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I. INTRODUCTION

‘We identified vulnerabilities with TSA’s screener performance, screening equipment, and associated
procedures’1 - report published by the Office of Inspector General (OIG), U.S. Department of Homeland
Security on covert testing of Transportation Security Administration (TSA) screening checkpoint effec-
tiveness (2017). Undercover investigators managed to conceal threat items, such as explosives, imitation
guns, knives, etc. through the security checkpoints 70%∼80% of the time at varius US airports2. Although
these statistics show an evident improvement compared to two years previously, the failure rate above
70% is cause for concern.
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Fig. 1. Statistics on a number of scheduled passengers handled by the airline industry
from 2004 to 20194.

‘Aviation is growing, and that is gen-
erating huge benefits for the world. A
doubling of air passengers in the next
20 years could support 100 million jobs
globally.’ - Alexandre de Juniac (Direc-
tor General and CEO, IATA). In 2017 it
is estimated by International Air Trans-
port Association (IATA) that commer-
cial airlines carried approximately 4.1
billion passengers worldwide, which is
an increment of 7.3% compared t o
20165. As illustrated in Fig. 1, the num-
ber of air travelers has grown tremen-
dously over the last decade from ∼2
billion in 2004 to ∼4.6 billion in 2019.
With this trend, it is estimated that
this volume will reach ∼8.2 billion in
2037. Furthermore, it is estimated that
between the year 2016 and 2040, air
cargo traffic will increase by 2.5% with a 1.9% increment in aircraft movements6 (as depicted in the Fig.
2).

1https://www.oig.dhs.gov/sites/default/files/assets/2017/OIG-17-112-Sep17.pdf
2https://abcnews.go.com/US/tsa-fails-tests-latest-undercover-operation-us-airports/story?id=51022188
4https://www.iata.org/pressroom/facts figures/fact sheets/Documents/fact-sheet-industry-facts.pdf
5https://www.iata.org/pressroom/pr/Pages/2018-09-06-01.aspx
6https://aci.aero/news/aci-world-report
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Fig. 2. Global average annual growth forecast 2016-2014.

Indeed, with this increasing volume of traffic, we need to ensure a proficient future system for aviation
securing capable of addressing the evolving threat landscape that emanates from broader global geo-
political events. In step with this, the complexity of aviation security task itself evolves with air passengers
increasingly carrying a wide variety of electronic and electrical items within their baggage. Currently
multiple-view X-ray baggage security screening is widely used to maintain aviation and transport including
the screening of these electronics items. To address these future challenges of increasing volumes and
complexities, the recent focus on the use of automated screening approaches is of particular interest. This
includes the potential for automatic threat detection as a methodology for concealment detection within
complex electronics and electrical items screened using low-cost, 2D X-ray imagery (single or multiple
views).

At this point, we can ask - what is the potential for such a device borne threat, which could be hidden
in an electronics device, such as a laptop? In February 2016, a Daallo Airlines aircraft was damaged
by mid-air laptop improvised explosive device (IED) explosion7. Whilst in March 2016 a laptop IED
exploded at the security checkpoint in Mogadishu, Somalia prior to flight. Ultimately, we readily find that
the threat is real and evident.

A B

Fig. 3. Spot the difference: Exemplar consumer electronics items within X-ray security
imagery with concealed threat region highlighted (red box, B) while other is a benign
item (A).

Passenger baggage is currently in-
spected manually using dual-energy
multiple-view X-ray imaging. Further-
more, several human factors such as
stress (during peak hours), tediousness
(volume of items to be screening) or
uncertainty (variety of item) can cause
human operators to respond differently.
The threat concealment can also be
also very subtle and very well hidden
within the electronics item, making it
challenging for a human operator to
identify. For example, as depicted in
Fig. 3, the threat portion are camouflaged with other laptop parts. With both increased passenger throughput
in the global travel network and an increasing focus on wider aspects of extended border security (e.g.
freight, shipping, postal), this poses both a challenging and timely automated image classification task.

Considering the key challenge of identifying subtle threats within the X-ray imagery, we examine
three different strategies to illustrate an automated pipeline for, firstly: considering the full X-ray image
containing the object without prior object localization, secondly: the object level segmentation of such
items - focus on locating the item within the image first, then determine if it contains a threat or not?
and thirdly: the object over-segmentation - is this part of this complex item within the image anomalous?
Automatically segmenting varying electronic items within X-ray security images such that individual
objects, and their sub-components, can be isolated within the X-ray image to facilitate improved screening
both by human operators and automated screening algorithms enables the detection of anomalous sub-

7https://www.bbc.co.uk/news/world-africa-35521646
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A B C

Fig. 4. Exemplar X-ray imagery (A) full frame image used for object level anomaly detection (B) via Mask R-CNN and sub-component
anomaly detection (C) via SLIC over-segmentation.

components within electronic items (e.g. ‘This is a laptop, but this part in the corner looks strange/unusual
compared to other laptops.’ - hence refer for operator review using both full-view and as an isolated
sub-component views). The potential to isolate object sub-components in this way enables efficient and
effective alarm resolution at a higher granularity compared to current approaches [1]–[3].

