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ABSTRACT: Given that neural networks have been widely reported in the research community 

of medical imaging, we provide a focused literature survey on recent neural network 

developments in computer-aided diagnosis, medical image segmentation and edge detection 

toward visual content analysis, and medical image registration for its pre-processing and post 

processing, with the aims of increasing awareness of how neural networks can be applied to 

these areas and to provide a foundation for further research and practical development. 

Representative techniques and algorithms are explained in detail to provide inspiring examples 

illustrating: (i) how a known neural network with fixed structure and training procedure could be 

applied to resolve a medical imaging problem; (ii) how medical images could be analysed, 

processed, and characterised by neural networks; and (iii) how neural networks could be 

expanded further to resolve problems relevant to medical imaging. In the concluding section, a 

highlight of comparisons among many neural network applications is included to provide a 

global view on computational intelligence with neural networks in medical imaging. 

 

Indexing terms: neural networks, medical imaging analysis, and intelligent computing.     

 

1. Introduction 

 

Inspired by the way biological nervous systems such as human brains process information, an 

artificial neural network (ANN) is an information processing system which contains a large 

number of highly interconnected processing neurons. These neurons work together in a 

distributed manner to learn from the input information, to coordinate internal processing, and to 

optimise its final output. As numerous algorithms have been reported in the literature applying 

neural networks to medical image analysis, we provide a focused survey on computational 

intelligence with neural networks covering medical image registration, segmentation and edge 

detection for medical image content analysis, computer-aided detection and diagnosis with 

specific coverage on mammogram analysis towards breast cancer screening, and other 
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applications providing a global view on the variety of neural network applications and their 

potential for further research and developments. 

Neural network applications in computer-aided diagnosis represent the main stream of 

computational intelligence in medical imaging [1-14]. Their penetration and involvement are 

almost comprehensive for all medical problems due to the fact that neural networks have the 

nature of adaptive learning from input information and, using a suitable learning algorithm, can 

improve themselves in accordance with the variety and the change of input content. Furthermore, 

neural networks have the capability of optimising the relationship between the inputs and outputs 

via distributed computing, training, and processing, leading to reliable solutions desired by 

specifications, and medical diagnosis often relies on visual inspection, and medical imaging 

provides the most important tool for facilitating such inspection and visualization.   

Medical image segmentation and edge detection remains a common problem and 

foundational for all medical imaging applications [15-25]. Any content analysis and regional 

inspection requires segmentation of featured areas, which can be implemented via edge detection 

and other techniques. Conventional approaches are typified by a range of well researched 

algorithms, including watershed [15], snake modelling [16] and region-growing [17]. In 

comparison, neural network approaches exploit the learning capability and training mechanism to 

classify medical images into content consistent regions to complete segmentations as well as edge 

detections [23-25]. 

Another fundamental technique for medical imaging is registration, which plays 

important roles in many areas of medical applications [26-32]. Typical examples include wound 

care, health care surveillance and monitoring etc. Neural networks can be designed to provide 

alternative solutions via competitive learning, self-organising and clustering to process input 

features and find the best possible alignment between different images or data sets.  

Other applications of ANN include data compression [33-38], image enhancement and 

noise suppression [39-44], and disease prediction [45, 46] etc. More recently, application of ANN 

for functional magnetic resonance imaging (MRI) simulation becomes a new research hotspot, 

where certain structured ANNs are employed to simulate the functional connectivity of brain 

networks [47, 48]. Due to the similar nature of ANN and human neurons, ANN has been proved 

to be a very useful for this new task [49, 50]. 

To provide useful insights for neural network applications in medical imaging and 

computational intelligence, we structure the rest of this paper in six further sections, where 

Section 2 provides some basics about neural networks to enable beginners to understand the 

structure, the connections, and the neuron functionalities. The next four sections present examples 
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of using ANNs for medical imaging problems, categorised by their primary application area. 

Each section covers an application area that differs significantly from the others and groups 

together ANN examples that attempt to solve particular domain sub-problems. Furthermore, these 

sections are ordered to present applications in a way that naturally follows the flow of multiple 

pre-processing steps, such as registration and segmentation, through to endpoint applications 

performing real diagnostic tasks. Section 3 presents examples of image registration approaches. 

