1,474 research outputs found

    Neural Inheritance Relation Guided One-Shot Layer Assignment Search

    Full text link
    Layer assignment is seldom picked out as an independent research topic in neural architecture search. In this paper, for the first time, we systematically investigate the impact of different layer assignments to the network performance by building an architecture dataset of layer assignment on CIFAR-100. Through analyzing this dataset, we discover a neural inheritance relation among the networks with different layer assignments, that is, the optimal layer assignments for deeper networks always inherit from those for shallow networks. Inspired by this neural inheritance relation, we propose an efficient one-shot layer assignment search approach via inherited sampling. Specifically, the optimal layer assignment searched in the shallow network can be provided as a strong sampling priori to train and search the deeper ones in supernet, which extremely reduces the network search space. Comprehensive experiments carried out on CIFAR-100 illustrate the efficiency of our proposed method. Our search results are strongly consistent with the optimal ones directly selected from the architecture dataset. To further confirm the generalization of our proposed method, we also conduct experiments on Tiny-ImageNet and ImageNet. Our searched results are remarkably superior to the handcrafted ones under the unchanged computational budgets. The neural inheritance relation discovered in this paper can provide insights to the universal neural architecture search.Comment: AAAI202

    Evolutionary Computation

    Get PDF
    This book presents several recent advances on Evolutionary Computation, specially evolution-based optimization methods and hybrid algorithms for several applications, from optimization and learning to pattern recognition and bioinformatics. This book also presents new algorithms based on several analogies and metafores, where one of them is based on philosophy, specifically on the philosophy of praxis and dialectics. In this book it is also presented interesting applications on bioinformatics, specially the use of particle swarms to discover gene expression patterns in DNA microarrays. Therefore, this book features representative work on the field of evolutionary computation and applied sciences. The intended audience is graduate, undergraduate, researchers, and anyone who wishes to become familiar with the latest research work on this field

