lognormal, COV = 0.15 
Deco & Frangopol 

(2011) 

Average daily 

truck traffic 

(%) 

T 36% Lognormal, COV = 0.2 FHWA (2016) 

Occupancy 

rate 
O 1.5 adults Lognormal, COV = 0.15 

Deco & Frangopol 

(2011) 

 

In order to compute the failure probability and risk, Monte Carlo simulation with 100,000 

samples is employed. The point-in-time probability of failure is found using Equation 2.16. This 

equation employs the results of performance functions which are calculated using Equations 2.14 

and 2.15. The point-in-time probability of failure is then used to generate the cumulative 

probability of failure using Equation 2.17. Figure 2.10a shows the mean point in time 

probabilities of failure for all climate models while Figure 2.10b shows the mean, mean plus one 

standard deviation, and mean minus one standard deviation of time dependent risk profile. 
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Figure 2.10. Results obtained based on all climate models: (a) point-intime probability of failure; 

and (b) time-dependent risk 

2.8.3. IMPACT OF CLIMATE CHANGE ON BRIDGE FAILURE RISK  

Since the main goal of the chapter is to evaluate the impact of climate change on the risk profile 

of a given bridge, the risk profile resulting from the proposed approach considering climate 

modeling is compared to the risk resulting from traditional approaches based on historical data. 

The streamflow data of the past 50 years (1960-2010) at the location of interest are extracted from 

the USGS database and used to generate future flood prediction. Two methods have been used for 

flood prediction with no consideration of climate change; (a) a traditional method where the 

historic 50-year record is repeated throughout the service life, and (b) a flood prediction based on 

the Q100-Q500 approach developed by Briaud et al. (2007). The Q100-Q500 approach uses the 
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estimated 100-year and 500-year floods (i.e. Q100 and Q500) to randomly generate daily 

streamflow data. Figures 2.11a and b shows the time dependent scour depth and mean risk 

profiles generated using the 50-year historic data, the Q100-Q500 approach, and the mean of all 

climate models. It can be seen that there is a considerable difference between the three risk 

profiles. As shown, the 50-year risk profile tends to underestimate the risk compared to the other 

two approached; while the Q100-Q500 predicted, at the end of the service life, approximately 

double the risk value established using proper climate modelling. 

 

 

Figure 2.11. Comparison between results obtained from climate modeling, 50-year historical 

data, and Q100–Q500 approach for time-dependent (a) scour depth; and (b) risk profiles. 
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2.9. CONCLUSIONS 

This chapter presents a probabilistic framework for risk assessment of bridges under flood and 

flood-induced scour considering climate change. The flood and streamflow prediction is 

performed using global climate models. The downscaled precipitation and temperature climate 

data are adopted from CMIP5 archive for the location of interest and the 1960 to 2100 time 

period. The IHACRES statistical model is used to convert the climate data to streamflow 

hydrographs at the bridge location. Time-dependent scour depth is quantified and its effect on the 

axial and lateral capacity of the bridge foundation is computed. The annual point-in-time failure 

probability of the bridge due to flood-induced loads is used to predict the cumulative failure 

probability profiles of the bridge foundation. After evaluating the consequences associated with 

bridge failure, the time variant bridge risk profile is established. The following conclusions are 

drawn:   

 The time-variant scour depth significantly depends on the adopted climate scenarios. A 

variation of 29% in the final scour depth predicted using the different climate scenarios has 

been observed at the studied location. Accordingly, a probabilistic approach considering 

all potential scenarios is necessary to properly quantify the risk of bridge failure due to 

flood and flood-induced scour hazards. 

 Analysis of the predicted streamflow considering climate data for the location of interest 

indicates that although the mean annual discharge has a general decreasing trend, the 

maximum annual discharge (i.e., flow peaks) shows a steady increase. This indicates a 

potential increase in the flood hazard and highlights the importance of proper climate 

modeling for bridge risk assessment. 

 The MPI_ESM_LR model predicts the most aggressive time-dependent scour depth while 

MIROC5 model predicts the lowest scour depth for a given RCP. In addition, lower RCP 

levels generally result in a higher scour depth. Climate scenarios with RCP 2.6, regardless 
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of the associated climate model, predicted a higher scour depth compared to those with 

higher RCP levels. Furthermore, scenarios with RCP 8.5 predicted the lowest scour depth 

profiles. 

 Traditional methods for streamflow prediction based on historic data can underestimate or 

over-predict the risk of bridge failure under flood and flood-induced scour depending on 

the assumptions used to establish the future streamflow data. In contrast, the proposed 

approach based on climate models provides a rational prediction of future risk while 

properly accounting for uncertainties associated with future climate and flood conditions. 
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CHAPTER III 
 

 

ASSESSMENT OF TIME-VARIANT FLOOD FRAGILITY OF BRIDGES USING DEEP 

LEARNING NEURAL NETWORKS 

3.1. OVERVIEW 

Fragility analysis can assist infrastructure managers in properly quantifying the reliability of 

bridges under different flood hazard intensity levels. However, conducting such analysis while 

accounting for various uncertainties associated with bridge capacity, deterioration, and future 

climate conditions can significantly increase the computational cost of the bridge management 

procedure. To improve the computational efficiency of the fragility analysis while maintaining 

the desired accuracy, this chapter integrates deep learning neural networks in a simulation-based 

probabilistic framework for establishing time-variant fragility surfaces of bridges under flood 

hazard. Downscaled climate data, adopted from global climate models, are used to predict future 

precipitation and temperature profiles at a given location. Deep learning networks are employed 

with a twofold objective: (a) to predict the future river streamflow at the investigated location 

necessary for assessing the scour conditions and floodhazard at the bridge, and (b) to simulate the 

structural behavior of the bridge foundation under sour conditions. The trained deep learning 

networks are integrated into the probabilistic simulation process to quantify the failure probability 

and construct the bridge fragility surface under flood hazard. The proposed framework is 

illustrated on a bridge located in Oklahoma. The work in this chapter is based on the published 

papers Khandel and Soliman (2019d; and 2021).
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3.2. BACKGROUND 

Within the past few decades, extreme climate-related events (e.g., floods and hurricanes) were 

responsible for several cases of transportation infrastructure failure. Studies by Muis et al. (2015), 

Winsemius et al. (2016), and Wang et al. (2018), among others, predict a significant increase in 

the future flood hazard and attribute this increase to the effects of climate change. The alteration 

of temperature profiles, precipitation patterns, sea level, and frequency of coastal storms are 

examples of these effects (Neumann et al., 2015). A flood risk assessment conducted by Arnell 

and Gosling (2016) shows that climate change can be responsible for more than 180% increase in 

global flood risk by year 2050. Consequently, the vulnerability and failure risk of transportation 

structures may significantly increase unless new infrastructure management methodologies 

capable of accounting for this change are adopted. Bridges, in particular, should be a main focus 

of these management methodologies due to the potentially devastating and crippling 

consequences associated with their failure. 

Accelerated scour, erosion of bridge approaches, and excessive loads due to direct water pressure 

and debris impact are among the mechanisms that may cause partial or total bridge collapse 

during floods (Ettouney and Alampalli, 2011). Scour can reduce the buckling resistance and 

lateral capacity of pile foundations or undermine the stability of shallow foundation. These effects 

increase the bridge vulnerability during future floods or other extreme events, such as earthquake 

excitations and traffic overloads (Hung and Yau, 2014; Banerjee and Ganesh Prasad, 2013; 

Ganesh Prasad and Banerjee, 2013). To properly assess bridge reliability under extreme events, a 

comprehensive approach capable of estimating the bridge performance under potential hazard 

intensities should be utilized. In recent decades, fragility models have gained broad acceptance by 

infrastructure mangers as a proper tool for performance assessment of structures under natural 

(e.g., seismic events and hurricanes) hazards. A fragility model is a function that represents the 

probability that the structure will reach or exceed a certain damage state given a specific hazard 



 

41 

 

intensity (Gidaris et al., 2017). Such models are widely used for earthquake assessment of 

different types of critical infrastructure, such as nuclear power plants and dams. They are also 

popular for performance assessment of bridges under the effect of seismic events (Wang et al., 

2014a), tsunamis (Akiyama et al., 2012), hurricane-induced surge and wave hazard (Ataei and 

Padgett, 2012), or the combined action of multiple hazards (Banerjee and Ganesh Prasad, 2013; 

Wang et al., 2014b). Although river flooding is responsible for 28% of bridge failure in the U.S. 

(Cook et al., 2013), fragility models for bridges under river flood conditions are very limited 

(Gidaris et al., 2017).  

Among the few flood fragility models available in literature, the Hazus® (Hazus, 2018) approach 

uses data from the National Bridge Inventory database (FHWA, 2016) to provide empirical 

failure probability values as a function of the flood return period and scour vulnerability rating. 

Due to the limited data available for model calibration, failure is defined by the presence of 

damage representing 25% of the bridge replacement cost (Hazus, 2018). However, since no 

detailed structural analysis is conducted, such qualitative models may not provide enough 

accuracy for proper application in infrastructure management. Turner (2016) constructed fragility 

curves for several bridges in Colorado considering hydro-dynamic uplift forces as the main 

failure criterion. The results were used to estimate the elevation change required to improve the 

bridge reliability against hydro-dynamic uplift forces. However, other flood-related failure modes 

such as pier failure due to scour or horizontal water pressure were not included. In addition, flood 

frequency was estimated based on probabilistic analysis of gage station records along the region 

of interest. However, the actual hazard occurrence probabilities may be subjected to significant 

variations due to climate change (Arnell and Gosling, 2016). In another effort, Kim et al. (2017) 

developed a flood fragility model for bridges that considers bridge scour, structural deterioration, 

and debris accumulation when computing the failure probability. Their study implemented finite 

element analysis coupled with reliability estimation. Due to the computational expenses related to 
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probabilistic analysis involving finite element modelling and Monte Carlo simulation, a 

simplified finite element model was integrated in their computational approach and the first order 

reliability method (FORM) was used to compute the failure probability under a limited number of 

random parameters. 

In order to enable the use of finite element analysis in probabilistic simulations while maintaining 

a reasonable computational cost, some researchers resort to using approximation methods such as 

response surface analysis to generate an analytical relationship between the structural response 

and the underlying variables (e.g., Buratti et al., 2010; Park and Towashiraporn, 2014). This 

relationship can be next used in Monte Carlo simulation or other traditional reliability methods 

such as FORM. However, methods such as response surface and FORM can suffer from lack of 

accuracy in highly nonlinear problems or when multiple failure modes are to be considered 

(Kroetz et al., 2017; Song et al., 2018; Wang et al., 2018). Accordingly, using more advanced 

surrogate modeling techniques such as Polynomial Chaos Expansion (PCE), kriging models, and 

artificial neural networks can help in simulating complex and nonlinear structural systems 

considering multiple failure modes. In this regard, methods based on ANNs were shown to 

converge faster and offer a lower computation time for complex functions compared to PCE and 

kriging models (Kroetz et al., 2017). Therefore, the use of computationally efficient approaches is 

needed to enable the proper integration of detailed finite element modelling in fragility analysis of 

bridges under flood hazard. This approach should also consider the full set of random variables 

associated with bridge resistance, load effects, and hazard occurrence probability in light of 

changes expected to occur due to long-term variability in climate trends. 

ANNs are often known as systems with black box nature, meaning that their parameters are 

generally uninterpretable (Zhang et al., 2002). However, most of other surrogate modeling 

techniques such as local Gaussian processes, polynomial response surfaces, support vector 

machines, and kriging models also approximate the response function without having a physical 
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understanding of the system processes (Ferrario et al., 2017). Given the complexity of the 

functions to be simulated by ANNs, these models may require large number of samples to be 

fully trained. However, ANNs can be also integrated with adaptive experimental design 

procedures to reduce the number of samples required for their training (Gomes, 2019). The 

availability of several cloud computing resources for machine learning applications and the 

adaptation of advanced and efficient optimization algorithms can assist in managing the 

computational expenses associated with these models. 

This chapter addresses this need by presenting a probabilistic framework that relies on deep 

leaning neural networks for assessing the time-variant fragility of bridges under floods and flood-

induced scour considering the future variability in climate. The proposed framework uses 

downscaled global climate modeling data to predict future time-dependent scour profiles under 

various climate scenarios. A deep learning tool (DN 1) is employed to perform streamflow 

prediction based on future precipitation and temperature profiles throughout the basin. The 

predicted streamflow profiles are then used in probabilistic simulation to predict the long-term 

scour depth and flood hazard. A finite element (FE) model is used to produce a dataset necessary 

for training a second deep learning network (DN 2) capable of predicting the response of the 

bridge foundation under flood and flood-induced scour. The effect of long-term material 

degradation (i.e., corrosion) is taken into account. The second trained deep learning network (DN 

2) is then integrated in a Monte Carlo simulation that predicts the failure probability and 

generates the fragility surface. The fragility surface represents the bridge failure probability 

associated with a given service life and river discharge as the hazard intensity measure. 

3.3. CLIMATE DATA ANALYSIS 

Over the past few decades, significant research effort has been devoted to studying the climate 

behavior and predicting future climate trends (e.g., Sheffield et al., 2013a). The fifth phase of 

Coupled Model Intercomparison Project (CMIP5) is an innovative tool that provides an overall 
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understanding of the past and future climate trends (Taylor et al., 2012). More than 50 different 

models capable of projecting past and future climate are included in the CMIP5 dataset. The 

models are different in terms of model formulations, experiment conditions, climate noise, and 

model resolutions. In addition, multi-model ensembles are used to assist in considering the effect 

of uncertainties associated with a given model (Taylor et al., 2012). Due to the high 

computational cost associated with reliability analysis under climate change, employing all 

available climate models may not be feasible. In addition, not all climate models can generate 

appropriate results for every location; accordingly, Global Climate Models (GCMs) should be 

carefully selected. Selection of suitable GCMs for the location of interest can be performed 

through the comparison of GCM climate data to the observed historical records (Samadi et al., 

2010). 

Future greenhouse gas (GHG) emission scenarios represent another main source of uncertainty in 

climate prediction. The recent climate modeling practice defines the emission scenarios based on 

radiative forcing trends (Moss et al., 2010). Representative concentrative pathways (RCPs) 

characterize the radiative forcing which is defined as the difference between absorbed insolation 

energy and the radiation energy reflected by the earth. RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5 

are the four commonly used RCP cases. Different RCPs can be considered to account for the 

effect of variability of GHG emission and concentration pathways, as well as land use and future 

land cover (Shrestha et al., 2016b).  

The GCM results are typically constructed in large spatial resolutions (125 to 500 km grids). 

Since hydrological impact studies require fine resolution data (typically 10 to 30 km grids), the 

coarse resolution of the GCMs will not be appropriate for regional scale predictions (Frost et al., 

2011). Conversion of coarse resolution to fine resolution data can be performed using dynamic or 

statistical downscaling methods. The daily bias correction constructed analogs (BCCA) 

downscaling technique (Maurer et al., 2010) is adopted in this chapter. This technique is a hybrid 



 

45 

 

statistical method that employs both the quantile mapping bias correction and daily downscaling 

techniques to perform the downscaling. Maurer et al. (2010) shows that the hybrid performance 

of this model results in highly accurate climate prediction in regional scales. However, to account 

for uncertainties associated with the downscaling process, multiple downscaling techniques 

should be analyzed and the most appropriate ones for the location of interest can be included in 

the climate scenarios (McPherson et al., 2016). With the presence of several climate modelling 

variables, multiple climate scenarios can be defined, each of which is characterized by its own 

GCM, downscaling techniques, and RCP values. A total of 18 climate datasets, composed of 

three different GCMs, three RCP cases, and two ensemble runs of each model, are used herein. 

For each combination of climate model and emission scenario there are different ensemble runs 

with different initial condition assumptions. Different initial conditions lead to a slight fluctuation 

in model projections. However, the effect of internal variability of the models (i.e., under 

different initial conditions) decreases significantly in the long-term. This is especially true, when 

compared to other sources of uncertainties such as model uncertainty (different models) and 

scenario uncertainty (different future emissions pathways). The quantification of the effect of 

different uncertainties on climate prediction has been discussed in more depth in several studies 

(e.g., Hawkins and Sutton 2009; Yip et al. 2011). 

3.4. LONG-TERM PIER SCOUR PREDICTION 

Flood-induced scour can significantly affect the time-variant strength and stability of bridges 

subjected to flood conditions. Several scour depth prediction approaches (e.g., Breusers et al., 

1965; Briaud et al., 2001) are available in literature. These formulations, which are mostly 

developed based on flume test experiments can account for the effects of pier size, shape, and 

alignment on the maximum expected scour depth. Erosion in cohesion-less soils generally occurs 

on a particle-by-particle basis (Arneson et al., 2012). This accelerates the scour initiation rate 

such that the maximum scour depth is reached within few hours or during few flood events. In 
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contrary, the resistance of cohesive soils against erosion highly depends on the electromagnetic 

and electrostatic interparticle forces which lead to slower scour rate (Arneson et al., 2012). Scour 

rate in different soil materials can be quantified using erosion function apparatus (EFA) test 

(Briaud et al., 2001). This test quantifies the equivalent time (t) required to erode 1 mm of soil 

under various flow velocities (v). The erosion rate (
t

Z
1

  in mm/hr) and the hydraulic shear 

stress acting on the soil (τ) are quantified based on the results of the EFA test.  