Early work on automated threat detection wthin X-ray security images is based on hand-crafted features
[4], [5], such as Bag-of-Visual-Words (BoVW), which is applied together with a classifier such as a Support
Vector Machine (SVM). The original work of [4] proposes a novel variant on the BoVW model for X-ray
object classification in this domain which significantly outperforms (with 99.07% true positive for Firearms
detection) prior works. More recent work [6]–[8], that specifically leverage recent advances in CNN deep
learning architectures [9]–[11], have now been shown to outperform these BoVW approaches in terms
of true positive detection, false alarm rate (98.6% true positive / 0.2% false positive) and the range of
objects that can be detected in a side by side comparison. Early work on Convolutional Neural Networks
(CNN) in X-ray imaging [12] explores the use of transfer learning from another network trained on a
classification task. Work considering multiple view X-ray threat detection is in its infancy using either a
combination of ad-hoc 3D geometrical reconstruction [13] (lesser detection at 90-92%) or feature-space
fusion pre-classification [14] (which combines features regardless of potential inter-occlusion). By contrast,
the work of [7] operates at scan rate (<1 sec. per image), with higher accuracy and targets probabilistic
item localization within each X-ray view. [15] has considered a unique feature representation as a critical
component for detection within cluttered X-ray imagery for anomaly detection. In the works of [3], [16],
unsupervised anomaly detection strategies are proposed based on high reconstruction errors produced by
a generator network adversarially trained on non-anomalous (benign) stream-of-commerce X-ray imagery
only.

In our proposed work, we use automatic object segmentation algorithms enabled by deep Convolutional
Neural Networks (CNN, e.g. Mask R-CNN [17], Faster R-CNN [18]) together with the concept of image
over-segmentation (SLIC [19]) to the sub-component level and then apply CNN classifiers ( [10], [20])
to classify {anomaly/threat, benign} object or object sub-component of X-ray security imagery.

II. OVERVIEW OF PROPOSED DEEP NEURAL NETWORK STRATEGIES

In this work, we evaluate three different strategies for concealed threat detection in electronics item: a)
full X-ray image without object localization (Fig. 4A), b) object level detection and segmentation (Fig.
4B), and c) object over-segmentation (Fig. 4C). This is followed by a binary, {anomaly/threat, benign},
classification task using deep learning based CNN classifiers.

Object detection and segmentation: We consider a number of CNN architectures, such as Mask R-
CNN [17], Faster R-CNN [18], for object detection and segmentation task to explore their applicability and
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performance for generalised object detection within the context of X-ray security imagery. Mask R-CNN
[17] relies on region proposals followed by ROI-Pooling to produce standard-sized outputs suitable for
input into a secondary classifier. Mask R-CNN combines object localization with instance segmentation
of the object in the image (Fig. 4B). This architecture [17] is evaluated over an electronics item (e.g.
laptop) packed within cluttered X-ray security baggage imagery, for detection and segmentation task.

Object over-segmentation: For object over-segmentation (Fig. 4C), we apply Simple Linear Iterative
Clustering (SLIC) [19] approach. SLIC performs iterative clustering, where initially image is segmented
into roughly equal sized segments. To measure the similarity between the segments, it introduces a new
distance metric which considers the size of the segment.

Classification strategy: In the final classification task, {anomaly/threat, benign}, applied either on
full frame, object level or object over-segmented imagery, we rely on transfer learning both from a set of
seminal CNN object classification networks (e.g. ResNet [10], VGG-16 [21], etc.) pre-trained on ImageNet
[22]. Training is performed via transfer learning using stochastic gradient descent with a momentum of
0.9, a learning rate of 0.001, a batch size of 64 and categorical cross-entropy loss. All networks are trained
on NVIDIA 1080 Ti GPU via the PyTorch framework [23].