    Book reports

    Get PDF

    Machine learning for managing structured and semi-structured data

    Get PDF
    As the digitalization of private, commercial, and public sectors advances rapidly, an increasing amount of data is becoming available. In order to gain insights or knowledge from these enormous amounts of raw data, a deep analysis is essential. The immense volume requires highly automated processes with minimal manual interaction. In recent years, machine learning methods have taken on a central role in this task. In addition to the individual data points, their interrelationships often play a decisive role, e.g. whether two patients are related to each other or whether they are treated by the same physician. Hence, relational learning is an important branch of research, which studies how to harness this explicitly available structural information between different data points. Recently, graph neural networks have gained importance. These can be considered an extension of convolutional neural networks from regular grids to general (irregular) graphs. Knowledge graphs play an essential role in representing facts about entities in a machine-readable way. While great efforts are made to store as many facts as possible in these graphs, they often remain incomplete, i.e., true facts are missing. Manual verification and expansion of the graphs is becoming increasingly difficult due to the large volume of data and must therefore be assisted or substituted by automated procedures which predict missing facts. The field of knowledge graph completion can be roughly divided into two categories: Link Prediction and Entity Alignment. In Link Prediction, machine learning models are trained to predict unknown facts between entities based on the known facts. Entity Alignment aims at identifying shared entities between graphs in order to link several such knowledge graphs based on some provided seed alignment pairs. In this thesis, we present important advances in the field of knowledge graph completion. For Entity Alignment, we show how to reduce the number of required seed alignments while maintaining performance by novel active learning techniques. We also discuss the power of textual features and show that graph-neural-network-based methods have difficulties with noisy alignment data. For Link Prediction, we demonstrate how to improve the prediction for unknown entities at training time by exploiting additional metadata on individual statements, often available in modern graphs. Supported with results from a large-scale experimental study, we present an analysis of the effect of individual components of machine learning models, e.g., the interaction function or loss criterion, on the task of link prediction. We also introduce a software library that simplifies the implementation and study of such components and makes them accessible to a wide research community, ranging from relational learning researchers to applied fields, such as life sciences. Finally, we propose a novel metric for evaluating ranking results, as used for both completion tasks. It allows for easier interpretation and comparison, especially in cases with different numbers of ranking candidates, as encountered in the de-facto standard evaluation protocols for both tasks.Mit der rasant fortschreitenden Digitalisierung des privaten, kommerziellen und öffentlichen Sektors werden immer größere Datenmengen verfügbar. Um aus diesen enormen Mengen an Rohdaten Erkenntnisse oder Wissen zu gewinnen, ist eine tiefgehende Analyse unerlässlich. Das immense Volumen erfordert hochautomatisierte Prozesse mit minimaler manueller Interaktion. In den letzten Jahren haben Methoden des maschinellen Lernens eine zentrale Rolle bei dieser Aufgabe eingenommen. Neben den einzelnen Datenpunkten spielen oft auch deren Zusammenhänge eine entscheidende Rolle, z.B. ob zwei Patienten miteinander verwandt sind oder ob sie vom selben Arzt behandelt werden. Daher ist das relationale Lernen ein wichtiger Forschungszweig, der untersucht, wie diese explizit verfügbaren strukturellen Informationen zwischen verschiedenen Datenpunkten nutzbar gemacht werden können. In letzter Zeit haben Graph Neural Networks an Bedeutung gewonnen. Diese können als eine Erweiterung von CNNs von regelmäßigen Gittern auf allgemeine (unregelmäßige) Graphen betrachtet werden. Wissensgraphen spielen eine wesentliche Rolle bei der Darstellung von Fakten über Entitäten in maschinenlesbaren Form. Obwohl große Anstrengungen unternommen werden, so viele Fakten wie möglich in diesen Graphen zu speichern, bleiben sie oft unvollständig, d. h. es fehlen Fakten. Die manuelle Überprüfung und Erweiterung der Graphen wird aufgrund der großen Datenmengen immer schwieriger und muss daher durch automatisierte Verfahren unterstützt oder ersetzt werden, die fehlende Fakten vorhersagen. Das Gebiet der Wissensgraphenvervollständigung lässt sich grob in zwei Kategorien einteilen: Link Prediction und Entity Alignment. Bei der Link Prediction werden maschinelle Lernmodelle trainiert, um unbekannte Fakten zwischen Entitäten auf der Grundlage der bekannten Fakten vorherzusagen. Entity Alignment zielt darauf ab, gemeinsame Entitäten zwischen Graphen zu identifizieren, um mehrere solcher Wissensgraphen auf der Grundlage einiger vorgegebener Paare zu verknüpfen. In dieser Arbeit stellen wir wichtige Fortschritte auf dem Gebiet der Vervollständigung von Wissensgraphen vor. Für das Entity Alignment zeigen wir, wie die Anzahl der benötigten Paare reduziert werden kann, während die Leistung durch neuartige aktive Lerntechniken erhalten bleibt. Wir erörtern auch die Leistungsfähigkeit von Textmerkmalen und zeigen, dass auf Graph-Neural-Networks basierende Methoden Schwierigkeiten mit verrauschten Paar-Daten haben. Für die Link Prediction demonstrieren wir, wie die Vorhersage für unbekannte Entitäten zur Trainingszeit verbessert werden kann, indem zusätzliche Metadaten zu einzelnen Aussagen genutzt werden, die oft in modernen Graphen verfügbar sind. Gestützt auf Ergebnisse einer groß angelegten experimentellen Studie präsentieren wir eine Analyse der Auswirkungen einzelner Komponenten von Modellen des maschinellen Lernens, z. B. der Interaktionsfunktion oder des Verlustkriteriums, auf die Aufgabe der Link Prediction. Außerdem stellen wir eine Softwarebibliothek vor, die die Implementierung und Untersuchung solcher Komponenten vereinfacht und sie einer breiten Forschungsgemeinschaft zugänglich macht, die von Forschern im Bereich des relationalen Lernens bis hin zu angewandten Bereichen wie den Biowissenschaften reicht. Schließlich schlagen wir eine neuartige Metrik für die Bewertung von Ranking-Ergebnissen vor, wie sie für beide Aufgaben verwendet wird. Sie ermöglicht eine einfachere Interpretation und einen leichteren Vergleich, insbesondere in Fällen mit einer unterschiedlichen Anzahl von Kandidaten, wie sie in den de-facto Standardbewertungsprotokollen für beide Aufgaben vorkommen