The maximum pier scour depth (Zmax) is computed as (Arneson et al., 2012) 
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where λ1 is a factor accounting for modeling uncertainty, y1 is the flow depth upstream of the pier, 

K1 is correction factor for pier nose shape, K2 is correction factor for angle of attack of flow, K3 is 

correction factor for bed condition, a is the pier width, and Fr1 is the Froude number given by  
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in which V is the mean velocity of the flow directly upstream of the pier and g is the acceleration 

of gravity (9.81 m/s2). The time dependent scour depth (Z) is computed as (Briaud et al., 2001) 
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where iZ , Zmaxi, and ti represent erosion rate, maximum scour depth, and duration of the ith flood, 

respectively. The predicted time dependent scour based on this model highly depends on the 

erosion rate ( iZ ). For soils with large erosion rates (e.g., in clean fine sand), the time-dependent 
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scour depth will reach the maximum depth in a short period of time while for soils with small rate 

(e.g., in highly cohesive clays), the predicted scour depth may represent a small fraction of the 

maximum scour depth (Briaud et al., 2001). 

3.5. APPLICATIONS OF DEEP LEARNING IN THE FRAGILITY ANALYSIS 

Quantifying the probability associated with the infrastructure failure relies on the ability to 

predict the structural behavior under the effect of natural and/or human-induced hazards, while 

considering the potential deterioration due to aging. Performing these predictions involves 

complex physical-based simulations that can be highly expensive from a computational 

perspective. This problem is exacerbated when probabilistic analysis is required to account for 

various uncertainties associated with capacity and load effects. Machine learning can accelerate 

this process and assist in performing complex simulations that are not possible with traditional 

techniques (Shen, 2018).  

In recent years, deep learning (DL) has been instrumental in solving computationally intensive 

problems in various fields of science and engineering including medical image diagnosis (Sun et 

al., 2016), autonomous vehicles (Tian et al., 2018), and visual object recognition (Karpathy and 

Fei-Fei, 2015). The deep nature of these algorithms allows for better representation of complex 

functions compared to other machine learning algorithms. Several deep learning frameworks, 

such as CaffeTM (Jia et al., 2014) and TensorFlowTM (Abadi et al., 2016) have been developed in 

recent years. Owing to its programmatic approach, TensorFlowTM framework is adopted in this 

chapter to train deep feed-forward neural networks. The detailed layout of such networks is 

shown in Figures 3.1, respectively. Neural networks are generally composed of three types of 

layers; input, hidden, and output layers. An input layer is responsible for feeding the input 

parameters (X) to the network. Each hidden layer (h(m)) consists of several neurons (hnm) 

responsible for converting the input units to nonlinear functions of linear combinations of 

assigned weights and bias values as 
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hnm
(m)=f [∑(wn,n

(m)xn,n
(m)+bn,n

(m))]    (3.4) 

where wn,n
(m) and bn,n

(m) represent the weight and bias value assigned to the given input, 

respectively. The framework then optimizes the assigned weights and bias values and train the 

network by minimizing the error in prediction (Rampasek et al., 2016). TensorFlowTM employs a 

single dataflow graph to perform input preprocessing and mathematical operations in a machine 

learning environment. Each graph is made of several vertices (i.e., nodes) and edges. The vertices 

represent units of local computations and the edges represent the inputs or outputs routs to/from 

the vertices. In TensorFlowTM, the computations at vertices and the numerical flow along the 

edges are referred to as operations and tensors, respectively.  

 

Figure 3.1. Detailed layout of feed forward neural networks 
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3.5.1. STREAMFLOW AND FLOOD PREDICTION  

In this chapter, results of global climate modelling are employed to quantify future flood hazards. 

GCMs provide climate related parameters such as future precipitation and temperature profiles; 

however, flood prediction using these parameters remains a challenging task. Estimating the river 

discharge based on precipitation and temperature profiles requires detailed hydrologic modeling 

of the basin under consideration. Such detailed hydrological analysis may require considerable 

amount of resources or tools that may not be available to infrastructure managers. Applying 

innovative computational approaches such as machine learning can streamline this process and 

lead to a computationally efficient, yet highly accurate, streamflow predictions. This chapter 

adopts TensorFlowTM to predict future river discharge profiles based on downscaled temperature 

and precipitation data associated with different climate scenarios. It should be noted that common 

practice in streamflow prediction using statistical or hydrological streamflow prediction methods 

often rely on stationary assumptions (Humphrey et al., 2016). Several factors such as changes in 

channel flow geometry and precipitation patterns in comparison to historical records can be 

among the possible reasons behind non-stationarity (Westra et al., 2013). The streamflow 

modeling approach implemented in this chapter using deep learning neural networks assumes 

stationary parameters. More details regarding the employed deep network for predicting the 

future river discharge, denoted by DN 1, will be presented later in this chapter. 

3.5.2. BEHAVIOR OF BRIDGE FOUNDATIONS UNDER FLOOD AND FLOOD-

INDUCED SCOUR  

This chapter focuses on fragility assessment of bridges with deep foundations. Several strength 

and serviceability limit states are considered to evaluate the time-variant reliability of the 

foundation under horizontal and vertical loads. OpenSeesTM finite element software (Mazzoni et 

al., 2006) is employed to simulate the response of the pile group under applied loads. The piles 
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are modeled as a series of displacement-based beam-column elements and nonlinear springs. In 

addition to the aforementioned elements, pile nodes, fixed spring nodes, and slave spring nodes 

are also defined. The beam-column elements are used to model the pile elements while the 

springs, created using zero-length elements in the horizontal and vertical directions, are 

responsible for simulating the soil behavior.  

The lateral soil behavior is simulated using p-y springs (API, 1987) while the shaft and tip 

behavior are modeled using the t-z (Mosher, 1984) and Q-z (Vijayvergiya, 1977) springs, 

respectively. Several parameters including the internal friction angle (ϕ), unit weight (γ), and 

shear modulus (G) of the soil are used for defining the springs. All nodes are three-dimensional 

with six transitional and rotational degrees of freedom. The pile elements, fixed springs, and slave 

nodes are vertically distributed along the embedded length of the pile. The embedded length of 

the piles is adjusted with respect to scour depth predictions (i.e., the embedded length of the pile 

L2 = total pile length – scour depth Z). A schematic of the employed FE model is presented in 

Figure 3.2. 

 

Figure 3.2. A schematic layout of the simulated pile in OpenSeesTM 
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Evaluating the behavior of closely-spaced pile groups under lateral and axial loads requires 

considering the effects of pile-soil-pile interactions. These effects often lead to a reduction in the 

soil resistance and can be addressed by applying appropriate modifications to the response of 

single piles (Brown and Reese, 1988). For laterally loaded piles, modified p-y curves accounting 

for group effects can be established by applying the reduction factors to the p-values (Dunnavant 

and O’ Neill, 1986). In addition, the behavior of pile groups under axial loads can be modified 

using efficiency factors (O’ Neil, 1983). In this chapter, resistance reduction factors accounting 

for the group effects in the lateral direction are defined based on experimental work conducted by 

Dunnavant and O’Neill (1986). The developed FE model is used to generate the required training 

dataset for a second TensorFlowTM deep neural network denoted herein by DN 2. Full factorial 

experimental design (Dieter, 2000) is used to generate an inclusive training dataset that covers the 

possible range of input parameters encountered in the next analysis steps. The trained deep 

network (i.e., DN 2) is then integrated into the probabilistic analysis to establish the bridge 

fragility under flood loads. 

3.5.3. LONG-TERM CORROSION EFFECTS 

Corrosion of steel piles can result in reduction of capacity under lateral and axial loading 

conditions. This reduction is often caused by loss of section thickness due to aggressive 

environmental conditions or repetitive dry-wet cycles (ElGawady et al., 2019). Several factors 

such as moisture, sulfate, chloride, and micro-organism contents affect corrosion losses. 

Resistivity, chemical composition, and pH of the soil, as well as the position of water table and 

oxidation potential, were shown to also affect the corrosion propagation in steel piles (Ding, 

2019). Available literature suggests that corrosion rate in soil decreases with time (e.g., Schlosser 

and Bastick, 1991). This is mainly attributed to the depletion of oxygen and formation of a 

protective layer from the corrosion products (Ohsaki, 1982). Accordingly, time-dependent 

relationship for corrosion rate can be presented as (Kucera and Mattsson, 1987) 
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n
e kt       (3.5) 

where Δe is thickness loss due to corrosion in μm, t is the exposure time in years, k is a 

multiplying constant, and n is the exponential constant. 

3.6. FAILURE MODES AND CORRESPONDING PERFORMANCE 

FUNCTIONS  

Dead and traffic live loads, acting on the bridge are defined based on AASHTO recommendations 

(AASHTO, 2017). HL-93 live load model is adopted to compute maximum axial load effects 

acting on the bridge foundation. Hydrodynamic flood-induced load (Fdyn) is calculated based on 

FEMA 55 (2011) recommendations as 

AVCF ddyn

2

2

1
                                                       (3.6) 

where Cd is drag coefficient, ρ is Mass density of fluid (9.81 kN/m3 for fresh water), V is water 

velocity, and A is the surface area of obstruction normal to flow. The load effects and foundation 

capacity are used to define performance functions in the form of   

)()()( XXX iii LERG                                            (3.7) 

in which Gi(X) is the performance function associated with the ith limit state and the 

corresponding set of random variables X . LEi(X) and Ri(X) represent the load effects and the 

capacity of the foundation, respectively. Four performance functions are defined to cover (a) 

failure of the piles under combined effects of axial and flexural loads (b) shear failure under 

lateral loads, and (c) lateral deformations and (d) angular distortion (Ad) exceeding allowable 

limits (Hannigan et al., 2016). The interactive axial-flexural limit state considers the piles 

buckling capacity taking into account the increase in the unbraced length due to scour effects, 

while the flexural limit state considers the nominal bending capacity of the piles based on the 
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elastic and plastic properties of the H-pile section. The nominal plastic shear capacity is 

accounted for in the shear limit state (AASHTO, 2017). These limit states are suitable for bridge 

with deep H-pile foundations. Bridges with other foundation types can also be analyzed using the 

proposed framework with the definition of appropriate limit states that reflect potential 

foundation failure modes. 

3.6.1. SERVICEABILITY LIMIT STATES 

The serviceability performance functions corresponding to lateral deformation and angular 

distortion are defined, respectively, as 

                                          (3.8) 

                                          (3.9) 

where Δlimit and ΔLE are, respectively, the displacement limit and load effects while Ad,limit and Ad,LE 

are angular distortions corresponding to the defined limit and load effects, respectively. 

3.6.2. SHEAR FAILURE LIMIT STATE 

The shear performance function   XG3  is defined as 

   XX VtdCF wwyG  23 58.0      (3.10) 

where λ2 is a factor accounting for modeling uncertainty, C is the ratio of shear-buckling 

resistance to shear yield strength, Fy is yield strength of the steel material, dw and tw are the web 

depth and thickness of the pile section.  XV is the shear load effect under the applied loads Fdyn. 

The shear load effect is also a function of the soil friction angle  , corrosion rate, and the scour 

depth. 

)()()(1 XXX LEG  limit

(X)A(X)A(X)G d,LEitd,  lim2
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3.6.3. COMBINED AXIAL AND FLEXURAL FAILURE LIMIT STATE 

The combined axial and flexural performance function for slender cross sections can be presented 

as 
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where λ3 and λ4 are a factors accounting for uncertainty associated with modeling of combined 

axial and flexural resistance (Galambos, 2004).  XP ,  XxM , and  XyM  are the axial load 

and bending moments about x and y axes, respectively. Pn is the nominal compressive resistance, 

while Mnx and Mny are the nominal flexural resistance about the x (i.e., strong) and y (i.e., weak) 

axes. The nominal axial load capacity Pn and bending moment capacities can be found in 

accordance with Sections 6.9 to 6.12 of AASHTO (2017).  

3.6.4. PROBABILITY OF FAILURE USING MONTE CARLO SIMULATION 

In this chapter, it is assumed that failure of each of the defined performance functions results in 

failure of the whole system. In other words, the limit states are defined as series system. Monte 

Carlo simulation is used to compute the probability of failure of the bridge foundation Pf as 

(Melchers and Beck, 2018) 

   XXX dfIPf )(...                                           (3.12) 

where I[ ] is the indicator function for a series system f in form of: 
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where m is the number of considered performance functions (four herein) and Gi(X) represents 

the ith performance function corresponding to vector of random variables X. 

Note that accuracy of Monte Carlo simulation highly depends on the number of samples. Based 

on recommendations by Bronding et al. (1964) and Melchers and Beck (2018), the first estimate 

of number of samples (N) can be considered as 

fP

C
N

)1ln( 
      (14) 

where C is the confidence interval, Pf is the probability of failure, and N is the number of required 

simulations. This estimate provides a minimum required number of simulations. Other estimates 

for the required number of samples (e.g., Shooman, 1968; Ang and Tang, 2007; Mann et al., 

1974) are also available in literature. However, these methods do not offer a measure for the 

accuracy of the performed simulation. One of the most useful tools for identifying the adequacy 

of the number of simulations is to plot progressive results of the probability of failure estimate 

and monitor the convergence and stability of the solution (Melchers and Beck, 2018).   

3.7. BRIDGE FRAGILITY ANALYSIS FRAMEWORK 

The proposed framework establishes the fragility of bridges under flood hazard through three 

interconnected modules. Module 1 is responsible for predicting the future streamflow and long-

term scour, while Module 2 generates the random samples used in the Monte Carlo simulation of 

the resistance and load effects. Module 3 computes the failure probability and established the 

bridge fragility. A layout of the framework is presented in Figure 3.3. As shown in the layout of 

Module 1, downscaled precipitation and temperature profiles associated with the selected climate 

scenarios are used to generate future streamflow profiles. This process relies on the deep neural 

network DN 1 trained using observed temperature and precipitation at various stations across the 

studied region, as well as the corresponding streamflow data at the bridge location. Note that the 
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application of Module 1 requires the availability of historical precipitation, temperature, and 

streamflow time-history data for the location of interest. The framework also assumes that 

downscaled climate prediction data is available for the considered bridge. Currently, this data is 

available for the Unites States through Brekke et al. (2013). 

In Module 2, the resulting streamflow time-series associated with each climate scenario is 

integrated into Monte Carlo simulation, based on Equations 3.1 to 3.3, to generate samples from 

the random scour depth. Other random variables generated in Module 2 include the live load 

effects and soil properties. The developed OpenSeesTM FE model was initially employed to 

compute the load effects necessary for establishing the bridge fragility; however, given the large 

number of random variables, this process was proven to be computationally expensive. 

Accordingly, the FE model was used to generate training dataset for DN 2. This dataset covers 

the possible range of input parameters including the scour depth and soil properties, in addition to 

axial and lateral loads. DN2 is next used for computing the load effects (e.g., internal forces, 

stresses, and deformations) associated with each random sample and the corresponding value of 

the performance function. The capacity against axial, flexural, and shear failure modes is 

computed using AASHTO (2017) provisions. 

The third module is responsible for computing the probability of failure and bridge fragility. 

Since the scour level can change along the bridge service life, the fragility established herein is a 

function of both the river discharge, as the hazard intensity parameter, and time. For a certain 

value of river discharge and service life, DN 2 is used to compute the corresponding load effects 

and failure probability. For a given climate scenario, the procedure is iterated to cover the full 

range of expected service life and hazard intensities resulting in a three-dimensional fragility 

surface. Finally, this process is repeated for all climate scenarios resulting in a mean fragility 

surface that assigns equal weights to the adopted climate scenarios (Weigel et al., 2010). 
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Figure 3.3. Proposed framework for establishing time-variant flood fragility 

3.8. ILLUSTRATIVE EXAMPLE 

The proposed framework is illustrated on the South Bound of I-35 Bridge over the Red River. 

This bridge, located on the Texas-Oklahoma border, serves a main transportation artery that links 

southern and northern states. The bridge is located on a major freight route with an average daily 

traffic of 19,800 vehicles per day (FHWA, 2016). The superstructure of the I-35 Bridge consists 

of ten 32.3 m long and 9.5 m wide spans, each of which has a 35 cm think reinforced concrete 

deck and five plate girders with two traffic lanes. The bridge substructure consists of 11 piers. 

The piers are 1.2 m wide and supported by two pile groups with nine 11.2 m long steel H-piles 

(HP 12x53 steel piles). Based on the original construction drawings, the riverbed level is 

considered to be 10 m below the deck. A layout of bridge pier with pile configuration is shown in 
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Figures 3.4a and b. In this chapter, it is assumed that the failure of a single pier constitutes the 

bridge failure event.  

 

Figure 3.4. Layout of bridge pier with pile configuration (a) plan view of pile caps (b) side view 

of pier and H-piles 
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3.8.1. CLIMATE DATA ANALYSIS  

Downscaled CMIP5 products are adopted from the public online database “Downscaled CMIP3 

and CMIP5 Climate and Hydrology Projections” (Brekke et al., 2013). In particular, the 

MPI_ESM_LR, CCSM4, and MIROC5 global climate models downscaled using BCCA methods 

are employed. These models are selected based on the results of a detailed climate investigation 

performed by McPherson (2016) for the Red River basin. In their analysis, it was shown that the 

aforementioned GCMs are capable of providing reliable climate predictions for the region of 

interest. This has been addressed through comparing the historical records of the region with the 

model predictions.  

In addition, the three radiative forcing cases RCP 2.6, RCP 4.5, and RCP 8.5, along with two 

different ensemble runs associated with each GCM and radiative forcing case are adopted. The 

combination of the three GCMs, three RCP cases, and two model ensemble runs provided 

eighteen individual climate datasets. These datasets consist of temperature and precipitation time-

series of 140 years starting from the year 1960. For each combination of climate model and GHG 

emission scenario (e.g., CCSM4-RCP2.6) there are different ensemble runs, each with its own 

assumed initial conditions. Initial conditions lead to slight fluctuation in model projections. 