Section 4 covers image segmentation and edge detection techniques. Section 5 describes 

applications of computer aided diagnosis. Section 6 includes other applications that are not 

covered in the previous sections. Finally, conclusions and discussions are presented in section 7. 

 

2. Neural Networks Fundamentals 

 

To enable understanding of neural networks, facilitating possible repetition of those neural 

networks introduced and successfully applied in medical imaging, and to inspire further 

development of neural networks, we cover essential basics in this. We start from a theoretical 

model of a single neuron and then introduce a range of different types of neural networks to 

reveal their structure, training mechanism, operation, and functions. 

2.1 Basic Structure 

The basic structure of a neuron can be theoretically modelled as shown in Figure 1, where X {xi, i 

= 1, 2, …, n} represent the inputs to the neuron and Y represents the output. Each input is 

multiplied by its weight wi, a bias b is associated with each neuron and their sum goes through a 

transfer function f. As a result, the relationship between input and output can be described as 

follows. 
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Figure 1 The model of a neuron 
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There are a range of transfer functions available to process the weighted and biased 

inputs, among which four basic transfer functions widely adopted for medical image processing 

are illustrated in Figure 2. 
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Figure 2 Four widely adopted transfer functions 

 

Via selection of suitable transfer functions and connection of neurons, various neural 

networks can be constructed to be trained for producing the specified outputs. The learning 

paradigms for neural networks in medical image processing generally include supervised learning 

and unsupervised learning. In supervised learning, a network is trained using a set of inputs and 

outputs (targets). For each training case there will be a set of input values and one or more 

associated output values, and the goal is minimise the network’s overall output error for all 

training cases by iteratively adjusting the neuron connection weights and bias values using a 

specific training algorithm. 

In unsupervised learning, the training data set does not include any target information. 

Normally a function is defined that measures the suitability or accuracy of the network. This 

function, often referred to as a cost function, is dependent on the network’s application and 

normally uses both the input values and the network’s output value(s) to produce a cost for the 

current network configuration. Normally the aim of unsupervised learning is to minimise or 

maximise the cost for all input vectors in the training set. 

2.2 Feed-forward Network 

There are several different neural network architectures available for medical imaging 

applications, but one of the most common is the feed-forward network. In a feed-forward network, 

the neurons in each layer are only connected with the neurons in the next layer. These 

connections are unidirectional, which means signals or information being processed can only pass 

through the network in a single direction, from the input layer, through the hidden layer(s) to the 

output layer. 
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Feed-forward networks commonly use the Back-Propagation (BP) supervised learning 

algorithm to dynamically alter the weight and bias values for each neuron in the network. The 

algorithm works by iteratively altering the connection weight values for neurons based on the 

error in the network’s actual output value when compared to the target output value. The actual 

modification of weights is carried out using a (normally stochastic) gradient descent algorithm, 

where the weights are modified after each training example is present to the network.  

A Multilayer Perceptron (MLP) is a special type of feed-forward network employing 

three or more layers, with nonlinear transfer functions in the hidden layer neurons. MLPs are able 

to associate training patterns with outputs for nonlinearly separable data. Feed-forward networks 

are particularly suitable for applications in medical imaging where the inputs and outputs are 

numerical and pairs of input/output vectors provide a clear basis for training in a supervised 

manner. 

2.3 Radial Basis Function Networks 

A radial basis function (RBF) network is a three-layer supervised feed-forward network that uses 

a nonlinear transfer function (normally Gaussian) for the hidden neurons and a linear transfer 

function for the output neurons. The Gaussian function is applied to the net input of each neuron 

to produce a radial function of the distance between each pattern vector and each hidden unit 

weight vector.  

  RBF networks are inherently flexible in terms of their size and topology, making them 

suitable for a variety of problems. RBF networks have been successfully applied to a number of 

visual processing and analysis problems, including analysis of 3D structures, as well as time-

series data. They have the potential to be useful tools for medical image analysis, and their 

application to medical imaging analysis problems is discussed further in section 3.2 and 5.1. 