    Normalization of Disease Mentions with Convolutional Neural Networks

    Get PDF
    Normalization of disease mentions has an important role in biomedical natural language processing (BioNLP) applications, such as the construction of biomedical databases. Various disease mention normalization systems have been developed, though state-of-the-art systems either rely on candidate concept generation, or do not generalize to new concepts not seen during training. This thesis explores the possibility of building a disease mention normalization system that both generalizes to unseen concepts and does not rely on candidate generation. To this end, it is hypothesized that modern neural networks are sophisticated enough to solve this problem. This hypothesis is tested by building a normalization system using deep learning approaches, and evaluating the accuracy of this system on the NCBI disease corpus. The system leverages semantic information in the biomedical literature by using continuous vector space representations for strings of disease mentions and concepts. A neural encoder is trained to encode vector representations of strings of disease mentions and concepts. This encoder theoretically enables the model to generalize to unseen concepts during training. The encoded strings are used to compare the similarity between concepts and a given mention. Viewing normalization as a ranking problem, the concept with the highest similarity estimated is selected as the predicted concept for the mention. For the development of the system, synthetic data is used for pre-training to facilitate the learning of the model. In addition, various architectures are explored. While the model succeeds in prediction without candidate concept generation, its performance is not comparable to those of the state-of-the-art systems. Normalization of disease mentions without candidate generation while including the possibility for the system to generalize to unseen concepts is not trivial. Further efforts can be focused on, for example, testing more neural architectures, and the use of more sophisticated word representations

    On the application of neural networks to symbol systems.

    Get PDF
    While for many years two alternative approaches to building intelligent systems, symbolic AI and neural networks, have each demonstrated specific advantages and also revealed specific weaknesses, in recent years a number of researchers have sought methods of combining the two into a unified methodology which embodies the benefits of each while attenuating the disadvantages. This work sets out to identify the key ideas from each discipline and combine them into an architecture which would be practically scalable for very large network applications. The architecture is based on a relational database structure and forms the environment for an investigation into the necessary properties of a symbol encoding which will permit the singlepresentation learning of patterns and associations, the development of categories and features leading to robust generalisation and the seamless integration of a range of memory persistencies from short to long term. It is argued that if, as proposed by many proponents of symbolic AI, the symbol encoding must be causally related to its syntactic meaning, then it must also be mutable as the network learns and grows, adapting to the growing complexity of the relationships in which it is instantiated. Furthermore, it is argued that in order to create an efficient and coherent memory structure, the symbolic encoding itself must have an underlying structure which is not accessible symbolically; this structure would provide the framework permitting structurally sensitive processes to act upon symbols without explicit reference to their content. Such a structure must dictate how new symbols are created during normal operation. The network implementation proposed is based on K-from-N codes, which are shown to possess a number of desirable qualities and are well matched to the requirements of the symbol encoding. Several networks are developed and analysed to exploit these codes, based around a recurrent version of the non-holographic associati ve memory of Willshaw, et al. The simplest network is shown to have properties similar to those of a Hopfield network, but the storage capacity is shown to be greater, though at a cost of lower signal to noise ratio. Subsequent network additions break each K-from-N pattern into L subsets, each using D-from-N coding, creating cyclic patterns of period L. This step increases the capacity still further but at a cost of lower signal to noise ratio. The use of the network in associating pairs of input patterns with any given output pattern, an architectural requirement, is verified. The use of complex synaptic junctions is investigated as a means to increase storage capacity, to address the stability-plasticity dilemma and to implement the hierarchical aspects of the symbol encoding defined in the architecture. A wide range of options is developed which allow a number of key global parameters to be traded-off. One scheme is analysed and simulated. A final section examines some of the elements that need to be added to our current understanding of neural network-based reasoning systems to make general purpose intelligent systems possible. It is argued that the sections of this work represent pieces of the whole in this regard and that their integration will provide a sound basis for making such systems a reality
    corecore