However, the effect of internal variability of the models (i.e., under different initial conditions) 

decreases in the long-term. This is especially true, when compared to other sources of 

uncertainties such as model uncertainty (i.e., different models) and scenario uncertainty (i.e., 

different future emissions pathways). The quantification of the effect of different uncertainties on 

climate prediction has been discussed in more depth in several studies including Hawkins and 

Sutton (2009) and Yip et al. (2011).  
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3.8.2. FLOOD PREDICTION USING DEEP LEARNING 

A deep feed forward neural network is employed to perform the streamflow modeling. This deep 

network, referred to as DN 1 in this chapter, is created in TensorFlowTM environment and consists 

of 6 hidden layers. It was found that using 2048, 1024, 512, 256, 128, 64 neurons in the hidden 

layers 1 to 6, respectively, provides streamflow prediction with adequate accuracy. Adam 

optimizer (Kingma and Ba, 2014) is employed to establish the optimum weights wn,n
(m) and bias 

bn,n
(m) values that minimize the mean squared error (MSE) of the predicted data with respect to the 

target output.  

Time-series of observed temperature and precipitation profiles of 30 weather stations across the 

Red River basin for the time period of 2000 to 2015 are extracted from the National Oceanic and 

Atmospheric Administration (NOAA, 2018) database. In addition, time-series of the observed 

streamflow data associated with the same time period (i.e., 2000 to 2015) is extracted from the 

United State Geological Survey (USGS) station on the Red River near Gainesville, TX (USGS 

ID: 07316000) (USGS, 2018). This station is located 300 m upstream of the investigated bridge. 

Selection of the stations was based on the following criteria (McPherson, 2016) (a) data for the 

modeling period must be available, (b) each station should at least have a drainage areas 

containing eight grid cells, and (c) if more than one station is located within the same 1/8°×1/8° 

grid cell, the station with larger drainage area should be chosen. The second and third criteria are 

selected to maintain compatibility with the adopted downscaled climate data which is provided in 

1/8° resolution. Figure 3.5 depicts the map of the Red River basin, selected weather stations, and 

location of the investigated bridge. The observed precipitation, temperature, and corresponding 

streamflow datasets are used for training and testing the accuracy of DN 1. In this process, the 

precipitation and temperature profiles are used as the input parameters while the corresponding 

observed streamflow is considered the target output. Eighty percent of the observed dataset (i.e., 

4,675 days) is randomly selected and allocated for training the model (i.e., the training dataset) 
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and the remaining 20% (i.e., 1,169 days) is used to evaluate the accuracy of the model (i.e., 

testing dataset). A common practice is to ensure that both the training and testing datasets are 

representatives of the underlying problem (Bickel et al., 2009). This can be achieved by 

comparing the statistical properties of the selected database to those of the available historical 

streamflow record for the investigated location. The daily coefficient of determination (R2) is 

used to evaluate the trained model as 
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where Qo is observed daily streamflow, QM is the predicted daily streamflow using DN1. It should 

be noted that R2 values greater than 0.75 can be considered acceptable for large basins such as 

Red River (Croke et al., 2005). 

 

Figure 3.5. The Red River basin, investigated bridge location, and the considered weather 

stations 

Figure 3.6 shows a comparison between the predicted and observed streamflow of the testing 

dataset. As shown, a reasonable agreement between the observed and predicted data is achieved. 

The evaluation of testing set indicates a R2 value of 0.9116 and mean square error of 1.8452e-4. 
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More importantly, the trained network can accurately predict the high discharge values 

representing flood events. 

 

Figure 3.6. Comparison between the predicted versus the observed streamflow of the testing 

dataset 

After the calibration process, the downscaled temperature and precipitation datasets associated 

with the adopted climate scenarios and corresponding to each of the 30 weather stations across 

the basin are extracted from the climate prediction database (Brekke et al., 2013). These datasets 

are then fed to the trained DN 1 to generate streamflow time-histories associated with each 

climate scenario and ensemble run for the period of 1960 to 2100. As an example, Figure 3.7 

shows the generated streamflow profile associated with model CCSM4 with RCP 4.5. To assess 

the capability of this streamflow prediction method, the predicted river discharge is compared to 

the prediction results of the detailed hydrologic modeling conducted by McPherson (2016) for the 

bridge location. Figure 3.8 compares the probability plots of the streamflow obtained using the 

adopted deep learning approach and the corresponding results reported in McPherson (2016). A 

reasonable agreement can be seen between both predictions. The small variation between the two 



 

63 

 

profiles can be attributed to the different downscaling method and initial conditions adopted in 

McPherson (2016). Note that the trained DN1 is well generalized and is able to predict results 

outside the training dataset that has a maximum discharge of 5200 m3/s. 

 

Figure 3.7. Streamflow time-series associated with CCSM4 model and RCP 4.5 generated using 

DN1 

 

Figure 3.8. Simulated river discharge associated with CCSM4 model and RCP 4.5 using DN1 

versus detailed streamflow modeling by McPherson (2016) 

Figure 3.9 shows the randomly generated profiles of the long-term scour for all climate scenarios. 

The scour depth profiles are obtained based on Equations 3.1 to 3.3. The probability density 
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function (PDF) of the scour depths at the years 2000, 2040, and 2080 are also presented. This 

figure highlights the variability associated with the scour prediction especially when future 

climate scenarios are considered. 

3.8.3. LONG-TERM CORROSION PREDICTION 

The long-term corrosion effects are considered using Equation 3.5. The results of investigations 

conducted by Decker et al. (2008) on steel H-piles suggest that in moderate environmental 

condition, k and n can be assumed as 59 and 0.67, respectively. In addition, Ahammed and 

Melchers (1997) recommended that these constants follow a normal distribution with coefficient 

of variation (COV) of 0.56 and 0.26 for k and n parameters, respectively. The thickness loss due 

to corrosion is estimated given the exposure time (t) and the randomly generated k and n 

constants. The cross-sectional properties of the pile (e.g., thickness, area, and moment of inertia) 

are recalculated with respect to the estimated losses for each random sample. The updated cross-

sectional properties are then used to quantify the effect of material deterioration on the predicted 

capacity. These results are then used in the performance functions to calculate failure 

probabilities at different points along the service life. 

 

Figure 3.9. Randomly generated long-term scour depth profiles based on all climate scenarios 
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3.8.4. PILE GROUP ANALYSIS USING FE AND DEEP LEARNING 

The developed FE model is employed to produce the required data for training the deep network 

(i.e., DN 2) used to quantify the foundation performance under lateral and axial loads. This 

network is used in place of the iterative execution of the FE model to accelerate the probabilistic 

simulation process. The pile group is modeled as a single pile discretized into 113 beam-column 

elements. Nonlinear pile nodes, slave nodes, modified p-y, and t-z springs are distributed along 

the depth of the simulated pile with 0.1 m spacing. The p-y curves are modified by applying a 

resistance reduction factors of 0.365 accounting for the closely spaced group effects in the lateral 

direction (Dunnavant and O’ Neil, 1986).  

The performance of the OpenSeesTM model is benchmarked against the results of Group Software 

(Resse et al., 2016) which implements soil resistance curves and pile-soil-pile interaction effects 

to analyze pile groups under lateral and axial loadings. A comparison between the lateral 

displacements, bending moments, and shear forces generated by OpenSeesTM and GroupTM   are 

presented in Figure 3.10. The presented Group TM results show the mean of 9 responses associated 

with all the piles within the group. 

The OpenSeesTM model is then used to generate a training dataset for the deep learning network 

DN 2. Full factorial experimental design (Dieter, 2000) is used to create the pool of data used to 

run the OpenSeesTM model; however, other experimental design approaches can be also used for 

more complex finite element models. A set of uniformly distributed variables including scour 

depths, lateral loads, axial loads, and angle of frictions are used to generate the training dataset. 

The values of these variables are selected to cover the possible range that may occur in the 

fragility analysis. Scour depths ranging from 0 to 5.0 m, lateral loads ranging from 20 to 200 kN, 

angle of friction ranging from 29 to 40 degrees, and axial loads ranging between 1200 and 4000 

kN are used to generate a total of 40,000 different combinations of input and output data points. 
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A MATLAB® (MathWorks, 2018) script is developed to automatically define the combinations 

of input parameters, execute the FE analysis, and record the responses of the pile with respect to 

each input combination. Lateral and axial displacements, shear forces, bending moments, and 

axial forces along the depth of the simulated pile are recorded and used for training DN 2. 

 

Figure 3.10. Generated lateral displacement, bending moment and shear forces based on 

OpenSeesTM and GroupTM software 

DN 2 is next employed to predict the group pile response under the applied loads and scour 

deterioration. A deep network consisting of four hidden layers with 1024, 512, 256, and 128 

neurons was able to provide highly accurate response predictions. An optimization procedure 

similar to the one adopted in DN 1 is used to establish the optimum weights and bias values. The 

scour depth, lateral load, axial load, and angle of friction are defined as the input parameters. The 

maximum internal forces, in addition to horizontal and vertical displacements represent the target 

output of DN 2. Eighty and 20% of the generated FE results are respectively used for training and 

testing the network. Figure 3.11 compares the deep learning results to their finite element 

counterparts. The coefficient of determination (R2) and mean squared error (MSE) associated 

with each of the network output parameters are also presented in the figure. As shown, DN 2 is 
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capable of predicting the structural responses under the applied input parameters with high 

accuracy. In addition, the high accuracy of the trained DN2 highlights the fact that the response of 

the modeled pile system could also be simulated using other types of surrogate modeling 

techniques such as binary decision trees, regular neural networks, and regression models. 

Application of such models in simulating pile group behavior is also highlighted in several 

research articles such as Chan and Low (2012), Balomenos and Padgett (2018), and Singh et al. 

(2019). Among these techniques, surrogate models with interpretable model parameters such as 

logistic regression (Hosmer et al., 2013) and random forest regression (Liaw and Wiener, 2002) 

can provide useful information regarding the relationship and interdependencies between input 

parameters. This information can be particularly helpful in infrastructure management and risk 

mitigation decision making. It should be noted that the framework presented herein can be easily 

modified to accommodate other surrogate models for simulating the pile response function. 

 

Figure 3.11. Displacements and internal forces generated using DN2 versus finite element results 

of the testing dataset 
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3.8.5. BRIDGE FLOOD FRAGILITY 

The proposed bridge fragility surface provides the failure probability with respect to river 

discharge and service life. Generated scour depth profiles, in addition to dead and live loads are 

used to compute the failure probability of the bridge under different river discharge values. 

Lateral load effects encountered during floods are computed for different discharge values using 

Equation 3.6. Analysis of river discharge resulting from climate modelling and streamflow 

prediction revealed that a maximum discharge of 9,274 m3/s can be expected at the bridge 

location; accordingly, the proposed bridge fragility surface covers discharge values up to 10,000 

m3/s. The live load acting on the pile group is assumed to follow a normal distribution with a 

COV of 0.18 (Wang, 2010). The angle of friction (ϕ) is assumed to follow a normal distribution 

with mean and COV of 35 and 0.06 (Kadar and Nagy, 2017), respectively. 

Monte Carlo simulation with 10,000 samples corresponding to each climate dataset is 

implemented to compute the failure probability given the discharge and service life considering 

four limit states. This results in a total of 180,000 samples for the 18 climate datasets; however, 

more samples may be used if a finer resolution of the failure probability at low discharge volumes 

is required. The shear and combined axial-flexural failure limit states are given by Equations 3.10 

and 3.11 in accordance with AASHTO (2017) recommendations. The limit states consider 

uncertainty associated with material properties (i.e., yield strength and modulus of elasticity) and 

resistance prediction models (i.e., shear, moment, and axial capacities). Allowable lateral 

displacement is assumed to follow a lognormal distribution with mean of 25 mm and COV of 0.2 

(Haldar and Basu, 2014). An Axial displacement limit is defined to restrict the angular distortion 

(Ad) of the piles. This upper bound is considered to follow a lognormal distribution with mean 

and COV equal to 0.004 and 0.2, respectively (Hannigan et al., 2016). Descriptors of the 

considered random variables and their probabilistic distributions are presented in Table 3.1. Note 

that in this chapter, the considered random variables are assumed uncorrelated. However, the 
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proposed framework can easily accommodate other case studies with correlated random 

variables. Further information regarding the generation of correlated random samples can be 

found in Ang and Tang (2007) and Li et al. (2013). 

Given the service life of the bridge, 10,000 samples representing the probabilistic distributions of 

the scour depth are extracted from the long-term scour prediction. These samples are used in 

conjunction with the random samples from the soil properties and external loads to compute the 

internal forces and deformations under a given discharge value by means of deep learning 

network DN 2.  

This process is repeated for each combination of service life and river discharge to establish the 

fragility surface. The resulting three-dimensional fragility surface is depicted in Figure 3.12. As 

shown, the probability of failure increases in conjunction with both the service life and discharge 

values. The increase in failure probability for a given discharge value is due to scour 

accumulation and corrosion deterioration along the service life. The increase in the failure 

probability values at a given time can be attributed to the increase in applied lateral loads and 

moments due to more aggressive floods.  Figure 3.13 a, and b depict, respectively, the two-

dimensional fragility curves with respect to the service life and river discharge. As shown, due to 

the combined effects of corrosion and scour, the probability of failure corresponding to a given 

hazard intensity (i.e., discharge values) significantly varies during the service life. 
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Table 3.1. Properties of deterministic parameters and descriptors of the random variables  

Parameter Notation Distribution 
Mean 

Value 

Coefficient 

of Variation 
Reference 

Scour modeling 

uncertainty factor 
λ1 Normal 0.44 0.79 

Johnson et al. 

(2015) 

Nose shape factor K1 Deterministic 1.1 - 
Arneson et al. 

(2015) 

 

Attack angle factor K2 Deterministic 1.0 - 

Bed condition 

correction factor 
K3 Deterministic 1.1 - 

Live load LL Normal HL-93 0.18 

AASHTO 

(2017); Wang 

(2010) 

Angle of friction ϕ Normal 35 0.06 
Kadar and 

Nagy (2017) 

Lateral displacement 

limit 
ΔL_critical Lognormal 25 (mm) 0.20 

Haldar and 

Basu (2014) 

Angular distortion 

limit 
Ad Lognormal 0.004 0.20 

Hannigan et 

al. (2016) 

Corrosion multiplying 

constant 
k Normal 59 0.56 

Decker et al. 

(2008); 

Ahmmad and 

Melchers 

(1997) 

 

Corrosion exponential 

constant 
n Normal 0.67 0.26 

Shear resistance 

uncertainty factor 
λ2 Lognormal 1.05 0.12 

Galambos 

(2004) 

Combined axial-

flexural uncertainty 

factor 

λ3 Lognormal 1.01 0.04 
Galambos 

(2004) 

Combined axial-

flexural uncertainty 

factor 

λ4 Lognormal 1.005 0.0093 
Galambos 

(2004) 

Yield Stress Fy Lognormal 350 (MPa) 0.07 JCSS (2001) 

Modulus of elasticity E Lognormal 200 (GPa) 0.03 JCSS (2001) 
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Figure 3.12. Time-variant fragility surface associated with the mean of adopted climate datasets 

 

Figure 3.13. Variation in the flood fragility with respect to (a) river discharge and (b) service life 
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3.9. CONCLUSIONS 

This chapter presented a probabilistic framework for fragility assessment of bridges under flood 

and flood induced scour considering climate change. Downscaled precipitation and temperature 

climate datasets, adopted from CMIP5 archive for the location of interest, are used to predict the 

river discharge and scour depth. A deep feed forward neural network (i.e., DN 1), trained by historic 

records at the bridge location, was adopted to predict the discharge. An OpenSeesTM FE model 

generated the required training data for a second deep neural network (i.e, DN 2) to compute the 

internal forces and displacements of the foundations given the service life and river discharge. The 

annual failure probability of the bridge under flood-induced loads was calculated and used to 

develop the time-variant fragility surfaces of the bridge. The following conclusions are drawn:   

 The proposed approach is capable of establishing the bridge flood fragility as a function of 

the service life and river discharge. This fragility surface can help bridge officials in 

making informed decisions related to management activities (e.g., retrofit) aiming at 

reducing the failure probability under future flood hazard. In addition, it provides a 

quantitative measure that can assist in making bridge closure decisions during flood events. 

 The employed neural network (i.e., DN 1) is able to predict the streamflow, given the 

temperature and precipitation patterns, with a sufficient accuracy. This was highlighted by 

a daily coefficient of determination (R2) of 0.9116 during the calibration phase. In addition, 

the streamflow prediction results provided a good agreement with those published in 

literature based on detailed hydrological analysis. 

 The generated fragility surface shows that scour propagation along the service life can 

significantly reduce the bridge reliability against future floods. This highlights the 

importance of applying appropriate scour countermeasures to reduce the failure probability. 

