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ABSTRACT 
 
We developed a method for suppression of the contrast of ribs in chest radiographs by means of a massive training 
artificial neural network (MTANN).  The MTANN is a trainable highly nonlinear filter that can be trained by using 
input chest radiographs and the corresponding teacher images.  We used either the soft-tissue image or the bone image 
obtained by use of a dual-energy subtraction technique as the teacher image for suppression of ribs in chest radiographs.  
When the soft-tissue images were used as the teacher images, the MTANN directly produced a "soft-tissue-image-like" 
image where the contrast of ribs was suppressed.  When the bone images were used as the teacher images, the MTANN 
was able to produce a "bone-image-like" image, and then was subtracted from the corresponding chest radiograph to 
produce a bone-subtracted image where ribs are suppressed.  Thus, the two kinds of rib-suppressed images, i.e., the 
soft-tissue-image-like image and the bone-subtracted image, could be produced by use of the MTANNs trained with two 
different teacher images.  We applied each of the two trained MTANNs to non-training chest radiographs to investigate 
the difference between the processed images.  The results showed that the contrast of ribs in chest radiographs almost 
disappeared, and was reduced to less than 10% in both processed images.  The contrast of ribs was reduced slightly 
better in the soft-tissue-image-like images than in the bone-subtracted images, whereas soft-tissue opacities such as lung 
vessels and nodules were maintained better in the bone-subtracted images.  Therefore, the use of the bone images as the 
teacher images for training the MTANN has produced better rib-suppressed images where soft-tissue opacities were 
substantially maintained.  A method for rib suppression using the MTANN would be useful for radiologists as well as 
CAD schemes in detection of lung diseases such as nodules in chest radiographs. 
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1. INTRODUCTION 
 
Chest radiography has been used to detect lung cancer in screening programs,1,2 because some evidence suggests that 
early detection of lung cancer may allow a favorable prognosis for the patient.3-5  Radiologists, however, may fail to 
detect lung nodules in chest radiographs in up to 30% of cases6,7 due to the overlap with normal anatomic structures such 
as ribs and clavicles.8,9  Therefore, a computer-aided diagnostic (CAD) scheme for nodule detection on chest 
radiographs has been investigated as a useful tool, because the computer prompt for indicating nodules would improve 
radiologists' detection accuracy.10,11 

Many researchers have developed CAD schemes for lung nodule detection in chest radiography.12-19  Giger et al. 
developed a CAD scheme for nodule detection on chest radiographs,12 and the performance of the CAD scheme was 
improved by incorporating an adaptive thresholding technique and a multiple-template matching technique by Xu et al.13 
and Li et al.14, respectively.  A major difficulty in current CAD schemes for chest radiographs is to detect nodules 
overlapping with ribs, rib crossings, and clavicles, because a majority of false positives were caused by ribs and 
clavicles.13  This results in lowering the sensitivity of a CAD scheme as well as the specificity.  Because the nodules 
overlapping with ribs and clavicles were reported to be difficult for radiologists,8,9 detection of such nodules is important 
for a CAD scheme.  Therefore, the suppression of ribs in chest radiographs would be useful for improving radiologists’ 
detection accuracy and the CAD performance. 

Our purpose in this study was to develop a method for suppression of the contrast of ribs in chest radiographs by 
means of a massive training artificial neural network (MTANN). 
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2. MATERIALS 

 
To train the MTANN and validate the results, we used dual-energy chest radiographs consisting of 128 conventional 
chest radiographs and the corresponding soft tissue images and bone images.  The dual-energy chest radiographs were 
acquired with a computed radiography system with dual-energy subtraction (FCR 9501 ES; Fuji Medical Systems) at 
The University of Chicago Hospitals.  One hundred eighteen of 128 chest radiographs were cases with solitary 
pulmonary nodules, and ten radiographs were “normal” cases (i.e., nodule-free cases).  All nodules were confirmed by 
use of CT examinations.  The original matrix size of the images was 1,760 x 1,760 pixels (pixel size was 0.2 mm), and 
the gray scale was 10 bit.  For efficiency, the size of all images was reduced to 440 x 440 pixels in this study. 
 
