8 research outputs found

    IMAGE SHARPENING WITH BLUR MAP ESTIMATION USING CONVOLUTIONAL NEURAL NETWORK

    Get PDF
    We propose a method for choosing optimal values of the parameters of image sharpening algorithm for out-of-focus blur based on grid warping approach. The idea of the considered sharpening algorithm is to move pixels from the edge neighborhood towards the edge centerlines. Compared to traditional deblurring algorithms, this approach requires only scalar blur level value rather than a blur kernel. We propose a convolutional neural network based algorithm for estimating the blur level value

    Suppression of the contrast of ribs in chest radiographs by means of massive training artificial neural network

    Get PDF
    ABSTRACT We developed a method for suppression of the contrast of ribs in chest radiographs by means of a massive training artificial neural network (MTANN). The MTANN is a trainable highly nonlinear filter that can be trained by using input chest radiographs and the corresponding teacher images. We used either the soft-tissue image or the bone image obtained by use of a dual-energy subtraction technique as the teacher image for suppression of ribs in chest radiographs. When the soft-tissue images were used as the teacher images, the MTANN directly produced a "soft-tissue-image-like" image where the contrast of ribs was suppressed. When the bone images were used as the teacher images, the MTANN was able to produce a "bone-image-like" image, and then was subtracted from the corresponding chest radiograph to produce a bone-subtracted image where ribs are suppressed. Thus, the two kinds of rib-suppressed images, i.e., the soft-tissue-image-like image and the bone-subtracted image, could be produced by use of the MTANNs trained with two different teacher images. We applied each of the two trained MTANNs to non-training chest radiographs to investigate the difference between the processed images. The results showed that the contrast of ribs in chest radiographs almost disappeared, and was reduced to less than 10% in both processed images. The contrast of ribs was reduced slightly better in the soft-tissue-image-like images than in the bone-subtracted images, whereas soft-tissue opacities such as lung vessels and nodules were maintained better in the bone-subtracted images. Therefore, the use of the bone images as the teacher images for training the MTANN has produced better rib-suppressed images where soft-tissue opacities were substantially maintained. A method for rib suppression using the MTANN would be useful for radiologists as well as CAD schemes in detection of lung diseases such as nodules in chest radiographs