 The employed surrogate deep learning networks were fully trained in approximately 30 

hours using 40,000 FE executions conducted on a desktop computer with 16 GB memory 
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and a dual core i7-7700 @ 3.6 GHz Intel processor. Given that a total of 70,000,000 

simulations was required for developing the fragility surface for each climate scenario, 

with an average FE model analysis time of three seconds, significant reduction in the 

computational time was achieved through the proposed framework. 
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CHAPTER IV 
 

 

PERFORMANCE ASSESSMENT OF PRESTRESSED CONCRETE BRIDGE GIRDERS 

USING FIBER OPTIC SENSORS AND ARTIFICIAL NEURAL NETWORKS 

4.1. OVERVIEW 

Structural health monitoring (SHM) activities are essential for achieving a realistic 

characterization of bridge structural performance levels throughout the service life. These 

activities can help detect structural damage before the potential occurrence of component- or 

system-level structural failures. In addition to their application at discrete times, SHM systems 

can also be installed to provide long-term accurate and reliable data continuously throughout the 

entire service life of a bridge. Owing to their superior accuracy and long-term durability 

compared to traditional strain gages, fiber optic sensors are ideal in extracting accurate real-time 

strain and temperature data of bridge components. This chapter presents a statistical damage 

detection and localization approach to evaluate the performance of prestressed concrete bridge 

girders using fiber Bragg grating (FBG) sensors. The presented approach employs Artificial 

Neural Networks (ANNs) to establish a relationship between the strain profiles recorded at 

different sensor locations across the investigated girder. The approach is capable of detecting the 

presence of damage at the sensor location without requiring detailed loading information; 

accordingly, it can be suitable for long-term monitoring activities under normal traffic loads. The 

work in this chapter is based on the published papers Khandel et al. (2019c; and 2020). 
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4.2. BACKGROUND 

Due to various deterioration processes (e.g., corrosion and fatigue), more than 10% of bridges in 

the United States are categorized as structurally deficient (FHWA, 2016). Among those, 

approximately 53% are multi-beam/girder bridges. A large number of newly constructed bridges 

in the U.S. use prestressed concrete. In order to facilitate informed repair and replacement 

decisions when these structures approach the end of their service life, they could be instrumented, 

during construction, with sensors that can provide accurate and reliable data throughout the entire 

service life. In this context, fiber Bragg grating (FBG) sensors can provide outstanding long-term 

stability and highly reliable strain and temperature measurements with minimal processing effort 

(Lin et al., 2004). These sensors, when embedded into the prestressed concrete (PSC) components 

during construction, can provide accurate real-time strain and temperature measurements at any 

time during the service life. The measurements obtained from these sensors can be used to assess 

the initial strain levels from the prestress forces and to develop a baseline strain profile under 

normal traffic loads that can help in evaluating the long-term condition of the bridge component. 

Statistical damage detection techniques can be used to achieve this goal by identifying the 

deviation of a future state of the system from the baseline state (Gres et al., 2017). 

The introduction of the fiber FBG sensors by Morey et al. (1990) opened the door for applying 

fiber optic sensors in strain-based performance monitoring activities. Dunphy et al. (1990) 

demonstrated the feasibility of using FBG sensors in monitoring the response of layered 

graphite/epoxy composite components. Prohaska et al. (1993) employed FBG sensors to measure 

strains in a large-scale reinforced concrete beam under pure bending. Research on the application 

of fiber optic sensors in health monitoring of structures covers other applications including 

monitoring long-term prestress losses (e.g., Maaskant et al., 1997), quantifying the short- and 

long-term changes in the response of concrete structures (e.g., Idriss et al., 1998; Inaudi and 

Vurpillot, 1999; Lin et al., 2004), studying structural vibration characteristics (Kang et al., 2007; 



 

76 

 

Chung and Kang 2008), and detecting concrete cracking. FBG sensors have also been used to 

quantify prestress losses (Butler et al., 2016; Abdel-Jaber and Glisic 2019) and long-term effects 

due to creep and shrinkage (Webb et al., 2017).  

Fiber optic sensors have also been employed for damage detection in PSC components. Zhang et 

al. (2006) employed fiber optic sensors to identify the damage in externally prestressed concrete 

T-beams by comparing their recorded response to analytically derived limit states. Uva et al. 

(2014) proposed a method to identify damage in prestressed concrete viaducts based on expected 

theoretical strains and actual strain recorded with FBG sensors. Abdel-Jaber and Glisic (2015) 

used long-gauge FBG sensors to detect pre-release cracks and monitor prestressing force transfer 

in PSC girders. Their approach focused on damage due to crack opening during the pre-release 

phase. Waeytens et al. (2016) applied model updating techniques for damage detection in a post-

tensioned concrete beam under static loading using distributed fiber optic sensors. Their method, 

which requires detailed loading information, updates physical parameters (e.g., modulus of 

elasticity) of different subdomains in a finite element model to match the experimental results. 

Anastasopoulos et al. (2018) used FBG sensors to develop strain mode shapes and identify 

structural damage based on the change in top-to-bottom strain ratio in a prestressed concrete roof 

girder. However, their approach is more suitable for isolated individual structural components.  

Statistical damage detection can be performed using supervised or unsupervised methods. The 

former method requires damage-sensitive features (DSFs) from both damaged and undamaged 

states of the structure, while unsupervised methods detect the damage using information from a 

baseline undamaged structural state (Santos et al., 2013). Due to the fact that obtaining DSFs 

from the damaged state of the structures is challenging, common statistical damage detection 

practices often rely on unsupervised methods (Jin and Jung 2018). Several methodologies are 

available for damage detection and localization in bridges using unsupervised statistical damage 

detection (e.g., Mattson and Pandit, 2006; Reiff et al., 2016; Weinstein et al., 2018). However, 



 

77 

 

these methods are often based on small-scale laboratory tests on idealized structures or may 

require comprehensive finite element analysis and detailed loading information for proper 

damage detection. In addition, less focus has been placed on the application of unsupervised 

statistical damage identification in PSC bridge components using fiber optic sensing systems. In 

particular, an approach capable of assessing damage in PSC bridge components under random 

loading is required.  

This chapter presents a framework for damage detection and localization in newly constructed 

prestressed concrete bridge girders using fiber optic sensing and Artificial Neural Networks 

(ANNs). The presented approach uses an inferred relationship between the strain profiles at 

different sensors distributed across the girder to detect damage under variable amplitude loading. 

The presented damage detection and localization approach does not require applied loads as input 

parameter or detailed finite element analysis of the investigated component. In addition, it has 

higher accuracy compared to other monitoring techniques relying on foil-type strain gages. The 

approach is illustrated using experimental data obtained from flexural testing of a large-scale 

prestressed concrete girder instrumented with FBG sensors. The strain readings obtained during 

an initial random loading stage are used to train ANNs and define acceptable prediction error 

bounds to judge whether or not the girder is damaged. The trained ANNs are then used to predict 

strain profiles at target sensors for other randomly generated variable amplitude and monotonic 

load tests. Finally, the error between the predicted strains and experimental data is compared to 

acceptable error bounds to identify and localize the damage in the girder during subsequent load 

tests. 

4.3. DAMAGE DETECTION AND LOCALIZATION PROCEDURE 

4.3.1. ARTIFICIAL NEURAL NETWORKS (ANNS) 

Artificial Neural Networks (ANNs) are algorithms designed to recognize numerical 
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patterns. Several types of neural networks, such as feedforward, radial basis function, 

convolutional, recurrent, and modular neural networks, have been introduced to assist in 

solving complex computational problems in various research areas (Mehta, 2019). Owing 

to their superior prediction accuracy and computational efficiency, feed forward ANNs, 

which consist of one or more hidden layers, have been one of the most widely adopted 

network types (Montana, 1989). ANNs consist of input, output, and hidden layers. An 

input layer is responsible for introducing the input parameters (X) to the ANN. The 

Output layer is the last layer of neurons that streamlines the results matrix (Y), while g 

hidden layers (h(1) to h(g)), each consisting of several neurons (e.g., n1
(1) to na1

(1) for hidden 

layer one and, n1
(g) to nag

(g) for hidden layer g), are responsible for converting the input 

units to nonlinear functions of linear combinations of weights (e.g., w1,a2
(2) for weights 

between neuron 1 of first hidden layer and neuron a2 of the second hidden layer) and bias 

values (e.g., ba1,a2
(2) for bias between neuron a1 of first hidden layer and neuron a2 of the 

second hidden layer) assigned to a given input parameter. A transfer function (f) will then 

determine the state of each hidden layer during the training as (Montana, 1989) 

 )()()( ppp
fh BXW   and p = 1 to g    (4.1) 

where W(p) and B(p) are the matrices of the weights and bias values associated with the 

transformation through neurons in hidden layer p, respectively. Comparing the ANN prediction to 

the target output, the assigned weights and bias values are optimized such that the prediction error 

is minimized. 

Feedforward ANNs are known as networks with no closed-loops, meaning that data 

moves only in one direction from the input nodes, through the hidden nodes, and to the 

output nodes. Figure 4.1 shows a generalized layout of a multilayer feedforward ANN. 
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Figure 4.1. Generalized layout of multilayer feedforward ANNs 

These networks often benefit from a backpropagation algorithm that calculates the 

gradient of the error with respect to the assigned weights and bias values for a given 

input. Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) nonlinear least squares 

optimization algorithm is adopted in this chapter for ANN training. This method is well 

known for its high efficiency and fast convergence (Hagan and Menhaj, 1994). 

4.3.2. DAMAGE DETECTION USING ANNS 

The approach developed in this chapter employs ANNs to establish a relationship between the 

strains recorded under normal traffic loads by the FBG sensors embedded along the girder. After 

establishing this relationship, future strain responses recorded under normal traffic loads can be 
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used to identify whether or not the beam is damaged. The proposed framework is designed to 

identify the damage based only on the strain records without relying on information about the 

magnitude of applied loads. Several ANNs are trained and tested in order to account for 

modelling uncertainties associated with their prediction. The adopted criteria for defining each 

ANN is discussed in more detail later in this chapter. Each individual ANN is trained using a 

randomly selected sample of the training dataset. The relationship between the strain records of 

sensors can be different due to the dissimilar nonlinear fit that each ANN establishes. The strain 

records of all except one sensor (i.e., the target sensor) along the beam are used as the input of the 

ANNs to predict the strain in the target sensor. After training the ANNs, other available strain 

records collected during future monitoring, referred to as the set-aside dataset, are fed to the 

trained ANNs to predict the expected strains at the target sensor. Finally, damage is assessed by 

comparing the ANN predicted strain response to the actual response obtained by the FBG 

sensors.  Figure 4.2 shows the layout of the proposed damage detection framework.  
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Figure 4.2. Layout of the proposed damage detection framework 
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To assess the damage occurrence, prediction error is used to compare the simulated strains 

against those recorded under next load applications. The prediction error associated with 

individual ANNs at different time instants is. 

)(),(),( exp ijijiE ANN  
                                                            (4.2) 

where E(i,j) is the error associated with jth ANN at the ith time instant, εexp (i) is FBG strain record 

at target sensor associated with the ith time instant, while εANN (i,j) is the strain predicted by the jth 

ANN at the same time. n and m represent the total number of ANNs and strain data points, 

respectively. The mean prediction error ME is 
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 In addition, the mean lower and upper bounds of the strain prediction error associated with the 

trained ANNs at 95% confidence intervals are 
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where ELB and EUB are the lower and upper bounds of prediction error associated the testing 

dataset, respectively, E2.5(j) and E97.5(j) are the 2.5th and 97.5th percentiles of the prediction error 

associated with jth trained neural network and testing dataset. A damage is detected if the mean 

prediction error under a specific loading condition falls outside the defined bounds, otherwise the 

beam is considered undamaged. Note that the defined bounds should be established for the 



 

83 

 

undamaged state of the structure. This is due to the fact that these bounds will be used as a 

baseline to compare the future behaviour of the girder and identify the potential presence of 

structural damage. In this chapter, these bounds are defined based on Weinstein et al. (2018).  

Note that the proposed approach is designed to detect damage in newly constructed bridge 

girders. In such applications, the ANNs will be only trained once, during the undamaged (i.e., 

pre-cracking) state of the girders and after installing the girders in place. Although there is no 

need for continuous training of the ANNs, there is a need for regular analysis of strain records to 

assess the presence of damage in the monitored component. This process should to be conducted 

for each monitored girder. Due to the uncertainties associated with material properties, variation 

in sensor locations, and unforeseen construction conditions, girders with identical design 

specifications can have different relationship between the strain responses of embedded sensors. 

In addition, the approach can be also applied to existing bridge girders that are (a) in an 

undamaged state and (b) instrumented using any sensor type capable of providing continuous 

strain readings under variable amplitude loading at several locations along their length. 

4.3.3. DAMAGE LOCALIZATION USING ANNS 

To localize damage in PSC girders, the beam is divided into several regions. For each region, a 

configuration of ANN with unique selection of input and target sensors responsible for predicting 

damage is developed. The flowchart of the proposed damage localization approach is presented in 

Figure 4.3. Strain readings in the undamaged state are used to train the ANNs for different 

configuration corresponding to regions 1 to l. Eighty-five percent and 15% of the strain records 

are randomly selected and defined as training and testing datasets. A number of ANNs (n) are 

next trained for each configuration corresponding to defined regions. Each of the n ANNs is then 

trained using a randomly selected 10% of the training dataset. This process is repeated for the 
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considered damage regions (i.e., ANN configuration 1 to l). Finally, the prediction error 

corresponding to ANNs with different configurations is compared to localize the damage. 

 

Figure 4.3. Layout of the proposed damage localization approach 
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A normalized mean error is defined to compare the prediction error in each region. This is 

essential since the recorded strains at target sensors and their associated errors may be in different 

ranges. Accordingly, the prediction error associated with the configured ANNs may not be 

directly comparable. In this chapter, the normalized error is computed as:   
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where NME(k,j) is the normalized mean error associated with prediction of the jth ANN in 

configuration k, εexp (i,k) is FBG strain record at the target sensor of ANN configuration k 

associated with the ith time instant, and εANN (i,j,k) is the strain record at the target sensor of ANN 

configuration k predicted by the jth ANN at time instant i.. 

4.4. ILLUSTRATIVE EXAMPLE 

The proposed damage detection procedure is illustrated on an approximately ½ scale AASHTO 

Type II prestressed girder. The beam was instrumented during construction with FBG sensors, 

vibrating wire strain gages (VWSGs), and a mid-span displacement sensor.    

4.4.1. SPECIMEN DESIGN 

The cross section of the tested girder consisted of two 13.2 mm diameter (0.52 in.) low-relaxation 

prestressing strands with minimum ultimate strength of 1,860 MPa (270 ksi). The strands were 

tensioned to 75% of their specified tensile strength and placed 5 cm (2 in.) above the bottom fiber 

of the cross section. In addition, two No. 16 (#5) reinforcing bars were placed 5 cm (2 in.) below 

the top fiber of the cross section to counteract the concrete tensile stresses at time of prestress 

release. No. 10 (#3) Z-shaped bars were also placed transversely to resist shear stresses. 

Transverse shear reinforcement was designed to ensure flexural failure under a four-point-

bending test. The beam was longitudinally symmetrical with respect to its mid-span. Figure 4.4 
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shows the geometry of the section, placement of reinforcement and prestressing strands, and 

spacing of shear reinforcement along one half of the beam. A self-consolidating concrete mixture 

was designed to achieve a compressive strength of 27.5 MPa (4,000 psi) and 55 MPa (8,000 psi) 

at 7 and 28 days, respectively. Figures 4.5 a and b show, respectively, an elevation of the beam 

reinforcement and concrete placement process during the girder construction in Donald G. Fears 

Structural Engineering Laboratory located at the University of Oklahoma. 

 

Figure 4.4. Geometry of the section and reinforcement details 

 

Figure 4.5. View of the (a) beam reinforcement before casting and (b) beam during construction 
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4.4.2. TEMPERATURE, DEFLECTION AND STRAIN MONITORING USING FIBER 

BRAGG GRATING (FBG) SENSORS 

Two fiber optic cables, each consisting of 15 FBGs, were placed along the girder at the 

prestressing strand level. Each cable was placed to position 15 sensors in one half of the girder. A 

third fiber optic cable containing two temperature sensors, each in one half of the beam, was also 

embedded in the girder. The instrumentation was symmetric with respect to the centerline of the 

girder. Figure 4.6 shows the layout of the strain and temperature sensors (FBGs) distributed along 

one half of the beam. Note that the girder was longitudinally symmetrical. Clustering the sensors 

near the supports aimed at capturing the behaviour of the end regions during and after prestress 

transfer.  