 

3. METHODS 
 
3.1 Architecture of Massive Training Artificial Neural Network (MTANN) 
Suzuki et al. have been investigating supervised nonlinear image-processing techniques based on artificial neural 
networks (ANNs), called a "neural filter"20 for reduction of the quantum mottle in X-ray images21 and a "neural edge 
detector"22,23 for supervised detection of subjective edges traced by cardiologists,24 and have developed training 
methods,25,26 design methods,27,28 and an analysis method29 for these techniques.  Suzuki et al. have recently extended 
the neural filter and the neural edge detector to accommodate various pattern-classification tasks, and developed an 
MTANN.  They have applied the MTANN for reduction of false positives in computerized detection of lung nodules in 
low-dose CT.30,31 

The MTANN is a trainable highly nonlinear filter that can be trained by using input chest radiographs and the 
corresponding teacher images.  The MTANN consists of a modified multilayer ANN, which is capable of operating on 
image data directly.  The pixel values of the original chest radiographs are normalized first such that a pixel value of 
zero is zero and a pixel value of 1,023 is one.  The inputs of the MTANN are the pixel values in a local window RS on a 
chest radiograph.  The output of the MTANN is a continuous value, which corresponds to the center pixel in the local 
window, represented by 
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where O(x,y) is the output of the MTANN, x and y are the indices of coordinates, NN{•} is the output of the modified 
multilayer ANN, and g(x,y) is an input pixel value.  Note that only one unit is employed in the output layer.  The 
output image is obtained by scanning of an input image with the MTANN. 

The teacher image is a desired image for suppressing ribs in a chest radiograph.  The input chest radiograph is 
divided pixel-by-pixel into a large number of overlapping sub-regions.  The size of the sub-region corresponds to that 
of the local window RS.  The MTANN is trained by presenting each of the input sub-regions together with each of the 
corresponding teacher single pixels.  The error to be minimized by training is defined by 
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where p is a training pixel number, T(p) is the pth training pixel in the training regions RT in the teacher images, O(p) is the 
pth training pixel in the training region RT in the output images, and P is the number of training pixels.  The MTANN is 
trained by a modified back-propagation (BP) algorithm,32 which was derived for the structure of the modified multilayer 
ANN in the same way as the original BP algorithm.33,34 
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3.2 Multi-Resolution MTANN for Suppression of Ribs 
Ribs in chest radiographs include various spatial frequency components.  For a single-MTANN, it is difficult to 
suppress ribs containing such various frequencies, because the capability of a single MTANN is limited, i.e., the 
capability depends on the size of the local window of the MTANN.  In order to overcome this issue, we employed a 
multi-resolution decomposition/composition technique.35,36  The multi-resolution decomposition technique is a 
technique for decomposing an original high-resolution image into different-resolution images.  First, a medium 
resolution image is obtained from the original high resolution image by performing down-sampling with averaging.  
The medium resolution image is enlarged by performing up-sampling with zeroth order holding.  Then, a high 
resolution difference image is obtained by subtracting the enlarged medium resolution image from the high resolution 
image.  These procedures are performed repeatedly to produce further lower resolution images.  Thus, multi-
resolution images having various frequencies are obtained by use of the multi-resolution decomposition technique.  The 
important property of this technique is that exactly the same original resolution image can be obtained from the multi-
resolution images by performing the inverse procedures, which are called a multi-resolution composition technique. 

We used a dual-energy subtraction technique37 to obtain the teacher images for suppression of ribs in chest 
radiographs.  The dual-energy subtraction is a technique for obtaining a soft-tissue image and a bone image by use of 
the energy dependence of x-ray attenuation by different materials.  Chest radiographs are used as input images to the 
MTANN, and the corresponding soft-tissue images or bone images are used as the teacher images for suppression of ribs 
in chest radiographs.  We employed the multi-resolution decomposition and composition techniques, and developed a 
multi-resolution MTANN consisting of three MTANNs for three different-resolution images, as illustrated in Fig. 1.  
Each MTANN is an expert for a certain resolution such as a low-, a medium-, or a high-resolution.  First, the input 
chest radiographs and the corresponding teacher images are decomposed into sets of different-resolution images, and 
then these sets of images are used for training the MTANNs in the multi-resolution MTANN.  Each resolution 
MTANN is trained independently with the corresponding resolution images.  After training, the MTANNs are expected 
to be able to produce different-resolution images.  The different resolution output images are composed to provide a 
complete high resolution image by use of the multi-resolution composition technique. 