    Pixel-Based Artificial Neural Networks in Computer-Aided Diagnosis

    Get PDF

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing

    Full text link
    [EN] This paper presents the `NoisyOffice¿ database. It consists of images of printed text documents with noise mainly caused by uncleanliness from a generic office, such as coffee stains and footprints on documents or folded and wrinkled sheets with degraded printed text. This corpus is intended to train and evaluate supervised learning methods for cleaning, binarization and enhancement of noisy images of grayscale text documents. As an example, several experiments of image enhancement and binarization are presented by using deep learning techniques. Also, double-resolution images are also provided for testing super-resolution methods. The corpus is freely available at UCI Machine Learning Repository. Finally, a challenge organized by Kaggle Inc. to denoise images, using the database, is described in order to show its suitability for benchmarking of image processing systems.This research was undertaken as part of the project TIN2017-85854-C4-2-R, jointly funded by the Spanish MINECO and FEDER founds.Castro-Bleda, MJ.; España Boquera, S.; Pastor Pellicer, J.; Zamora Martínez, FJ. (2020). The NoisyOffice Database: A Corpus To Train Supervised Machine Learning Filters For Image Processing. The Computer Journal. 63(11):1658-1667. https://doi.org/10.1093/comjnl/bxz098S165816676311Bozinovic, R. M., & Srihari, S. N. (1989). Off-line cursive script word recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(1), 68-83. doi:10.1109/34.23114Plamondon, R., & Srihari, S. N. (2000). Online and off-line handwriting recognition: a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 63-84. doi:10.1109/34.824821Vinciarelli, A. (2002). A survey on off-line Cursive Word Recognition. Pattern Recognition, 35(7), 1433-1446. doi:10.1016/s0031-3203(01)00129-7Impedovo, S. (2014). More than twenty years of advancements on Frontiers in handwriting recognition. Pattern Recognition, 47(3), 916-928. doi:10.1016/j.patcog.2013.05.027Baird, H. S. (2007). The State of the Art of Document Image Degradation Modelling. Advances in Pattern Recognition, 261-279. doi:10.1007/978-1-84628-726-8_12Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002). Image processing with neural networks—a review. Pattern Recognition, 35(10), 2279-2301. doi:10.1016/s0031-3203(01)00178-9Marinai, S., Gori, M., & Soda, G. (2005). Artificial neural networks for document analysis and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(1), 23-35. doi:10.1109/tpami.2005.4Rehman, A., & Saba, T. (2012). Neural networks for document image preprocessing: state of the art. Artificial Intelligence Review, 42(2), 253-273. doi:10.1007/s10462-012-9337-zLazzara, G., & Géraud, T. (2013). Efficient multiscale Sauvola’s binarization. International Journal on Document Analysis and Recognition (IJDAR), 17(2), 105-123. doi:10.1007/s10032-013-0209-0Fischer, A., Indermühle, E., Bunke, H., Viehhauser, G., & Stolz, M. (2010). Ground truth creation for handwriting recognition in historical documents. Proceedings of the 8th IAPR International Workshop on Document Analysis Systems - DAS ’10. doi:10.1145/1815330.1815331Belhedi, A., & Marcotegui, B. (2016). Adaptive scene‐text binarisation on images captured by smartphones. IET Image Processing, 10(7), 515-523. doi:10.1049/iet-ipr.2015.0695Kieu, V. C., Visani, M., Journet, N., Mullot, R., & Domenger, J. P. (2013). An efficient parametrization of character degradation model for semi-synthetic image generation. Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing - HIP ’13. doi:10.1145/2501115.2501127Fischer, A., Visani, M., Kieu, V. C., & Suen, C. Y. (2013). Generation of learning samples for historical handwriting recognition using image degradation. Proceedings of the 2nd International Workshop on Historical Document Imaging and Processing - HIP ’13. doi:10.1145/2501115.2501123Journet, N., Visani, M., Mansencal, B., Van-Cuong, K., & Billy, A. (2017). DocCreator: A New Software for Creating Synthetic Ground-Truthed Document Images. Journal of Imaging, 3(4), 62. doi:10.3390/jimaging3040062Walker, D., Lund, W., & Ringger, E. (2012). A synthetic document image dataset for developing and evaluating historical document processing methods. Document Recognition and Retrieval XIX. doi:10.1117/12.912203Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281Suzuki, K., Horiba, I., & Sugie, N. (2003). Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(12), 1582-1596. doi:10.1109/tpami.2003.1251151Hidalgo, J. L., España, S., Castro, M. J., & Pérez, J. A. (2005). Enhancement and Cleaning of Handwritten Data by Using Neural Networks. Lecture Notes in Computer Science, 376-383. doi:10.1007/11492429_46Pastor-Pellicer, J., España-Boquera, S., Zamora-Martínez, F., Afzal, M. Z., & Castro-Bleda, M. J. (2015). Insights on the Use of Convolutional Neural Networks for Document Image Binarization. Lecture Notes in Computer Science, 115-126. doi:10.1007/978-3-319-19222-2_10España-Boquera, S., Zamora-Martínez, F., Castro-Bleda, M. J., & Gorbe-Moya, J. (s. f.). Efficient BP Algorithms for General Feedforward Neural Networks. Lecture Notes in Computer Science, 327-336. doi:10.1007/978-3-540-73053-8_33Zamora-Martínez, F., España-Boquera, S., & Castro-Bleda, M. J. (s. f.). Behaviour-Based Clustering of Neural Networks Applied to Document Enhancement. Lecture Notes in Computer Science, 144-151. doi:10.1007/978-3-540-73007-1_18Graves, A., Fernández, S., & Schmidhuber, J. (2007). Multi-dimensional Recurrent Neural Networks. Artificial Neural Networks – ICANN 2007, 549-558. doi:10.1007/978-3-540-74690-4_56Sauvola, J., & Pietikäinen, M. (2000). Adaptive document image binarization. Pattern Recognition, 33(2), 225-236. doi:10.1016/s0031-3203(99)00055-2Pastor-Pellicer, J., Castro-Bleda, M. J., & Adelantado-Torres, J. L. (2015). esCam: A Mobile Application to Capture and Enhance Text Images. Lecture Notes in Computer Science, 601-604. doi:10.1007/978-3-319-19222-2_5

    Neural Edge Enhancer for Supervised Edge Enhancement from Noisy Images

    No full text
    corecore