 

Figure 4.6. Layout of the FBGs and VWSGs distributed along one half of the beam 

An interrogator featuring four channels and optimized for measuring static and dynamic 

measurements (FAZ Technology 2019) was used to provide a source signal (i.e., laser light) for 
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the fiber optic sensors and interpret the wavelength data under the applied loads. The recorded 

change in wavelength from the strain and temperature sensors at different time instants during 

testing were then used to calculate the change in temperature and strain. Equation 4.7 shows the 

relationship between the temperature sensor reading and actual temperature in ̊C (Faz 

Technology, 2019). 
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where Tt is the temperature in ̊C at time t, TS1, TS2, and TS3 are temperature calibration coefficients 

provided by the manufacturer. λTt is the wavelength recorded by temperature sensor at time t 

during the experiment, and λTref is the reference wavelength for the temperature sensor provided 

by the manufacturer. The change in strain can be computed as (Faz Technology, 2019) 
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in which Δεt is change in strain at time t with respect to initial strain value, λinitial and   Tinitial  are 

initial wavelength and temperature readings at the starting time of the test, and λt and Tt are 

wavelength and temperature reading at time t during testing. A and B are calibration constants 

provided by the manufacturer. The values of the calibration parameters provided by the 

manufacturer are presented in Table 4.1. 
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Table 4.1. Calibration parameters for temperature and strain sensors 

Calibration 

Parameter 
Temperature Sensor #1 Temperature Sensor #2 Strain Sensors 

TS1 -1,676,707.293078550 [ ̊C] 140,364.36897385 [ ̊C] ---- 

TS2 54,069.9715208757 [ ̊C] 53,482.2408014799 [ ̊C] ---- 

TS3 22.5024283936152 [ ̊C] 22.4751371210772 [ ̊C] ---- 

λTref 1,557.486 [nm] 1,537.725 [nm] ---- 

A ---- ---- 7.6362571E-07 [με-1] 

B ---- ---- 5.9684121E-06 [ ̊C-1] 

 

4.4.3. VIBRATING WIRE STRAIN GAGES (VWSGS) 

Thirteen VWSGs were also embedded in the girder during construction with six gages at each 

end and one at mid-span as shown in Figure 4.6. Two different models of VWSGs were used, 

Geokon 4200 and 4202 (Geokon, 2019) with 152 mm (6 in.) and 51 mm (2 in.) gage lengths, 

respectively. One Geokon 4202 strain gage with ±0.4 με measurement resolution and six Geokon 

4200 gages with ±1 με resolution were distributed along each half of the specimen. The Geokon 

4202 sensor was placed 10 cm (4 in.) away from the girder end while the Geokon 4200 sensors 

were distributed along the length of the beam as shown in Figure 4.6. In addition, a VWSG 

temperature sensor was attached externally to the girder surface to measure the ambient 

temperature during load tests. A single data-logger was used to record the VWSG sensor readings 

during testing. Figure 4.7 shows the placement of FBG and VWSG sensors in the constructed 

girder. 
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Figure 4.7. Placement of the FBGs and VWSGs in the constructed girder 

4.4.4. TEST PROCEDURE AND LOADING 

The constructed girder was tested under four-point bending with load points 75 cm (30 in.) away 

from the mid-span. The point loads were applied through a spreader beam with two support 

points and a 250 kN (55 kip) hydraulic actuator with MTS FlexTest 60 load controller (MTS, 

2019). Figures 4.8a and b show the layout of the loading set up, and the actual test frame 

constructed in Bert Cooper Engineering Laboratory located at Oklahoma State University. The 

strain and temperature profiles during the testing were recorded using the FBG sensors with 1,000 

Hz sampling frequency. The VWSG sensors were used to record strains during the monotonic 

tests. A sample from the VWSG sensors was recorded at each load increment. A linear variable 

displacement transducer (LVDT) was installed at mid-span to measure the beam deflections with 

1,000 Hz sampling frequency during all tests. The testing phase consisted of 19 loading runs, 

including 10 monotonic tests and 9 randomly generated dynamic load tests (i.e., variable 

amplitude loading). For the monotonic loading tests, the load was applied at a constant rate until a 

predefined maximum load level was reached; this maximum load was then kept constant for 5 

minutes to allow beam inspection. Next, the specimen was unloaded at a constant rate of 13.4 

kN/min (3 kip/min) until fully unloaded. 
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Figure 4.8. (a) Layout of the loading setup (b) test frame and the prestressed girder during load 

The experimental phase started with recording the response of the constructed prestressed girder 

under 3 different randomly generated variable amplitude dynamic loads) and 4 monotonic loads 

(i.e., Dyna 1 to Dyna 3 and Mono 1 to Mono 4). Table 4.2 shows the attributes of different load 

runs. Note that the tests IDs are organized with respect to the order of conducting the tests. Next, 
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another monotonic ramp load (i.e., Crack 1) was applied to the girder at 13.4 kN/min (3 kip/min) 

loading rate for the first 111 kN (25 kip) and with a reduced rate of 4.45 kN/m (1 kip/min) until 

the first crack was observed. During the Crack 1 load run, the loading was paused for two 

minutes at 4.45 kN (1 kip) increments to inspect the beam and identify the crack initiation. This 

process was continued until the first crack was observed at 160 kN (36 kip). The cracking pattern 

in this stage can be seen in Figure 4.9. 

Table 4.2. Attributes of different load tests 

Test 

ID 

Load 

Type 

Maximum 

load - kN (kip) 

Frequency 

(Hz) 

Loading Rate 

- kN/min 

(kip/min) 

Notes 
Duration 

(s) 

Dyna 1 Random  45 (10) 2 --- No cracks 556 

Dyna 2 Random  62 (14) 2 --- No cracks 695 

Dyna 3 Random  102 (23) 2 --- 

No cracks – 

Training & 

Testing 

dataset 

1,200 

Mono 1 Monotonic 45 (10) --- 13.4 (3) No cracks 440 

Mono 2 Monotonic 67 (15) --- 13.4 (3) No cracks 640 

Mono 3 Monotonic 89 (20) --- 13.4 (3) No cracks 840 

Mono 4 Monotonic 111 (25) --- 13.4 (3) No cracks 1,040 

Crack 1 Monotonic 160 (36) --- Variable 
First crack 

observed 
3,000 

Dyna 4 Dynamic 102 (23) 2 --- Small cracks 1,075 

Dyna 5 Random  107 (24) 2 --- Small cracks 614 

Crack 2 Monotonic 191 (43) --- Variable 
Cracks 

widened 
2,600 

Dyna 6 Random  107 (24) 4 --- Wide Cracks 321 

Dyna 7 Random  107 (24) 6 --- Wide Cracks 241 

Dyna 8 Random  107 (24) 8 --- Wide Cracks 175 

Dyna 9 Random  107 (24) 10 --- Wide Cracks 308 

Mono 5 Monotonic 89 (20) --- 22.3 (5) Wide Cracks 520 

Mono 6 Monotonic 134 (30) --- 22.3 (5) Wide Cracks 760 

Mono 7 Monotonic 156 (35) --- 22.3 (5) Wide Cracks 880 

Mono 8 Monotonic 180 (40) --- 22.3 (5) Wide Cracks 1,000 
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Figure 4.9. View of the beam showing minor and excessive cracking patterns 

As shown, four cracks initiated and propagated to a level approximately 100 mm from the bottom 

fiber of the girder. This condition of the girder is referred to as the minor cracking state in this 

chapter. Two more randomly generated dynamic loads runs (i.e., Dyna 4 and Dyna 5) were 

applied after the first minor cracking was observed. Next, another monotonic load (i.e., Crack 2) 

was applied to the girder. The load run was applied at 22.3 kN/min (5 kip/min) for the first 134kN 

(30 kip) and continued at 4.45 kN/m (1kip/min) loading rate with a pause at each 4.45 kN (1 kip) 

until the cracks propagated to the upper half of the cross section at 191 kN (43 kip). The damage 

extent of the beam after this test is referred to as the excessive cracking state in this chapter. The 

crack pattern in this stage is also shown in Figure 4.9. The experiment then continued with 

applying three more monotonic (i.e., Mono 5 to Mono 8) and four randomly generated dynamic 

loads (i.e., Dyna 6 to Dyna 9).  
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4.5. RESULTS AND DISCUSSION 

4.5.1. CONCRETE COMPRESSIVE STRENGTH 

Concrete compressive strength specimens for the girder were tested at 1, 7, and 28 days of age 

and before conducting the load tests at 69 days. Table 4.3 presents the average compressive 

strength of three cylinders tested at the aforementioned ages. The cracking and ultimate capacities 

of the beam were estimated based on the compressive strength test results, cross-section, and 

loading configuration to be 148 kN (33.4 kips) and 210 kN (47.2 kips), respectively.  These 

capacities were used to design the loading procedure suitable for developing the proposed 

damage detection and localization approach. 

Table 4.3. Concrete compressive strength test results 

Concrete Age (days) Compressive Strength – MPa (psi) 

1 31.7 (4,600) 

7 47.4 (6,870) 

28 52.9 (7,670) 

69 (flexural testing) 57.2 (8,290) 

 

4.5.2. LOAD TESTING AND STRAIN MEASUREMENT USING FBGS AND VWSGS 

As indicated previously, the FBG sensors distributed along the girder were used to obtain the 

strain time histories during monotonic and randomly generated dynamic load tests. Figure 4.10 

shows the recorded response of sensor 15 during Dyna 3 load test. To ensure the proper operation 

of the fiber optic sensors, the strains recorded by the FBGs were compared to those obtained by 

the VWSGs during monotonic load tests. Figure 4.11 compares the change in strains obtained 

from FBG sensor 15 to those of the embedded VWSG at mid-span under various monotonic load 

values. In summary, it was found that the FBG sensors provide a reliable and stable reading at 

different load levels. 
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Figure 4. 10. . Recorded strain at sensor 15 during Dyna 3 load test 

 

Figure 4.11. Comparison between the measured strains using FGB sensor #15 and the embedded 

VWSG at mid-span under various monotonic load values 

4.5.3. ANN TRAINING 

Feed forward neural networks with 10 hidden layers (see Figure 4.1) were used to establish the 

relationship between the strain readings of sensors along one half of the tested girder. Strain 

records associated with Dyna 3 load run were randomly divided into training and testing datasets 

representing 85% and 15% of the data points, respectively. These percentages which are initially 

selected based on the common practice of ANN applications (e.g., Ezeldin & Sharara 2006; 

Khandel & Soliman 2019d) were evaluated to make sure both the datasets have similar statistical 

properties. Note that any other strain record under dynamic loads in pre-cracking stage (e.g., 
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Dyna 1 or Dyna 2) can be used for training the ANNs. The strain records of eight sensors, namely 

1, 2, 3, 10, 11, 12, 13, and 14 along one half of the beam were used as the input to predict the 

strains at target sensor 15. Given the large size of the training dataset, statistical analysis was 

performed, and it was found that a randomly selected 10% of the data can properly represent the 

statistical properties of the whole training database. However, higher percentage of the training 

dataset may be needed for other applications. Accordingly, for training each individual ANN, 

10% of the training database was randomly selected and used for training. The accuracy of each 

ANN was then evaluated using the testing database. In order to account for modelling uncertainty 

associated with ANN predictions, 1,000 individual ANNs were trained in this 

chapter. Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963) optimization method was 

employed to obtain the fitting parameters that minimize the mean square error (MSE) between the 

predicted strains and the defined target dataset by optimizing the fit parameters in Equation 4.1. 

The ANNs were created and trained using the MATLAB (MathWorks, 2019) neural network 

toolbox. For damage detection and localization, the strain readings of the eight sensors from the 

other load tests were then fed to the 1,000 trained ANNs and the strain time histories for the 

target sensor were predicted.  

4.5.4. ERROR ESTIMATION 

The error between the experimentally- and ANN-generated strains was estimated for the testing 

dataset to evaluate the performance of the trained neural networks. The prediction error 

associated with individual ANNs was found using Equation 4.2 while the mean, lower bound, and 

upper bounds of strain prediction error were estimated using Equations 4.3, 4.4, and 4.5, 

respectively. Figure 4.12a shows the probability distribution of the prediction error, as well as the 

mean (ME), lower bound (ELB), and the upper bound error (ELB). The mean prediction error was 

estimated to be very close to zero (7.2823e-04 με), the standard deviation was estimated to 

0.1905 με, whereas the lower and upper bounds at 95% confidence intervals were estimated to be 
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-0.3825 and 0.3846 με, respectively. The small mean error value shows that trained ANNs were 

able to simulate the behaviour of the girder in the pre-cracking state with high accuracy. In 

addition, there is 95% confidence that the error in pre-cracking stage falls within the calculated 

lower and upper bounds. Figure 4.12b shows the ME prediction versus the number of ANNs used 

to monitor convergence of the proposed framework. As shown, the fluctuation of the mean 

prediction error is stabilized and limited to approximately 0.00015με after employing 200 ANNs. 

A similar trend was also observed for convergence of minimum and maximum prediction error. 

This can imply that the number of employed ANNs and the size of training dataset was adequate 

to accurately predict the flexural behaviour of the tested girder. 

 

Figure 4.12. (a) Probability distribution of the prediction error (E), mean error (ME), lower 

bound error (ELB), and upper bound error (ELB) associated with the testing dataset (b) mean error 

convergence plot 
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4.5.5. DAMAGE DETECTION 

After training the ANNs and evaluating the prediction error, the strain records of sensors 1, 2, 3, 

10, 11, 12, 13, and 14 from the set-aside datasets were fed to the trained ANNs and the resulting 

strain at sensor 15 was predicted. The predicted strains were then compared to the recorded ones 

during the load tests and the associated mean error was calculated using Equation 4.3 to predict 

the damage occurrence. Figure 4.13 compares the experimental strain time history to ANN 

predictions at sensor 15 for two load cases in the pre-cracking (i.e., Dyna 2 test) and post-

cracking phases (i.e., Dyna 6 test).  

 

Figure 4.13. Comparison between experimental results and ANN predictions for two load cases 

in (a) pre-cracking and (b) post-cracking phases 
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As shown, the trained ANNs were able to accurately predict the strains in the pre-cracking stage, 

while there seems to be a significant prediction error associated with the post-cracking stage. In 

other words, the predicted strains at the target sensor are considerably different than the recorded 

ones. This implies that it is highly likely that damage has occurred. This is based on the fact that 

due to damage in the post cracking stage, the stiffness of the system changes compared to the pre-

cracking state and the relationship between different sensors, established in the uncracked state, 

leads to an increase in the ANN prediction error. Figure 4.14a shows the mean prediction error 

for the randomly generated variable amplitude load tests. This figure is divided into three zones, 

no cracking, minor cracking, and excessive cracking. Referring to Table 4.2, Tests Dyna 1 and 

Dyna 2 were conducted before cracking the girder, while Tests Dyna 4 and Dyna 5 occurred after 

load test Crack 1 that resulted in the initiation of minor cracking. Finally, Test Dyna 6 to Dyna 9 

were conducted after applying the Crack 2 loading, in which cracks increased in width and 

length. In the no crack zone, the two data points fall within the previously defined upper and 

lower bounds of prediction error (EUB and ELB). In the other two regions, the prediction error falls 

outside of the defined criteria indicating the presence of damage in the beam. This highlights the 

ability of the proposed criterion to detect the damage occurrence. In addition, the large difference 

between the ME values in the minor and excessive cracking regions shows that the proposed 

approach can indicate the relative level of damage experienced by the girder during load tests. 

Figure 4.14b shows the mean prediction error for different monotonic load tests. It provides a 

comparison between the damage prediction results associated with different monotonic load tests. 

The insert in the no cracking zone highlights the mean prediction error in the first four monotonic 

runs with respect to the upper and lower bounds. The ME values associated with monotonic load 

tests applied before crack initiation (i.e., Mono 1 to 4) fall within the defined bounds, where the 

ME values for the other cases fall outside of the defined bonds indicating the presence of damage. 

As shown, larger monotonic loads resulted in larger mean error values. This can be mainly 

attributed to the fact that larger loads caused larger crack opening and resulted in larger error 
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compared to the ANN prediction. Note that the specimen was designed to be a fully prestressed 

with no cracking under service loads. The presented approach can be adapted to partially 

prestressed beams by relaxing the bounds on prediction errors to permit allowable cracking and 

isolate excessive cracking. However, more testing may be needed on such cases to establish these 

new bounds. 

 

Figure 4.14. Mean prediction error for (a) randomly generated variable amplitude load cases (b) 

monotonic load tests 

4.5.6. DAMAGE LOCALIZATION 

In order to localize damage in the tested girder, two damage regions and ANN configurations 

were defined and trained using the strain records of Dyna 3 load test. Region one was considered 
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to span between the support and sensor 14 (1.5 m (59 in.) away from the end), and region two 

was defined to be between sensors 14 and mid-span (i.e., 1.25 m (49 in.) away from the mid-

span).  ANN with configuration 1 (AN 1) used the strain records of sensors 1, 2, 3, 10, 11, 12, 

and 13 to predict the strain in sensor 14, and ANN with configuration 2 (AN 2) was the same 

configuration introduced in the damage detection process. Figure 4.15 shows the defined regions 

and their associated sensors. These configurations are suitable for predicting flexural damage in 

the tested beam; however, other configurations may be needed to localize damage if other failure 

modes are expected. 

 

Figure 4.15. Visualization of AN1, AN2, Region 1, and Region 2 

The prediction error of each ANN based on Dyna 6 load test was then used to localize damage 

along the beam. The normalized mean error (NME) associated with the prediction of AN1 and 

AN2 configurations was found using Equation 4.6 and Dyna 6 load test data. Figure 4.16 shows 

the probability distribution of the calculated NME values associated with 1,000 AN1 and AN2 

trained ANNs. The mean and standard deviation of the predicted NME for AN1 are 0.0233 and 

0.0268, respectively. While the mean and standard deviation for AN2 are found to be 0.1767, and 

0.0356, respectively. This shows that the established relationship between the sensor readings in 

Region 1 (see Figure 4.15) can predict the strains in the post-cracking phase with ±2.3% mean 

error. However, the 17.67% NME for AN2 reveals that established relationship between the 
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sensors in Region 2 (see Figure 4.15) cannot accurately simulate the strains in the post-cracking 

phase. Accordingly, it is more likely that the cracks occurred in Region 2. This conclusion is also 

consistent with the observations made during the experiment, where the cracks initiated and 

propagated in the pure bending zone (see Figure 4.9). 

 

Figure 4.16. Probability distribution of the calculated NME values associated with AN1 and AN2 

4.6. CONCLUSIONS 

This chapter presented a statistical damage detection and localization approach for evaluating the 

long-term performance of newly constructed prestressed concrete girders instrumented with fibre 

Bragg grating sensors. The approach was illustrated using experimental laboratory data obtained 

from flexural testing of a large-scale prestressed concrete girder under monotonic loads and 

randomly generated variable amplitude loading. Artificial Neural Networks (ANNs) were 

employed to establish a relationship between the strain time-histories at multiple sensors 

distributed along the girder. The trained ANNs were used to predict strain at target sensors based 

on the readings of other sensors during a load test. The predicted strains were then compared to 

their experimental counterparts for damage assessment. Lower and upper error bounds were 

defined based on the intact girder conditions. These bounds were then used to evaluate the 

condition of the investigated prestressed concrete girder and localize induced damage. The 
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proposed damage detection approach does not require any information on loading conditions and 

detects the damage based only on the relationship between different FBG signals. The following 

conclusions are drawn: 

 The employed feedforward ANNs with the adopted characteristics were capable of 

establishing a relationship between strain readings recorded at various sensors along the 

tested girders. The predication accuracy was highlighted by low mean error and standard 

deviation of 7.2823e-04 με and 0.1905, respectively. 