2.4 Feed-back Network 

A feed-back (or recurrent) neural network can have signals travelling in both directions by 

introducing loops, propagating values from the hidden and output layers backwards to earlier 

layers. Their state changes continuously until they reach an equilibrium point. They remain at the 

equilibrium point until the input changes and a new equilibrium needs to be found. They are 

potentially powerful processing tools but can become extremely complicated. 

A Hopfield network is a specific type of feedback network designed to act as a form of 

associative memory, in a similar way to certain parts of the human brain. The purpose of 

associative memory is to converge to a state remembered from training when only part of the 

state is presented as an input. The Hopfield network has no special input or output neurons; all 
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neurons are both input and output, and all are connected to every other neuron in both directions. 

After receiving the input simultaneously by all the neurons, they output to each other 

continuously until a stable state is reached. In a Hopfield network, it is simple to set up the 

weights between neurons in order to attempt to set up a desired set of patterns as stable class 

patterns. They are potentially useful for medical imaging applications such as tumour 

classification where the output value (e.g. benign or malignant) must be derived from partial or 

similar patterns to those seen during training. 

2.5 Self-Organising Map 

Quite different from the above networks types, a Kohonen Neural Network or Self-Organising 

Map (SOM) learns to map input values to an (often two-dimensional) output space. SOMs 

maintain the topology of the input data while reducing the dimensionality, making them 

particularly useful for visualisation problems. SOMs can also be especially useful for medical 

imaging applications such as edge detection and segmentation, as their ability to automatically 

organise their neuron structures based on the topographical structure of the inputs can serve either 

as a first step in an algorithm incorporating many different approaches, or as a stand-alone 

method of dimensionality reduction and pattern recognition. 

In a Kohonen neural network, each neuron is fed by input vector (data point) x   R
n
 

through a weight vector w  R
n
. Each time a data point is input to the network, only the neuron j 

whose weight vector most resembles the input vector is selected to fire, according to the 

following rule: 

, .. m, i=wxj 21   ),min(arg
2

   (2) 

The firing or winning neuron j and its neighbouring neurons i have their weight vectors w 

modified according to the following rule: 

))()((),()()1( twtxtrrhtwtw ijiijii    (3) 

Where hij(||ri - rj||, t) is a kernel defined on the neural network space as a function of the distance 

||ri - rj|| between the firing neuron j and its neighbouring neurons i, and the time t here defines the 

number of iterations. Its neighbouring neurons modify their weight vectors so they also resemble 

the input signal, but less strongly, depending on their distance from the winner. 

2.6 Group Method of Data Handling Neural Networks 

One of the inherent problems of using ANN based algorithms in any domain is the potentially 

overwhelming choice of different architectures, network types, layer topologies and sizes. Rules-

of-thumb, intuition or trial and error are often used as a means of choosing the type and structure 
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of a network for a given problem, and this can lead to unnecessarily poor performance. The use of 

Group Method of Data Handling (GMDH) [51, 52] neural networks can assist users with these 

choices by automating many design decisions, reducing the need for a priori knowledge of the 

underlying model or system for the problem to be solved. GMDH neural networks have been 

applied to medical imaging of 3D heart images with some success [53], and have been used to 

select not only the neuron topology and network type, but also the input features to be used by the 

network. In [54] Kondo and Ueno applied a GMDH neural network to blood vessel image 

recognition, with automatic selection of an architecture from three distinct network types, further 

demonstrating the suitability of this approach for medical imaging. GMDH neural networks, like 

many approaches based on evolutionary or genetic algorithms, have the disadvantage of greater 

computational expense and less transparency. Solutions often require a large number of iterations 

of the training/searching algorithm, and for each additional degree of freedom (in terms of 

variables such as layer topology, architecture type etc.) the process takes longer to find a solution. 

2.7 Neural Network and Medical Imaging Toolboxes 

To assist readers with their efforts in reproducing and extending the works presented in this 

survey we provide a brief list of toolboxes for both neural networks and medical image analysis. 