III. RESULTS

For evaluation, we compare the {anomaly/threat, benign} classification (via CNN) performance of
full frame X-ray image, object level segmentation and object over-segmentation. For our experimentation,
our dataset (DEEi1 - Durham Electrical and Electronics Items one-class) is constructed using a 2D X-ray
scanner with associated false colour materials mapping via dual-energy. All X-ray imagery is gathered
locally by using a Gilardoni dual-energy X-ray scanner (FEP ME 640 AMX)8. The dataset consists of
large consumer electronics items (e.g. laptop) with and without anomaly/threat (e.g. marzipan, screws,
metal plates, sharps, etc.) concealment present. In total, for object over-segmentation, 7871 X-ray imagery
(70 : 30 data split) and testing reported over a dataset of 4177 X-ray imagery laptop. To address the class
imbalance problem, we perform data augmentation (rotation, flipping, etc.) of the anomaly/threat images.
Our model performances are evaluated in terms of Accuracy (A), Precision (P), F-score (F1%), True
Positive (TP%), and False Positive (FP%), as presented in the Table I.

TABLE I
FULL FRAME VS OBJECT LEVEL VS OBJECT OVER-SEGMENTATION CLASSIFICATION VIA VARYING CNN NETWORKS.

Object Network configuration A P F1 TP(%) FP(%)

Full Frame ResNet50 [10] 0.85 0.81 0.82 93.92 21.10
VGG-16 [21] 0.74 0.68 0.73 89.64 40.89

Object level
segmentation

ResNet50 [10] 0.86 0.85 0.85 97.29 16.59
VGG-16 [21] 0.79 0.70 0.75 94.26 39.47

Object
over-segmentation

ResNet50 [10] 0.97 0.95 0.97 98.99 4.54
VGG-16 [21] 0.94 0.92 0.93 95.89 8.55

We observe from Table I, overall object over-segmentation strategy (via Mask R-CNN [17] and SLIC
[19]) outperforms full frame and object level segmentation after performing {anomaly/threat, benign}
classification. The best performing classifier for object over-segmentation (Table I lower) is ResNet50 [10]
with the highest TP and lowest FP (TP: 98.99%, FP: 4.54%). When we consider full frame X-ray images
for classification task, the FP is quite high, FP: 21.10%, with the best performing ResNet50 (Table I upper)
configuration. The subtle threat/anomaly is present only in a certain regions within the object. As a result,
the network performs poorly when processing the full frame images without any form of localization via a

8https://www.gilardoni.it/en/security/x-ray-solutions/automatic-detection-of-explosives/fep-me-640-amx/
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segmentation approach. In the object-level strategy, where the target object is first detected, localized and
isolated via segmentation prior to binary classification, the accuracy is improved (A: 0.86, TP: 97.29%
with ResNet50, Table I middle), due to the more focused feature representation. The over-segmented object
provides higher granular information compared to the other two strategies, henceforth achieves the best
performance among all strategies.

To the best knowledge of the authors the proposed work on {anomaly/threat, benign} detection
within concealed electronics items, using three different strategies, is first of its kind. As there is no prior
related work is available in the literature of X-ray security imagery (e.g. object over-segmentation level
classification), we are unable to compare our strategies with any existing algorithm and present the result
as the benchmark.

Examples of the detection (object level segmentation via Mask R-CNN) and classification of the
consumer electronics containing an anomaly are depicted in Fig. 5A. In Fig. 5B, exemplary qualitative
results of over-segmentation (via SLIC) and classification of electronics item, where red colour indicates
threat/anomalous region while green represents benign sub-components.

IV. CONCLUSION

We evaluate the performance impact of three different strategies, full frame, object segmentation, and
object over-segmentation, for concealed threat/anomaly detection within consumer electronics item. Our
experimental results exhibit that the best performance (<5% FP and ∼99% TP) is achieved with object
over-segmentation strategy on CNN classifier.

“Given enough eyeballs, all bugs are shallow.” - Eric Raymond.

Security is always a ‘people, process, and technology’ solution. Here we present a deep learning enabled
approach to address the challenges of threat concealment detection within consumer electronics items
via a generalized approach to anomaly, rather than explicit threat, detection. In deployment such work
work uniquely balance technology with human participation - by detecting anomalous occurrences and
reporting them for human review.

Within the context of electrical items, this work offers the automatic first-stage screening of aviation
baggage for anomalous electronic item detection at the component level as an indicator of potential threat
presence. If an anomaly is detected in this process, then it is referred to security operators for further
review. In future, this work will target more varied electronic and electrical items across a full the range of
operational X-ray characteristics with future potential to span passenger (and freight) screening operations
across aviation, rail, postal and maritime.
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A

B

Fig. 5. Examples of {anomaly/threat, benign} consumer electronics (laptop) detection and classification in X-ray security imagery: object
level segmentation (A) by Mask R-CNN [17] and object over-segmentation (B) by SLIC [19].
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