When the soft-tissue image is used as the teacher image, the MTANN can directly produce a "soft-tissue-image-
like" image where the contrast of ribs is suppressed.  However, when the bone image is used as the teacher image, the 
MTANN can produce a "bone-image-like" image, and then is subtracted from the corresponding chest radiograph to 
produce a bone-subtracted image where ribs are suppressed.  Thus, two kinds of rib-suppressed images, i.e., the soft-
tissue-image-like image and the bone-subtracted image, can be produced by use of the MTANNs trained with two 
different teacher images.  Therefore, this image processing may be considered as a "rib suppression" technique.  
Figure 2 shows a scheme for creating the bone-subtracted image from the “bone-image-like” image.  To reduce the fine 
structures of soft tissues in the bone-image-like image, a Gaussian filter with a small standard deviation is applied to the 
bone-image-like image.  To suppress only ribs, the image for masking the outside regions of the lung regions is created 
from the original chest radiograph by a method described below.  Thresholding is performed on the chest radiograph to 
segment lung regions.  The threshold value is determined by use of Otsu's threshold selection.38  Otsu's threshold 
selection is a technique for determining a threshold from a histogram.  This method selects the lowest point between 
two classes in the histogram automatically (it is formulated as linear discriminant analysis).  The method involves 
minimizing the ratios of between-class variance to the total variance.  A Gaussian filter with a standard deviation of 40 
pixels was applied for smoothing the edges of the segmented lung region.  The smoothed bone-image-like image of the 
multi-resolution MTANN is subtracted from the corresponding chest radiograph with the mask image. 
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4. RESULTS 

 
4.1 Training with Soft-Tissue Images or Bone Images 
We used four chest radiographs and the corresponding soft-tissue images and bone images from our dual-energy chest 
radiograph database for training the multi-resolution MTANN.  One of important characteristics of the MTANN is that 
it can be trained with a very small number of cases, because the MTANN is trained with a large number of sub-regions 
extracted from input images, i.e., the MTANN can be trained not on case base but on sub-region base.30,31  We used one 
typical normal case and three cases with nodules as training cases.  Figure 3 shows a sample of the training cases.  The 
normal case was used mainly for training for ribs, clavicles, soft tissues such as lung vessels, and the relationship among 
them.  The nodule cases were used mainly for training for nodules and the relationship between nodules and ribs.  In 
order to train the entire features in lung regions, 5,000 pairs of training samples were extracted randomly from manually-
traced lung regions in each of different resolution normal chest radiographs and each of the corresponding teacher 
images.  In order to learn the relationship between nodules and ribs, training samples for nodules were extracted from 
the manually-traced nodule regions which were enough to cover the nodules. 
 
 

Multi-resolution MTANN

Multi-resolution 
decomposition

Multi-resolution 
decomposition
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(soft-tissue image

or bone image)

Input chest 
radiograph
Input chest 
radiograph

 
 

Figure 1. Architecture and training of the multi-resolution MTANN consisting of three MTANNs 
for three different-resolution images.  The input chest radiograph and the teacher image are 
decomposed into multi-resolution images.  Each of multi-resolution images is used as the input and 
teacher images for each of the corresponding resolution MTANN in the multi-resolution MTANN. 
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Figure 2. Illustration of a scheme for creating a bone-subtracted image from the “bone-image-like” 
image obtained by use of the trained MTANN. 

 
 

We determined the size RS of the local window of the MTANNs in the multi-resolution MTANN by using a 
method for designing the structure of an ANN.27  The method is a sensitivity-based pruning method, i.e., the sensitivity 
to the training error was calculated when a certain unit was removed virtually, and the unit with the minimum training 
error was removed.  Removing the redundant units in the input layer and retraining for recovering the potential loss due 
to the removal were performed repeatedly, resulting in a reduced structure where redundant units were removed.  As a 
result, the size of the local window was determined to be 9 x 9 pixels.  A three-layer structure was employed for the 
structure of the MTANNs, because any continuous mapping can be realized approximately by three-layer ANNs.39,40  
The number of hidden units was determined empirically to be 20; thus, the numbers of input, hidden, and output units 
were 81, 20, and 1, respectively.  With the parameters above, the trainings of three MTANNs were performed 
1,000,000 times.  After training, the output images of the MTANNs were composed into an output image by use of the 
multi-resolution composition technique.   
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(a)

(c)(b)  
 

Figure 3. Illustrations of the training case (normal case) of (a) input chest radiograph, (b) 
corresponding teacher bone image, and (c) corresponding teacher soft-tissue image. 