 The proposed lower and upper error bounds led to successful detection of various damage 

levels. The approach was able to identify the occurrence of minor and excessive cracking 

during testing. The identified damage levels were consistent with observations made during 

testing. The load tests conducted on the heavily cracked beam showed a large mean error 

while tests at early cracking stages showed relatively small mean error values that were 

still out of the defined bounds.  

 The proposed damage localization approach was capable of identifying the region that 

experienced higher damage levels. The identified damage zone matched the observations 

made during the experimental testing. However, more research is needed to optimize 

sensor placement and region selection. 

 The presented approach has been validated for flexural damage in fully prestressed simply 

supported beams. More research is needed quantify the effect of loading location, 

temperature gradients, boundary conditions, and shrinkage and creep strains on the 

proposed approach. Accordingly, future efforts are required to implement the presented 

damage identification and localization approach for long-term performance monitoring of 

bridges under field conditions. 
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CHAPTER V 
 

 

SENSITIVITY AND RELIABILITY ASSESSMENT OF CONCENTRIC COMBINATION STEEL 

CONNECTIONS USING META-MODELING APPROACH 

5.1. OVERVIEW 

Combination bolted-welded connections are often needed in practice for retrofitting existing 

structures, updating the design to meet changes in the loading conditions, and addressing 

construction errors. This chapter quantifies the reliability level of connections, combining slip-

critical bolts and fillet welds, using a probabilistic approach that integrates finite element (FE) 

modeling, meta-modeling, and Monte Carlo simulation. The proposed approach relies on 

experimental results to quantify the uncertainties associated with various input parameters and 

calibrate a FE model. The FE model is next integrated into a low-rank tensor approximation 

process to provide variance-based sensitivity measures associated with the considered random 

variables. The influential variables, along with the calibrated FE model, are then used to evaluate 

the reliability by means of adaptive polynomial chaos kriging Monte Carlo simulation. Finally, 

the proposed approach is applied to combination bolted-welded connections under direct tension 

to evaluate their time-dependent reliability considering different faying surface conditions. The 

results of the conducted sensitivity analysis indicated that weld geometry, bolt pretensioning 

forces, and friction coefficient of steel surface are variables that largely contribute to load 

carrying response of the investigated connections. For connections with Class A and Class B 

faying surfaces, the minimum reliability index found to be 3.97 and 3.81, respectively.
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5.2. BACKGROUND 

Combination welded-bolted connections are mainly used for retrofitting existing structures, 

resolving construction errors, and improving the capacity to resist updated loading conditions. In 

this context, the behavior of bolted or welded only connections has been well investigated during 

in literature. Application of high strength bolts in preventing excessive slip in structural steel 

joints was first recommended by Batho and Bateman (1934). Wilson and Thomas (1938) 

observed an improved fatigue performance for cases with pretensioned bolts. The research on this 

topic continued through the following decade and led to the introduction of first specification for 

structural joints using high-strength bolts in 1951 (RCRBSJ, 1951) through a cooperative effort 

between the Research Council on Riveted and Bolted Structural Joints (RCRBSJ) and the 

American Society of Testing and Materials (ASTM, 1949). This specification permitted the 

replacement of ASTM A141 rivets with by ASTM A325 bolts on one to one basis (Kulak et al., 

2001). The German Committee for Structural Steelwork (GCSS) and British Standards Institution 

(BSI) published their respective specifications in late 1950s (Kulak et al., 2001). The research in 

the United States further continued and led to several editions of the RCRBSJ specifications until 

the introduction of the first edition of the Guide to Design Criteria for Bolted and Riveted 

Connections by Fisher and Struik (1974). This guideline provided expressed the slip resistance of 

the bolted connections as the product of number of slip planes, slip coefficient, and total bolt 

pretension force applied on the connection. This expression is still used as the basis of the 

modified formulation of American Institute of Steel Construction Specification (AISC, 2017) 

which considers the effect of bolt pretension over-strength and filler usage. 

In 1928, the American Welding Society (AWS) Code for Fusion Welding and Gas Cutting in 

Building Construction provided guidelines quantifying the shear strength of fillet welds based on 

the allowable stress on the weld throat Quinn 1991). Further investigation by the Structural Steel 

Welding Committee in 1931 specified design shear stress threshold of 11.3 ksi (Bowman & 
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Quinn 1994). Since the introduction of covered electrodes improved the weld behavior, a 20% 

increase in allowable shear strength, resulting in 93.8 MPa (13.6 ksi) limit, was recommended by 

Godfrey and Mount (1940). Further investigation by Higgins and Preece (1969) defined the 

allowable shear strength as 30% of the weld tensile strength. Finally, Fisher et al. (1978) defined 

the allowable weld shear stress as 60% of the specified minimum tensile strength of the weld 

electrode. This limit, which is the basis for current shear design provisions (AISC, 2017), 

assumes that the weld is under pure shear and Von Mises criteria defines its strength. 

The research on combination welded-bolted connection has gained attention in late 1960s. In one 

of the earliest efforts, Steinhardt et al. (1969) conducted an experimental study on several small 

tension butt splices with bolted-only, welded-only, and combined welded-bolted configurations. 

The results of their investigation suggested that capacity of combination connections can be 

predicted as the sum of slip resistance and the ultimate capacity of welds parallel to the loading 

direction. Holtz and Kulak (1970) further investigated combination connections to evaluate the 

effect of weld orientation and bolt hole clearance. They recommended that using longitudinal 

welds substantially improves the load carrying capacity of combination connections. In addition, 

a research conducted by Jarosch and Bowman (1986) confirmed the higher efficiency of using 

longitudinal welds compared to transverse welds in combination connections. This study also 

concluded that the sum of slip resistance and the ultimate capacity of welds parallel to loading 

direction can well represent the capacity of combination connections. The research into the 

behavior of combination connections continued by Manuel and Kulak (2000) to further 

investigate the effects of weld orientation, bolt tension, and bolt bearing condition. This study 

also confirmed the advantage of using longitudinal welds and introduced an analytical model for 

estimating the ultimate capacity of combination connection as the sum of contributions of total 

slip resistance, bolts shear strength, longitudinal welds, and transverse welds. In a more recent 

effort, Shi et al (2011a and b) investigated the ultimate capacity of combination connections 
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through experimental testing and finite element (FE) modeling. Their work concluded that the 

combination connection capacity may not be equal to the sum of the weld capacity and friction 

resistance and may depend on the on the ratio between bolt to weld capacities. Finally, Waite 

(2019) conducted an experimental research to investigate the effect of various parameters 

including bolt pattern, bolt size, tensioning techniques, faying surface, and weld to bolt strength 

ratio that might affect the behavior of combination connections.  

Reliability assessment of slip-critical connections in the literature is limited to a single study 

conducted by Grondin et al. (2007) with the objective to investigate reliability of bolted only slip 

critical connections. The study considered the randomness in slip coefficient and pretensioning 

force based on the available experimental data in the literature. In addition, several studies such 

as Ng et al. (2002), Callele et al. (2005), Li et al. (2007) Kwan et al. (2010) investigated the 

reliability of welded connections. However, no combinational connection was investigated in 

these studies and the reliability analyses were performed based on analytical formulations. 

Despite the long history of research on slip critical and combination connections, the lack of a 

comprehensive reliability analysis on this type of connections is apparent in the literature. 

Accordingly, this chapter aims to evaluate the reliability of slip-critical combination connection 

through an integrated framework. The proposed framework considers a full range of uncertainties 

associated with different parameters that may affect the load carrying capacity of combination 

connections. A Finite element (FE) model is developed and validated using the experimental test 

data. The validated model is then integrated with Low-rank Tensor Approximation-based (LRA-

based) methods to perform a variance-based sensitivity analysis and evaluate the effect of 

different random variables on the load carrying capacity of welded-bolted connections. The 

performed sensitivity analysis is next used to select the variables that greatly affect the load 

response of the investigated connection. Finally, the selected variables and the validated FE 

model are used to perform reliability analysis through Accelerated Polynomial Chaos Kriging 
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Monte Carlo Simulation (APCK-MCS). The effect of long-term pretensioning losses is taken into 

account. The proposed framework is applied on 2 by 2 combination welded-bolted connections 

with Class A and B faying surfaces to evaluate the long-term reliability of current AISC 

formulations. 

5.3. VARIANCE-BASED SENSITIVITY 

Sensitivity analysis is required to select the key contributing factors that affect the response of a 

system. In this regard, variance-based Sensitivity methods generally decompose the output 

variance into a sum of contributions of each or a combination of input variables. This method 

generally referred as ANalysis of VAriance (ANOVA) and it is applicable to the cases where the 

input variables are independent. Sobol’ indices (Sobol’, 2001) are recognized as one of the widely 

used sensitivity measures defined based on ANOVA method. These indices can be calculated 

using Monte Carlo simulation, low-rank approximation (LRA), or polynomial chaos expansion 

(PCE) methods (Marelli et al., 2019a). In this chapter, LRA-based Sobol’ indices are employed. 

The following sections briefly discuss the basics required to perform sensitivity analysis using 

LRA-based Sobol’ indices. 

5.3.1. SOBOL’ DECOMPOSITION 

Consider f(x) as a mathematical model with input vector X composed of n input parameters which 

produces a scalar output y as: 

        )(XY f        where  nixi
nK ,...,1,10:  XX   (5.1) 

The Sobol’ decomposition (Sobol’, 2001) of f(x) is then defined as: 
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where f0 is constant and equal to expected value of f(X) while the integral of summands with 

respect to their independent variables is equal to zero as: 

       
1

0 1,...,1
0),...,( iksiisii dxxxf      where     sk 1     (5.3) 

Based on Equation 5.3, it can be concluded that the summands are orthogonal to each other. In 

addition, if the input variables are independent and the integral of the function exists over Kn, the 

expansion exists and is unique (Sobol’, 2001). Accordingly, the univariate and multivariate terms 

of the decomposition can be found using equations 5.4 and 5.5, respectively: 

      1 0~)()( nK iii fdxxfxf     (5.4) 

      2 0}{~ )()()(),( nK jjiiijjiij fxfxfdxxfxxf    (5.5) 

 where “~” symbol represents the variables that are excluded (e.g.,  1 ~)(nK idxxf  symbolizes 

the integration over all variables except xi). Finally, using the presented decomposition technique, 

the total and partial variances can be found using equations 5.6 and 5.7, respectively: 
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As shown in Equation 5.2, the mean for summands is zero, therefore the sum of partial variances 

is equal to the total variance: 
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5.3.2. SOBOL’ SENSITIVITY INDICES 

Sensitivity indices quantify the relative contribution of input variables with respect to the total 

variance. Partial Sobol’ sensitivity indices associated with each group of variables can be defined 

based on the ratio of partial to total variances (Sobol’, 2001) as: 

   

D

D
S sii

sii
,...1

,...,1
      (5.9) 

Note that indices associated with only one input variable (i.e., Xi) are referred as first-order 

Sobol’ indices while higher-order Sobol’ indices (i.e., Si,j , i≠j) accounts for the interaction effects 

of multiple variables which cannot be separately quantified using first order indices. Total 

sensitivity (Si
T) indices are defined as the total of all partial sensitivity indices involving variable i 

as: 
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Since the summation of partial indices yields to one, the total sensitivity indices can be also found 

as: 

i
T
i SS ~1       (5.11) 

where S~i represents the sum of all partial indices excluding index i. 

5.4. SOBOL’ INDICES USING LOW-RANK TENSOR APPROXIMATION (LRA-

BASED SOBOL’ INDICES) 

Sobol’ indices are originally introduced to be evaluated using Monte Carlo simulation (Sobol’, 

2001). However, due to large number of samples required for performing Monte Carlo 

simulation, this method can be computationally expensive for cases with complex models (e.g., 
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finite element models). Accordingly, meta-modeling techniques can help to overcome the cost 

challenge. A meta-model is a computationally inexpensive model capable of providing 

statistically equivalent results for a complex model without a known closed-form solution through 

a limited number of original model executions (Konakli and Sudret 2016b). Several meta-

modeling tools such as low-rank approximation (LRA) (Konakli and Sudret 2016a), or 

polynomial chaos expansion (PCE) (Sudret 2008) have been presented in recent years. Among 

these methods, the former (i.e., LRA) was shown to converge faster and outperform the PCE in 

predicting extreme model responses (Konakli and Sudret 2016a and b).  

5.4.1. NON-INTRUSIVE META-MODELING 

Consider f(x) as a computational model that represent the behavior of a complex system; given an 

input vector X = {x1, …, xM}, an output vector Y= {y1, …, yN} is generated. Since the input vector 

X is uncertain, the output vector Y becomes random. Considering a scalar realization of the 

response, the following holds true (Konakli and Sudret 2016b): 

RfD M ∈⊂∈ )(XYRX X       (5.12) 

where DX represents support of X. Accordingly, a meta-model is defined as an analytical function 

(e.g., )(ˆˆ XY f ) that generates results with similar statistical properties as Y. Meta-models can 

be developed using non-intrusive method which treats the original model (i.e., f(x)) as a black 

box. In this case, a set of input vectors },...,{ )()1( NXXε   which are generally referred as 

experimental design samples are assigned to the original model to generate the response

)}(),...,({ )()1( Nff XXY   from the original model (f(x)). The experimental design samples 

and the corresponding generated response are then used to develop the meta-model.  
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5.4.2. LOW-RANK TENSOR APPROXIMATION 

Considering the mapping presented in Equation 5.12, a rank one function of the input vector X 

can be expressed as (Konakli and Sudret 2016a): 
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where 
)(i
lv  represents a univariate function of Xi in the ith dimension and function f can be 

represented as finite sum of number of rank-one functions. The resulting is a canonical 

decomposition which its rank is equal to the number of employed rank-one functions. Rank-R 

approximation of the original function Y= f(X) can be expressed as (Konakli and Sudret 2016a): 
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where vl
(i) is a univariate function of Xi of the lth rank-one summand (l = 1, …, R), and bl is 

normalizing constant. In addition, vl
(i)can be written using polynomial functions as: 
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where Pk
(i) is the kth degree univariate polynomial associated with ith input variable and maximum 

degree of pi, zk,l
(i) is coefficient of Pk

(i) in the the lth term. Finally, due to the orthogonality of the 

univariate conditions, LRA-based meta model can be written as (Konakli and Sudret 2016a): 
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5.4.3. CALCULATION OF NON-INTRUSIVE LRA COEFFICIENTS 

Using Alternated Least Squares (ALS) minimization is a common practice in calculating LRA 

coefficients (i.e., )(
,
i
lkz ). This method treats the problem as a sequential least-squares 

minimization along only one dimension (i.e., 1, …, M) while freezing all other dimensions. In 

this regard, Chevreuil et al. (2015) proposed a robust updated greedy algorithm which is capable 

of providing an optimal selection of LRA coefficients using cross validation techniques. The 

algorithm adopts a progressive increase in the number of rank-one summands (i.e., approximation 

ranks) up to a predetermined maximum number. Consequently, a set of candidate decompositions 

with different ranks becomes available. Generally, the optimal rank R is not known beforehand, 

therefore an efficient algorithm is required to select the optimal-rank decomposition. Konakli and 

Sudret (2016a) proposed an efficient rank-selection algorithm that relies on average 

generalization error in a k-fold cross validation problem. The algorithm first partitions the 

experimental design into n sets. Next, it allocates n-1 partitions to the training set, the remaining 

one partition is used as a testing set. The training set partitions are used to generate LRAs with 

increasing ranks. The error of these LRAs is then evaluated using the set aside testing partition. 

Finally, by minimizing the error, optimal rank (Ropt) can be selected. Further details regarding this 

process can be found in Konakli and Sudret (2016a, b) and Konakli et al. (2019). 

5.4.4. CALCULATION OF LRA-BASED SOBOL’ SENSITIVITY INDICES 

LRA-based Sobol’ indices can be calculated based on the developed meta-models in terms of 

polynomial coefficients (Zk,l
(i)) and normalizing constants (bl). In this regard, Konakli and Sudret 

(2016a) derived an analytical expression for the LRA-based partial and total Sobol’ indices as 

presented in Equations 5.17 and 5.18: 
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where the expected value, variance and conditional expectation terms can be computed using 

Equations 5.19, 5.20, 5.21, and 5.22 (Konakli and Sudret, 2016a), respectively:  
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Further details regarding these expressions can be also found in Konakli and Sudret (2016a and b) 

and Konakli et al. (2019). 

5.5. RELIABILITY ANALYSIS METHODS 

A proper reliability quantification approach should consider a full range of uncertainties 

associated with the system properties (e.g., uncertainties associated with physical properties or 

environmental and operating conditions). This task can be performed through classical 
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approximation methods such as First and Second Order Reliability Methods (i.e., FORM and 

SORM, respectively), simulation methods such as Monte Carlo Simulation (MCS), and methods 

based on meta-modeling such Kriging. Classical approximation methods generally aim to 

approximate the limit state function through gradient-based search, while simulation methods 

offer a sample-based estimation of failure probability (Pf). Kriging (i.e., Gaussian process 

regression) surrogate models are capable of approximating the limit state function with high 

accuracy. Among these three methods, MCS solution is usually known as the reference solution 

(Sudret 2008). However, due to large number of samples required, this method may not be 

applicable to cases with computationally demanding models (e.g., complex finite element 

models). In addition, among the classical approximation and meta-modeling methods, the latter 

method generally converges faster and provides results with higher accuracy (Marelli et al., 

2019b). Accordingly, in this chapter, a meta-modeling approach is selected to perform the 

reliability analysis. 