This is by no means a comprehensive list, and is intended solely to present examples of available 

toolboxes that may be useful to readers of this survey. 

One of the most well known toolboxes for constructing and training neural networks is 

the Neural Network Toolbox
1
 for MATLAB. The toolbox provides GUIs for designing, training 

and simulating a number of different neural network types and allows custom extension of the 

toolbox. Fast Artificial Neural Network Library (FANN)
2
 is a free cross-platform, open source 

toolbox for building and using neural networks. It provides bindings for many programming 

languages and third-party programs. Encog
3
 is a framework for machine learning and neural 

network development. Supported in Java, .NET and Silverlight, it offers a comprehensive range 

of network architectures, training algorithms and neuron activation functions. Neuroph
4
 is a free, 

open source framework for neural network development written using the Java programming 

language. While it offers less features than other toolboxes, it is lightweight, easy to use and can 

serve as a helpful introduction to creating neural networks. 

                                                 
1
 http://www.mathworks.com/products/neuralnet/ 

2
 http://leenissen.dk/fann/ 

3
 http://www.heatonresearch.com/encog 

4
 http://neuroph.sourceforge.net/ 
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The Medical Imaging Interaction Toolkit (MITK)
5
 is a free and open source software 

system for visualising and processing medical images. It offers the possibility of integration with 

other applications and solutions, such as a neural network modelling implementation. ITK-

SNAP
6
 is another free and open source toolkit which provides support for semi-automatic and 

manual 3D image segmentation. ITK-SNAP and MITK are both based on the Insight 

Segmentation and Registration Toolkit (ITK)
7
. AMIDE

8
 is a free tool for medical image analysis 

and registration that runs on a wide variety of platforms. 

From the next section onwards, detailed descriptions are provided for computational 

intelligence in medical imaging with neural networks, and their applications over recent years are 

classified into four categories: registration, image segmentation and edge detection, computer 

aided diagnosis, and other applications. Each section gives more details on applications in one of 

these categories and overviews other relevant applications. Comparisons between neural 

networks applications are made in the concluding section. 

 

3. Neural Networks for Medical Image Registration 

 

Image registration is the process of transforming different sets of data into one coordinate system. 

Registration is necessary to enable the comparison, integration and fusion of images from 

different measurements, which may be taken at different points in time from the same modality or 

obtained from the different modalities such as CT, MR, Angiography and Ultrasound. Medical 

imaging registration often involves elastic (or non-rigid) registration to cope with elastic 

deformations of the body parts imaged, caused by changes from breathing, small movements or 

bodily changes over time. Non-rigid registration of medical images can also be used to register a 

patient's data to an anatomical atlas. Medical image registration is pre-processing step for many 

medical imaging applications and can have a strong influence on the result of subsequent 

segmentation and edge detection. 

3.1 Techniques 

Generally, image registration algorithms could be classified into two groups: area based methods 

and feature based methods. For area based image registration methods, the algorithm looks at the 

structure of the image via correlation metrics, Fourier properties and other means of structural 

                                                 
5
 http://www.mitk.org/wiki 

6
 http://www.itksnap.org/ 

7
 http://www.itk.org/ 

8
 http://amide.sourceforge.net/ 



 9 

analysis. Most feature based methods fine tunes its mapping to the correlation of image features: 

lines, curves, points, line intersections, boundaries, etc.  

To measure the volume change of lung tumour, Matsopoulos et al. [26] proposed an 

automatic three-dimensional non-rigid registration scheme that applied self-organizing maps 

(SOMs) to thoracic computed tomography (CT) data of patients for establishing correspondence 

between the feature points. The practical implementation of this scheme could provide 

estimations of lung tumour volumes during radiotherapy treatment planning. In the algorithm, the 

automatic correspondence of the interpolant points is based on the initialization of the Kohonen 

neural network model capable to identify 500 corresponding pairs of points approximately in the 

two CT sets S1 and S2. An overview of the described algorithm is illustrated in Figure 5. 