 
 
4.2 Comparison of the MTANNs Trained with Different Teacher Images 
Figure 4 shows the output images, i.e., the soft-tissue-image-like image and the bone-image-like image, of the MTANNs 
with two different teacher images, and the bone-subtracted image for the chest radiograph in Fig. 3.  In the soft-tissue-
image-like image, the opacities of ribs almost disappear.  In the bone-image-like image, the ribs are extracted 
effectively, and the image is similar to the “ideal” bone image in Fig. 3(c).  In the bone-subtracted image, the contrast 
of ribs is suppressed substantially, while the visibility of soft tissue such as lung vessels is maintained.  For detailed 
comparison of these images, enlarged images of regions-or-interest (ROIs) in the soft-tissue-image-like image and the 
rib-subtracted image are shown in Fig. 5.  Compared to the “ideal” soft-tissue image, details of soft tissue such as very 
small lung vessels slightly disappear in the soft-tissue-image-like image, whereas they are maintained substantially in the 
bone-subtracted image, although low-contrast ribs are recognizable.  Figures 6 and 8 show the output images of the 
MTANNs for a non-training normal case and a non-training case with a nodule, respectively.  Figures 7 and 9 show the 
enlarged images of ROIs in these images.  The results demonstrated that the MTANN worked similar for non-training 
cases.  As to the nodule case, the nodule in the bone-subtracted image shown in Fig. 9 is maintained substantially, it is 
similar to the “ideal” soft-tissue image.  The effect of the rib suppression was evaluated by measuring the contrast of 
ribs in both original chest radiographs and processed images.  The contrast of the 6th left and right ribs, and that of the 
9th left and right ribs was measured.  The results demonstrated that the contrast of ribs in chest radiographs was 
reduced to about 6% in the soft-tissue-image-like images, and about 8% in the bone-subtracted images. 

The MTANN trained with the bone images produced better results compared to the MTANN trained with the soft-
tissue images, probably because the pattern variations of soft tissue would be greater than those of ribs.  Another 
advantage of the bone-subtracted image is that different contrast of ribs can be obtained by changing a weighting factor. 
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Figure 4. Illustrations of (a) original chest radiograph, (b) “soft-tissue-image-like” image obtained 
by use of the MTANN, (c) “bone-image-like” image obtained by use of the MTANN, and (d) bone-
subtracted image obtained by subtracting the bone-image-like image from the original chest 
radiograph, which correspond to the chest radiographs in Fig. 3 

 
 

(b) (c) (d)(a)  
 

Figure 5. Enlarged images of regions-or-interest (ROIs) in (a) original chest radiograph, (b) “soft-
tissue-image-like” image obtained by use of the MTANN, (c) bone-subtracted image obtained by 
use of our scheme, and (d) “ideal” soft-tissue image obtained by use of the dual-energy subtraction 
technique. 
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Figure 6. Illustrations of a non-training normal case of (a) original chest radiograph, (b) “soft-tissue-
image-like” image obtained by use of the MTANN, (c) bone-subtracted image obtained by use of 
our scheme, and (d) “ideal” soft-tissue image obtained by use of the dual-energy subtraction 
technique. 

 
 

(b) (d)(c)(a)  
 

Figure 7. Enlarged images of ROIs in (a) original chest radiograph, (b) “soft-tissue-image-like” 
image obtained by use of the MTANN, (c) bone-subtracted image obtained by use of our scheme, 
and (d) “ideal” soft-tissue image obtained by use of the dual-energy subtraction technique. 
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Figure 8. Illustrations of a non-training case with a nodule of (a) original chest radiograph with a 
nodule (in the left lung), (b) “soft-tissue-image-like” image obtained by use of the MTANN, (c) 
bone-subtracted image obtained by use of our scheme, and (d) “ideal” soft-tissue image obtained by 
use of the dual-energy subtraction technique. 

 
 

(b) (c) (d)(a)  
 

Figure 9. Enlarged images of ROIs of a nodule in (a) original chest radiograph, (b) “soft-tissue-
image-like” image obtained by use of the MTANN, (c) bone-subtracted image obtained by use of 
our scheme, and (d) “ideal” soft-tissue image obtained by use of the dual-energy subtraction 
technique. 
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6. CONCLUSION 
 
The use of the bone images as the teacher images for training the MTANN produced better rib-suppressed images where 
the soft-tissue opacities were substantially maintained.  A method for rib suppression using the MTANN would be 
useful for radiologists as well as CAD schemes in detecting lung diseases such as nodules in chest radiographs. 
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