5.5.1. ACCELERATED KRIGING MONTE CARLO SIMULATION (AK-MCS) 

Accelerated Kriging Monte Carlo Simulation (AK-MCS) can provide an efficient solution for 

cases with computationally expensive response functions. This method can significantly reduce 

the number of model evaluations in comparison with traditional MCS method. AK-MCS employs 

Kriging meta-models to surrogate the original response model. Ordinary Kriging (Echard et al. 

2011) or Polynomial-Chaos-Kriging (PC-Kriging) (Schöbi et al. 2016) can be used as a surrogate 

model in this method. Due to the faster convergence, PC-Kriging method is employed to perform 

the reliability analysis in this chapter. 
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5.5.2. KRIGING META-MODELS 

Kriging (also known as Gaussian process modeling) is a stochastic algorithm built based on the 

assumption that the model output f(x) is an outcome of a Gaussian process (Lataniotis, et al.  

2019). A Kriging meta-model can be described as (Santner et al., 2003): 

),()()( 2  xZxxf TK 
    (5.23) 

where βTλ(x) is the trend or mean value of the Gaussian process, in which {βj, j=1, …, P} is 

known as regression coefficient and {λj, j=1, …, P} is the basis function. In addition, σ2 is the 

variance of the Gaussian process and Z(x,ω) is a stationary Gaussian process with zero mean and 

unit variance. Model fK(x), given the input vector X={x1, …, xn}, generates the corresponding 

output response vector Y={y1=f(x1), …, yn=f(xn)}T, the Kriging meta-model then predicts the 

response based on the assumption that the original model and Kriging model have a joint 

Gaussian distribution. Further details regarding Kriging meta-models can be found in Santner et 

al., (2003) and Lataniotis, et al.  (2019). 

5.5.3. POLYNOMIAL CHAOS KRIGING MONTE CARLO SIMULATION (PCK-MCS) 

Polynomial Chaos Kriging (PCK) simulates the original model response using a combination of 

global and local approximations. In this method, the global approximation is predicted using 

polynomial chaos expansion (PCE) trends while the local approximation is performed using 

Gaussian process. This combinational model leads to more efficient and more accurate meta-

model construction than using PCE or ordinary kriging meta-models alone (Schöbi and Sudret 

2014). A PC-kriging model can be built based on the ordinary kriging meta-model in the 

following format (Schöbi et al., 2016): 

 


 ,)()(ˆ 2)( xZxxf
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where 
T

x


 )( is the trend, {βτ, τ= τ1, …,τn} is the regression coefficients, { )(x , τ= τ1, 

…,τn} is the corresponding orthogonal polynomial. In addition, based on the assumption that 

input variables are independent, the multivariate polynomials can be expressed as the tensor 

products of univariate polynomials (Schöbi et al., 2016): 
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where )()( i
i

i
x  is univariate polynomial with degree of τi for the ith

 variable.  

Guided sampling algorithms such as Sobol’’ sequence sampling (Sobol’ and Levitan, 1999), 

Latin Hypercube sampling (McKay et al., 1979), and Halton sequence sampling (Halton, 1964) 

can be used to select an optimal set of samples for generating initial experimental design vector 

(i.e., input set X). Sobol’ The corresponding response of the original model Y=f(X) is then 

computed based on the initial experimental design samples. Next, a PC-Kriging meta-model is 

developed using the generated X and Y. The candidate samples are selected and introduced as the 

next sample set X*. The selected sample is fed to the original model to generate the response Y*. 

The X and Y datasets are then enriched using the generated X* and Y*. The enriched X and Y are 

used to further calibrate the meta-model. This process is iteratively repeated until the meta-model 

prediction reaches the desired level of accuracy. Finally, the resulting calibrated meta-model is 

used to produce response values and estimate the resistance function based on a large set of 

candidate samples S={x1, …,xn}. 

5.5.4. PERFORMANCE FUNCTION, PROBABILITY OF FAILURE, AND RELIABILITY 

This This chapter focuses on evaluating the reliability of combination connections. The reliability 

of the connections with respect to the AISC formulation for welded-bolted slip critical 
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connections will also be investigated. The AISC specification (AISC, 2017) estimates the load 

carrying capacity of combination connections as: 

  wlFnThDnnR EXXwbfusbn 707.06.0     (5.26) 

where nb is number of bolts, ns is number of slip planes, μ is the friction coefficient, Du is bolt 

pretension coefficient, hf is factor for fillers, Tb is the pretention load of bolts, nw is the number of 

weld lines, FEXX is ultimate strength of weld, w is the weld size, and l is the weld length.  

In addition, AISC specification (AISC, 2017) considers load and resistance factors to account for 

uncertainties associated load estimations and resistance formulations, respectively. The general 

form of load and resistance factor design (LRFD) is presented as (Ravindra and Galambos, 1978): 





i

k
kmkn SR

1

                        (5.27) 

where   is the resistance factor, nR is the nominal resistance, k  and kmS   are the load factors 

and mean load effects. In addition, based on AISC (2017) recommendations, in presence of dead 

and live loads, the following load combination should be considered: 

 LDRn 6.12.1                        (5.28) 

where D  is load effect due to mean dead load and L is the mean of the maximum lifetime live 

load. In order to evaluate the reliability of the AISC (2017) formulations, the effects of load and 

resistance factors should be considered. However, since the connections may be used in different 

structural designs and be subjected to different loading conditions, estimating the loads applying 

on the connections is challenging task. Accordingly, given different live to dead load ratios, the 

AISC (2017) resistance formulation can be used to estimate the applied loads in terms of dead 

loads in the following form: 
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The mean total load effects acting on the connection ( TL ) can be presented as: 

LDLT        (5.30) 

Given the uncertainties associated with dead and live load effects acting on the connection, the 

total load effect can be then generated as: 

 LDL LDT        (5.31) 

where D  and L are dead and live load uncertainty factors, respectively. 

The following performance function can be then defined to quantify the reliability of investigated 

connection: 

TLRG  )()( XX       (5.32) 

where G(X) is the performance function, R(X) is the resistance calculated using trained meta-

model and given the vector of random variables (X). LT is the total load effects calculated using 

Equation 5.31. PCK-MCS method is then employed to compute the probability of exceedance 

and reliability index of the slip-critical connections as: 

]0)([  XGPPe                        (5.33) 

 eP  11                            (5.34) 
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where Pe is the probability of exceedance, Gi(X) is the performance function associated with each 

random sample set (i), β is the reliability index, and ϕ-1 is the inverse cumulative distribution 

function (inverse CDF) of the standard normal distribution. 

5.6. INTEGRATED SENSITIVITY AND RELIABILITY ASSESSMENT 

FRAMEWORK 

Figure 5.1 shows the layout of the proposed framework for performing reliability analysis. The 

presented framework starts with adopting available experimental test results and manufacturer 

reports to evaluate the uncertainties associated with material properties and construction 

variability. The required input parameters for developing a finite element model including 

pretensioning forces, ultimate weld strength, Yong’s modulus of weld materials, slip-dependent 

friction coefficient, weld length, and weld thickness are then adopted and the uncertainty 

associated with each of them is evaluated.  A finite element model based on the measured input 

parameters during experimental testing is then developed. The created FE model is calibrated and 

validated with respect to the experimental test results. The calibrated FE model is used to perform 

LRA-based sensitivity analysis given the marginal distribution of the input parameters. The 

computed Sobol’ indices are next used to rank the effect of investigated random parameters on 

the resistance function response. The uncertainties associated with random variables with small 

Sobol’ indices are ignored to reduce the complexity and computational cost associated with 

training the surrogate model. Next, the selected random variables are uniformly distributed and 

used to train a PCK surrogate model. The actual distributions of the random parameters are then 

used to test the accuracy of the trained surrogate model. Finally, the performance function is then 

defined as explained in equation 5.27. Monte Carlo simulation is conducted using the selected 

random variables, and the trained Kriging model. Finally, equations 5.28 and 5.29 are used to 

calculate probability of exceedance and reliability indices.  
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Figure 5.1. layout of the proposed framework for quantifying the reliability of bolted-welded 

connections 

5.7. CASE STUDY 

Two configurations of 2×2 axial double lap connections fabricated and tested in Waite (2019) are 

selected for investigation in this chapter. One configuration is constructed using plates with Class 

A faying surface condition while the other utilizes blast cleaned (i.e., Class B) faying surface.  

The specimens consist of three parts, the tested connection, the anchorage zone, and the 

connection grip. A schematic layout of the specimens is presented in Figure 5.2a. The selected 

bolted-welded configurations contain four A325 bolts with 19 mm (¾ in.) diameter. Two 22 mm 

(7/8 in.) thick splice plates and a center plate with 38 mm (1.5 in.) thickness are used to fabricate 

both configurations. A set of three identical specimens for each configuration were fabricated and 

tested in Bert Cooper Engineering Laboratory in Oklahoma State University. The configured 

Class A specimens contained four 76 mm (3 in.) long and 8 mm (5/16 in.) thick weld lines, while 
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the configured Class B specimens contained four 89 mm (3.5 in.) long and 8 mm (5/16 in.) thick 

weld lines. Figure 5.2b show the dimensions and configurations of investigated Class A and B 

connections, respectively. The tests were conducted under monotonically increasing with 

displacement control procedure. Further details regarding the experimental procedure and 

specimen design can be found in Waite (2019). The results of these experiments will be used to 

validate the numerical results presented in the finite element section of this chapter. 

 

Figure 5.2. (a)Schematic layout of the tested specimen (b) configurations of the tested Class A 

and Class B specimens 

5.7.1. RANDOM VARIABLES 

To properly assess the probabilistic behavior of the connection, the following parameters are 

considered as random variables: Pretensioning loads, friction surface coefficient, weld length, 

weld size, weld strength, and modulus of elasticity of weld material. The weld size (i.e., leg size) 

and weld length of a total of 424 weld lines were recorded during the experimental testing 

program conducted by Waite (2019). The weld size was specified to be 8 mm (5/16 in) thick for 
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all of the specimens while weld length varies among the specimens. However, due to welding 

variability, the measured weld sizes and weld lengths for individual weld lines were slightly 

different than the specified values. Accordingly, the experimental weld size measurements are 

used to find the statistical properties of the collected weld sizes and lengths. Figure 5.3a shows 

the histogram and the best fit Probability Density Function (PDF) of the measured weld size. The 

result of chi-square goodness-of-fit test at 5% significance level conducted by MATLAB 

(MathWorks 2019) shows that the data follows a normal distribution with mean of 7.04 mm 

(0.277 in.) and standard deviation of 0.76 mm (0.03 in.). Due to the unequal weld lengths 

specified for different specimens, the measured weld length associated with each specimen is 

normalized with respect to its corresponding specified value and a normalized construction 

variability is defined. Figure 5.3b shows the PDF of the normalized weld length variability and its 

fitted distribution. It is found that the normalized weld length variability follows a normal 

distribution with mean of 1.051 and standard deviation of 0.047. Note statistical properties of 

construction variability herein are also in line with values suggested by Gaspar et al. (2009). 

The uncertainty associated with weld strength is evaluated based on more than 700 weld strength 

test results collected by Kwan et al. (2010). Analysis of the provided data shows that the mean 

and coefficient of variation of the measured-to-nominal ratio of the ultimate tensile strength are 

1.127 with 0.082, respectively. In addition, it is assumed that Yong’s modulus of weld material 

follows a normal distribution with mean and standard deviation of 200 GPa (29,000 ksi) and 14 

GPa (2,030 ksi), respectively (Hess et al., 2002). 

Grondin et al. (2007) collected the results of more than 1,400 slip resistance tests and reported the 

slip coefficient for steel connections with Class A and Class B faying surfaces. A review of their 

collected database indicates that the friction coefficient for Class A follows a lognormal 

distribution with mean and standard deviation of 0.352 and 0.085, respectively, while the Class B 

data follows a normal distribution with mean and standard deviation of 0.545 and 0.113, 
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respectively. Figure 5.4a and b show the PDF of experimental friction coefficient data collected 

by Grondin et al. (2007) and the best fit distribution confirmed by chi-square goodness-of-fit test 

at 5% significance level using MATLAB (MathWorks 2019) for Class A and B surfaces, 

respectively.  

 

Figure 5.3. Histogram and the best fit PDF of (a) the measured weld size (b) the normalized weld 

length variability 

Finally, Figure 5.5 shows the histogram of the experimentally recorded pretensioning force 

adopted from (Waite 2019) and its best fit distribution. The conducted chi-square goodness-of-fit 
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test at 5% significance level conducted using MATLAB (MathWorks 2019) shows that normal 

distribution with mean of 174.8 kN (39.3 kip) and standard deviation of 21.09 kN (4.74 kip) 

provides the best fit for pretensioning force data. The ratio of the adopted mean value to the 

minimum pretension for ASTM A325 bolts is equal to 1.4. It should be noted that this value is in 

line with the Research Council on Structural Connections (RCSC, 2004) recommendations. In 

case of turn of nut tightening method, RCSC (2004) proposes that pretensioning load may be 

distributed normally with the mean pretension about 1.35 times the specified minimum pretension 

for ASTM A325 bolts. Finally, Table 5.1 presents the statistical properties of the adopted random 

variables.  

 

Figure 5.4. PDF of experimental friction coefficient data collected by Grondin et al. (2007) and 

the best fit distribution for (a) Class A connections (b) Class B connections 
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Figure 5.5. Histogram of the experimentally recorded pretensioning force adopted from (Waite 

2019) and its best fit distribution 

5.7.2. FINITE ELEMENT MODELING 

A three-dimensional Finite Element (FE) model is developed in ABAQUS (2018) environment to 

simulate the behavior of the investigated connections under the applied loads. Steel plates, steel 

bolt, and welds are modeled as elastic perfectly-plastic materials. ABAQUS Explicit solver was 

used to predict the connection behavior. Surface-to-surface contact is used to model the contact 

and sliding between the plates considering the developed slip-dependent friction curves. In 

addition, to simulate the contact between the connected plates, pretensioning force is applied to 

the bolts. The tangential contact between the bolt holes and bolt shanks is considered frictionless. 

Tie constraint is used for connecting the welds elements to the plates. This constraint eliminates 

the degrees of freedom on the slave nodes (i.e., plate nodes) by tying them to the nodes on the 

master surface (i.e., weld nodes).  

Hexahedral solid elements with 8 nodes (ABAQUS C3D8R element) is used to mesh the weld 

and plate while bolts are meshed using 4-node tetrahedral elements (ABAQUS C3D4 element). 

All parts except the contact regions are meshed using 0.3 seed size. Seed size of 0.1 is defined for 

the contact regions (i.e., around the holes and the weld region) to overcome any convergence 
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difficulties and prevent unrealistic excessive stress concentrations. Loads and Boundary 

conditions of the model are defined in accordance with those in experimental test setup. Loading 

is defined in two steps. First, the bolts’ pretension force is defined by applying pressure force on 

the annular area of the bolt heads. Second, to avoid element distortion and diversion, a slow-rate 

displacement of 0.5-mm/min (0.02 in/min) is applied at the tip of the center plate while pinned 

supports are applied to the end of splice plates. Figure 5.6 shows the modeled connection, 

location of applied displacement, fixed end supports, and pretensioning surface. 

 

Figure 5.6. The modeled connection, location of applied displacement, fixed end supports, and 

pretensioning surface 

Waite (2019) tested six bolted only 2×2 connections with A325 bolts to investigate the slip 

behavior of the bolted only connections with Class A faying surface. In addition, five more 

connections with identical geometry and A325 bolts were tested for investigate the slip behavior 

of connections with Class B faying surface. Given the total pretensioning force and slip-force 

curves recorded during the experiments, slip-dependent friction coefficient curves for connections 

with Class A and B are generated. The slip-dependent friction coefficient is estimated based on 

Equation 5.26, where nb is equal to 4, ns is equal to 2, Du is assumed 1 since the actual 

pretensioning force is available, and hf is assumed 1.0 since no filler plate was used. The total 

friction force (Fs¬¬) can be described as the product of friction coefficient (μ), number of bolts 

(nb), number of slip planes (ns), and pretensioning force (Tb). Accordingly, the slip-force curves 

of six and five bolted only specimens associated with Class A and B faying surfaces, respectively, 
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recorded by Waite (2019) are used to generate slip-dependent friction coefficient (μsd) curves 

(i.e., μsd =Fs/( nb.ns.Tb)). The mean of the generated curves associated with each faying surface 

category (i.e., Class A and B) is then used to develop baselines that represent the general shape of 

slip-dependent friction coefficient curves. These baseline curves are then adjusted with respect to 

the variability in friction coefficient tests available in the literature. Figure 5.7 shows the 

individual and mean slip-dependent friction coefficient curves for Class A faying surfaces 

generated based on Waite (2019) test results. 

