27,642 research outputs found

    XNet: A convolutional neural network (CNN) implementation for medical X-Ray image segmentation suitable for small datasets

    Full text link
    X-Ray image enhancement, along with many other medical image processing applications, requires the segmentation of images into bone, soft tissue, and open beam regions. We apply a machine learning approach to this problem, presenting an end-to-end solution which results in robust and efficient inference. Since medical institutions frequently do not have the resources to process and label the large quantity of X-Ray images usually needed for neural network training, we design an end-to-end solution for small datasets, while achieving state-of-the-art results. Our implementation produces an overall accuracy of 92%, F1 score of 0.92, and an AUC of 0.98, surpassing classical image processing techniques, such as clustering and entropy based methods, while improving upon the output of existing neural networks used for segmentation in non-medical contexts. The code used for this project is available online.Comment: 11 pages, 5 figures, 2 table

    Medical Image Segmentation by Deep Convolutional Neural Networks

    Get PDF
    Medical image segmentation is a fundamental and critical step for medical image analysis. Due to the complexity and diversity of medical images, the segmentation of medical images continues to be a challenging problem. Recently, deep learning techniques, especially Convolution Neural Networks (CNNs) have received extensive research and achieve great success in many vision tasks. Specifically, with the advent of Fully Convolutional Networks (FCNs), automatic medical image segmentation based on FCNs is a promising research field. This thesis focuses on two medical image segmentation tasks: lung segmentation in chest X-ray images and nuclei segmentation in histopathological images. For the lung segmentation task, we investigate several FCNs that have been successful in semantic and medical image segmentation. We evaluate the performance of these different FCNs on three publicly available chest X-ray image datasets. For the nuclei segmentation task, since the challenges of this task are difficulty in segmenting the small, overlapping and touching nuclei, and limited ability of generalization to nuclei in different organs and tissue types, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs

    Using Deep Neural Networks to Address the Evolving Challenges of Concealed Threat Detection within Complex Electronic Items

    Get PDF
    X-ray baggage security screening is widely used to maintain aviation and transport safety and security. To address the future challenges of increasing volumes and complexities, the recent focus on the use of automated screening approaches are of particular interest. This includes the potential for automatic threat detection as a methodology for concealment detection within complex electronics and electrical items screened using low-cost, 2D X-ray imagery (single or multiple view). In this work, we use automatic object segmentation algorithms enabled by deep Convolutional Neural Networks (CNN, e.g. Mask R-CNN) together with the concept of image over-segmentation to the sub-component level and subsequently use CNN classification to determine the presence of anomalies at both an object or sub-component level. We evaluate the performance impact of three strategies: full frame, object segmentation, and object over-segmentation, for threat/anomaly detection within consumer electronics items. The experimental results exhibit that the object over-segmentation produces superior performance for the anomaly detection via classification, with <5%< 5\% false positive and ~99% true positive
    • …
    corecore