 

Figure 5.7. The individual and mean slip-dependent friction coefficient curves for Class A faying 

surfaces generated based on Waite (2019) test results 

Given the mean value of input parameters recorded during the experimental tests, a FE model 

representing the investigated connection is built in ABAQUS (2018) environment. Figure 5.8a 

and b compare the force-slip curves of the FE analysis and three experimental tests associated 

with Class A and Class B specimens, respectively, conducted by Waite (2019). 
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Figure 5.8. Comparison of force-slip curves of the FE analysis and three experimental tests 

associated conducted by Waite (2019) for (a) Class A and (b) Class B specimens 

The figure shows that the developed FE model is capable of providing results with a reasonable 

accuracy. The slip resistance of the investigated connections is defined as the maximum load 

recorded before 0.5 mm (0.02 in.) of deformation. For both Class A and Class B connections, the 

slip resistance derived from the FE model matches the mean of the experimental results of with 

less than 3% error. To confirm the validity of the adopted FE modeling methodology, several 

other slip critical connections with various specifications from the Waite (2019) experiments have 

been also simulated using the adopted finite element methodology. The comparison of the 

experimental results with their FE counterparts also supports the accuracy of the proposed finite 
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element modeling approach with error values smaller than 5%. However, to account for 

uncertainties associated with FE modeling, a bias factor following a lognormal distribution with 

mean and standard deviation of 1.03 and 0.0152, respectively, is defined. Figure 5.9 shows the 

lognormal probability plot corresponding to the FE modeling prediction error in comparison to 

mean of experimental results conducted by Waite (2019). The statistical properties of the bias 

factor are derived based on the comparison of mean experimental results and FE modeling.   

 

Figure 5.9. The lognormal probability plot corresponding to the FE modeling prediction error in 

comparison to mean of experimental results conducted by Waite (2019) 

5.7.3. SENSITIVITY ANALYSIS 

The validated FE model is integrated with LRA to compute partial and total Sobol’ sensitivity 

indices using Equations 5.17 and 5.18, respectively. UQ-Lab (Marelli et al., 2014) MATLAB 

toolbox is employed to perform the sensitivity analysis on the Class A connection type. The 

analysis is performed using 1,000 synthetic experimental design samples. The pretensioning 

force, friction coefficient, modulus of elasticity, ultimate strength of weld material, weld length, 

and weld size are considered as input parameters. The statistical properties of the considered 

random variables are defined in accordance with the Table 5.1. 
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Table 5.1. Statistical properties of the adopted random parameters 

Parameter Distribution Mean 
Standard 

Deviation 
Reference 

Weld Length Construction 

Variability 

(measured/nominal ratio) 

Normal 1.051 0.047 Waite (2019) 

Weld Size Normal 
7.04 mm 

(0.277 in) 

0.76 mm 

(0.030 in) 
Waite (2019) 

Friction Coefficient (Calss A) Lognormal 0.352 0.085 
Grondin et al. 

(2007) 

Friction Coefficient (Calss B) Normal 0.545 0.113 
Grondin et al. 

(2007) 

Pretensioning Force Normal 
174.82 kN 

(39.30 kips) 

21.09 kN (4.74 

kips) 
Waite (2019) 

Weld Strength Factor 

(measured/nominal ratio) 
Normal 1.127 0.092 

Kwan et al. 

(2010) 

Yong Modulus of Weld 

Material 
Normal 

200 GPa 

(29,000 ksi) 

14 GPa 

(2,030 ksi) 

Hess et al. 

(2002) 

Dead Load Uncertainty Factor Normal 1.05 0.105 
Melchers & 

Beck (2018) 

Live Load Uncertainty Factor Gumbel 1.0 0.25 
Melchers & 

Beck (2018) 

FE Bias Factor 

(FE/experimental) 
Lognormal 1.03 0.0152 Derived 

PCK Bias Factor (Class A) Normal 1.00045 0.0109 Derived 

PCK Bias Factor (Class B) Normal 0.99957 0.0133 Derived 

 

The response of the system is defined as the maximum FE predicted load corresponding to 

displacements smaller than 0.5 mm (0.02 in). A MATLAB script is prepared to create the input 

file required to construct the FE model, execute it, and collect the results given the input samples 

selected for construction of the sensitivity evaluation model. A LRA-based meta-model is 

generated and used for calculating the Sobol’ indices. A convergence test is conducted to ensure 

that the number experimental design samples is adequate. Figure 5.10 depicts the calculated total 

Sobol’ indices versus number of samples. As shown, the fluctuation of the calculated Sobol’ 

indices are stabilized and limited to 0.02 after using more than 500 samples. This can imply that 

the number of sample size (i.e., 1,000) is adequate to accurately predict the sensitivity of the 

investigated connection. 
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Figure 5.10. The calculated total Sobol’ indices versus number of samples 

Table 5.2 presents the computed total Sobol’ indices using the 1,000 FE model evaluations. As 

shown, the system response is mostly sensitive with respect to the weld length, weld size, friction 

coefficient, and pretensioning force. On the other hand, the Yong modulus and strength of the of 

the weld material seem to have a minimal contribution to the response Sobol’given their low total 

sensitivity index of 0.0097 and 0.0047, respectively.  Weld length has the largest contribution to 

the model response with the corresponding Sobol’ index of 0.3410, weld size and friction 

coefficients are equally important with indices of 0.2529 and 0.2578, respectively, while 

pretensioning has the lower index of 0.1331. The computed indices show that the variability 

associated with the modulus of elasticity and ultimate strength of the weld material has a 

negligible effect on the system response. Accordingly, the pretensioning force, friction coefficient 

factor, weld length, and weld size are considered as effective random variables for performing the 

reliability analysis while the other parameters are assumed deterministic. 

Table 5.2. Computed Sobol indices using 1,000 experimental design samples 

Parameter Total Sobol’ Indices 

Weld Length 0.3410 

Weld Size 0.2529 

Friction Coefficient (Class A) 0.2578 

Pretensioning Force 0.1331 

Weld Strength 0.0047 

Yong Modulus of Weld Material 0.0097 
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5.7.4. RELIABILITY ANALYSIS 

After evaluating the Sobol’ indices and selecting the influential input parameters that have a 

significant effect on the connection response, the FE model is integrated into the PCK-MCS 

reliability quantification approach. A polynomial chaos kriging model, given by Equations 5.24, 

is trained to perform accelerated Monte Carlo simulation. The statistical characteristic of the 

selected random parameters (i.e., pretensioning force, friction coefficient factor, weld length, and 

weld size) are used to generate a training database for the surrogate model. The defined 

distributions are used to find the maximum and minimum values of the random variables. In order 

to prevent biasness with respect to predefined distributions, the derived ranges are used to train 

the PCK surrogate model by uniformly distributing the random variables. Sobol’ sequence 

experimental design sampling technique (Sobol’ and Levitan, 1999) is used to sample from these 

distributions and train the surrogate model. The model is trained using 3,000 synthetic 

experimental design points.  

The accuracy of the trained model is then evaluated using a testing dataset. The testing dataset, 

consisting of 500 samples (i.e., 250 samples for each of the faying surface classes) drawn from 

the actual distributions of the data (see Table 5.1), is used to evaluate the accuracy of the trained 

model. Figure 5.11a and b compare the finite element results and the PCK prediction for the 

investigated Class A and B connections, respectively. As shown, the PCK meta-model is capable 

of providing results with high accuracy with coefficient of determination (R2) values of 0.966 

and 0.971 for Class A and Class B connections, respectively. In order to address the modeling 

uncertainty in the analysis, bias factor between the PCK predictions and FE results is used to 

generate a distribution accounting for the error associated with the PCK prediction. The 

probability density function of the collected error and the fitted normal distribution associated 

with the results of Class A and B connections are plotted in Figures 5.12a and b, respectively. As 

shown, the bias factor associated with Class A connections follows a normal distribution with 
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mean of 1.00045 and standard deviation of 0.01090. The computed bias factor for Class B 

connections also shows a normal distribution with mean of 0.99957 and standard deviation of 

0.01330. 

 

Figure 5.11. Comparison of the finite element results and the PCK prediction for the investigated 

(a) Class A and (b) Class B connections 
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Figure 5.12. PDF of the collected error and the fitted normal distribution associated with the 

results of (a) Class A and (b) Class B connections 

Next, the statistical properties of the considered random parameters associated with the 

investigated Class A and Class B connections (see Table 5.1) are used to perform accelerated 

Monte Carlo simulation by employing the trained PCK model. The performance function is 

defined in accordance with equations 5.32. The load effects are defined based on equations 5.29 
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to 5.31. Four lines of weld (i.e., nw=4) with nominal specified weld size of 8 mm (5/16 in) with 

lengths of 76 mm for Class A and 89 mm for Class B examples are used. Ultimate strength of 

weld is defined as 483 MPa (70 ksi). Four 19 mm (¾ in) pretensioned bolts with AISC 

recommended minimum pretensioned values of 124.5 kN (28 kips) and bolt pretention coefficient 

of 1.13 are used (i.e, Du =1.13, nb=4, and Tb=124.5 kN). Two slip planes with no fillers in 

accordance with AISC recommended friction coefficient of 0.3 for Class A and 0.5 for Class B 

surfaces are considered (i.e., hf =1, ns=2 and, and μ=0.3 or 0.5 for Class A or B). Finally, the 

probability of failure and reliability index are found using equations 5.33 and 5.34, respectively. 

Four million random samples are used to perform the reliability analysis. The sufficiency of the 

sample population is evaluated through a convergence test. Figure 5.13 a and b show the 

convergence plot for probability of failure corresponding to connections with Class A and Class 

B faying surface, respectively. As shown, in both cases, the fluctuation of the calculated 

probability of failure is limited to relatively small value of 5e-6 when the sample population is 

larger than 3 million.  

The performed analysis on the investigated Class A connection indicated that for different live to 

dead load ratios ranging from 0.5 to 5, the exceedance probability can vary in range of 5e-7 to 

2.7e-5 while reliability indices ranging from 4.9 to 4, respectively. In addition, the investigated 

Class B connection resulted in exceedance probability of 5e-7 to 4.27e-7 and reliability indices of 

4.9 to 3.9.  
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Figure 5.13. Convergence plot for probability of failure corresponding to connections with (a) 

Class A and (b) Class B connections 



 

138 

 

5.7.5. TIME DEPENDENT RELIABILITY OF CLASS A AND B CONNECTIONS 

The loss of pretension of the bolts under cyclic loading and along the time may results in lack of 

clamping force and occurrence of slip at forces lower than designed loads. Consequently, this can 

also affect the long-term reliability of the connections. Accordingly, the effect of pretension loss 

should be considered in long-term reliability of the investigated connections. In this regard, 

Heistermann (2011) investigated the long-term behavior of pretensioned bolts in slip-critical 

connections. Analysis of their provided data shows that the long-term pretension loss (Ploss) can 

be predicted as follows: 
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where FLT is the long term pretension force, F0 is the initial pretension force applied on the bolts, 

and T is the time in seconds. Figure 5.14 shows the calculated pretension loss percentage during a 

20-years time-span. As shown in the figure, loss rate is faster during the first few hours of the bolt 

tightening while a slower rate occurs afterwards. 

 

Figure 5.14. Calculated pretension loss percentage during a 20-years time-span 

 In order to evaluate the long-term reliability of the investigated connections, the effects of 

pretension losses are considered next. The proposed reliability analysis approach is employed to 
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perform the time-dependent reliability assessment. The pretensioning losses along the service life 

are computed in accordance with Equation 5.30 and used to modify the pretension force. The 

modified forces are then used to compute the time-variant reliability of the steel connections. 

Note that the pretensioning forces adopted from Waite (2019) are collected two hours after 

tightening the bolts, meaning that the losses during the first two hours are already taken into 

account in the measurements and adopted random variables. Accordingly, the predicted effect of 

pretension losses during the first two hours are not considered in the analysis. Figure 5.15a and b 

show the time-dependent reliability indices for the investigated Class A and Class B connections, 

respectively. As shown, The long-term reliability of the Class A connections after 20 years and 

for different live to dead load ratios ranges from 4.9 to 3.97. In addition, the long-term reliability 

of the Class B connections after 20 years and ranges from 4.9 to 3.81. In both cases, the 

maximum variability of reliability due to pretension loss during the 20-years period is limited to 

5%. However, the variability in reliability due to different live to dead load ratios can reach to 

22%. This can imply the superior effect of live to dead load ratio on reliability of the steel 

connections. 
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Figure 5.15. Calculated time-dependent reliability indices for (a) Class A and (b) Class B 

connections 

5.8. CONCLUSIONS 

The presented chapter aimed to propose an efficient integrated framework to evaluate the 

reliability of combination connections using experimental test results, finite element modeling, 
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and meta-modeling simulation methods. The experimental data was used to quantify the 

uncertainties associated with different parameters that affect the load carrying capacity of 

combination connections and calibrate a finite element model. The validated FE model was then 

integrated with Low-rank Tensor Approximation method to quantify variance-based sensitivity 

measures and rank the effect of different random variables on the load carrying capacity of 

welded-bolted connections. Variables with the small sensitivity measures were then ignored, the 

remaining variables that greatly affect the capacity response along with the validated FE model 

were used to perform reliability analysis by means of Accelerated Polynomial Chaos Kriging 

Monte Carlo Simulation. Finally, the proposed approach was applied on 2 by 2 combination 

bolted-welded connection with Class A and B Faying surfaces. The following conclusions were 

drawn:  

 The results of the sensitivity analysis showed that the load carrying response of the 

investigated Class A connection mainly depended on weld length, weld size, friction 

coefficient, and pretensioning force. The Yong modulus and strength of the of the weld 

material seemed to have a minimal effect on the load capacity of the connection at slip 

limit of 0.5mm (0.02 in). 

 Long-term reliability of the Class A connections after 20 years and for different live to 

dead load ratios of 0.5 to 5 was computed to be ranging from 4.9 to 3.97. In addition, the 

long-term reliability of the Class B connections after 20 years was found to be in range of 

4.9 to 3.81. 

 In both cases of connection with Class A and Class B faying surfaces, the maximum 

variability of reliability due to pretension loss during the 20-years period was limited to 

5%, while the effect of live to dead load ratio on reliability of the steel connections was 

found to reach 22%. 
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CHAPTER VI 
 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1. CONCLUSIONS 

This dissertation presented probabilistic approaches that employ machine learning and surrogate 

modeling techniques in damage detection and performance assessment of civil infrastructure. The 

presented research can help in predicting the structural behavior under the effect of natural 

hazards while considering future climate variability and the potential deterioration due to aging. 

The developed approaches were formulated to consider the various sources of uncertainty 

associated with capacity and load effects. Surrogate modeling techniques are used to accelerate 

complex mechanistic simulations that can be highly expensive from a computational perspective. 

Based on the presented research, the following conclusions are drawn: 

 The application of machine learning in infrastructure management has a great potential to 

improve the current state of art in risk and reliability assessment, fragility analysis, and 

damage identification. The superior response approximation accuracy and the reasonable 

computational cost are among the main advantages of using machine learning. However, 

analysis should be conducted to establish the optimum network configuration that maximizes 

prediction accuracy and prevents overfitting.
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 Integrating deep neural networks into the flood fragility estimation can lead to a significant 

reduction in the computational cost. For example, the analysis conducted in Chapter III saved 

approximately 58,000 hours of finite element simulations.  

 Traditional methods for streamflow prediction based on historic data can provide an 

inaccurate estimation of the bridge failure risk under flood and flood-induced scour. The 

approach proposed in chapter II, provides rational means for predicting future risk while 

properly accounting for uncertainties associated with future climate and flood conditions. 

 The employed neural network architecture was able to predict the streamflow with a 

sufficient accuracy. The comparison of the streamflow prediction results obtained in Chapter 

II and III showed that the deep learning approach outperformed the IHACRES model and 

decreased the prediction error by 10%. 

 Results of the bridge performance assessment showed that scour propagation within the 

investigated soil conditions can significantly reduce the bridge reliability against future floods. 

The scour prediction process depends on the streamflow at the bridge location, which can be 

significantly altered with the future variability in climate conditions. This highlights the 

importance of considering climate change when designing appropriate scour countermeasures 

to reduce the failure probability. 

 The feedforward ANNs that were employed in the damage detection and localization 

approach in Chapter IV enabled detecting and localizing damage in the prestressed girder 

without requiring detailed loading information. 

 The adopted ANNs were capable of establishing a relationship between strain readings 

recorded at various sensors along the tested girder. The predication accuracy was highlighted 

by low mean error and standard deviation. Additionally, the identified damage zones were 

consistent with the observations made during the experimental testing. 
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 Kriging meta models helped in developing an efficient integrated approach for evaluating the 

reliability of combination connections. Additionally, kriging models also assisted in 

quantifying the sensitivity of the load carrying capacity of the connection with respect to 

various input parameters. In both cases, the kriging surrogate models lead to a significant 

reduction in the computational cost.  

6.2.RECOMMENDATIONS FOR FUTURE WORK 

 The presented research on Chapter II and III focused on quantifying the risk and fragility of 

an individual bridge under climate change effects. However, flood events may affect several 

bridges simultaneously across a transportation network. Accordingly, future efforts should 

aim at providing methodologies to quantify the effects of climate change on a regional 

transportation network level. 

 The probabilistic performance prediction methods depend to a great extent on the accuracy of 

the performance prediction model and the descriptors of its probabilistic parameters. 

However, in some cases (e.g., scour prediction models) the uncertainty of the available 

models is very high. In this case, updating the model parameters based on monitoring data 

can help to calibrate the models and achieve more realistic results for the specific case study. 

 The proposed framework for quantifying the risk and fragility of bridges can be used as a 

starting point for developing bridge management and decision-making approaches. As an 

example, the proposed risk quantification approach can be extended to develop a framework 

that would be capable of providing optimal maintenance plans that result in a reduced life-

cycle cost.  

 The presented damage detection approach was validated for flexural damage in fully 

prestressed simply supported beams. However, more research is still needed to quantify the 

effect of loading location, temperature gradients, boundary conditions, and shrinkage and 

creep strains on the proposed approach. Future efforts are required to implement the 
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presented damage identification and localization approach for long-term performance 

monitoring of bridges under field conditions. 

 The research presented in Chapter V focused on quantifying the reliability of double shear 

splice connections. Future research is still needed to quantify the reliability of other connection 

configurations.  
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