 

 
 

Figure 5 The elastic registration scheme 

 

In the algorithm, two sets of points are defined: S2 is the set of points for vertebrae, ribs and 

blades segmented from the reference data, and S1 the set of points for the same anatomical 

structures from the second dataset called float data. Pre-registration takes place between these sets 

of points, and triangulation of S1 is performed. The pre-registration process is applied in three 

dimensions and is applied in order to realign the two datasets in all coordinate. After pre-

registration, two steps are performed to obtain the interpolant points, which are described below: 

1. Triangulating S1 and producing a wire frame based on the topology of S1;  

The triangulation is based on Feitzke’s work [27] and is performed by defining a SOM 

with the following characteristics: 

a. A grid of neurons with 20 rows by 100 columns (20 x 100) is chosen for the 

specific implementation. 

b. The initial weighting vectors of the neurons of the grid are set equal to the 

coordinates of a set of points extracted from an enclosing surface, typically a 

cylindrical surface. 

c. The input to the neural network consists of the Cartesian coordinates of the set of 

points that need to be triangulated. 
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After the process of adaptation of the neural network, the weighting vectors of the 

neurons have values identical to the appropriate points of S1. A wire frame consisting of 

one node for each neuron can be constructed, with Cartesian coordinates of each node 

equal to the weight vector of the corresponding neuron. The wire frame is triangulated 

according to the connectivity of the neurons.  

2. Establishing a SOM in terms of the topology of S1 and training the SOM by using S2;  

The search for corresponding points is based on replicating the topology of the set S1 on 

the input layer of a SOM model. In the SOM model, one neuron is assigned to each node 

of the wired frame and the connections between the neurons are identical with the 

connections of the wired frame. No connection between two neurons is allowed if the two 

corresponding nodes are not directly connected on the float set. The initial weight vector 

of the neurons is the Cartesian co-ordinates of the corresponding wired frame nodes in 

the 3D space. 

 

The training of the network is performed by presenting the network with the coordinates 

of randomly selected points sampled from the reference set S2. The neuron with weight vector 

closest to signal is selected to fire. The firing neuron adjusts its weight vector and its 

neighbouring neurons modify their weight vectors as well but less strongly. The neighbouring 

neurons are confined to a window of 3 × 3 neurons throughout the network training. 

The convergence of the SOM network during the triangulation of S1 set of points results 

in a triangulated subset of points (S1'). Each node of subset S1’ corresponds to a neuron of the 

SOM network (20 × 100 neurons), whose initial weighting vector (x0,y0,z0) of S1 is equal to the 

initial Cartesian coordinates of this node. In S1, this node is displaced to new coordinates and 

equal to the final weighting vector (x1,y1,z1). The new position always coincides with a point in S2.  

Although SOM lateral interactions between neurons generate a one to one point 

correspondence, more than one point from S1’ may correspond to one point in S2. However, most 

of such point mismatches are avoided by using a distance threshold criterion that excludes 

corresponding points exceeding a distance more than five voxels. This process also prohibits 

excessive deformation of the final warped image. Therefore, the total number of successful 

corresponding points is reduced to approximately 500 pairs of points for all patient data. 

SOM has also been used in many other registration-related applications. Shang et. al. [28] 

developed an automatic method to register computed tomography (CT) and magnetic resonance 

(MR) brain images by using first principal directions of feature images. In the method, principal 

component analysis (PCA) neural network is used to calculate the first principal directions from 
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feature images, and then the registration is accomplished by simply aligning feature images' first 

principal directions and centroids.  

Coppini [29] presented a general approach to the problem of image matching which 

exploits a multi-scale representation of local image structure. In the approach, a given pair of 

images to be matched, named target and stimulus respectively, are represented by Gabor 

Wavelets. Correspondence is computed by exploiting the learning procedure of a neural network 

derived from Kohonen's SOM. The SOM neurons coincide with the pixels of the target image and 

their weight are pointers to those of the stimulus images. The standard SOM rule is modified so 

as to account for image features.  

Fatemizadeh et al. [30] proposed a method for automatic landmark extraction from MR 

brain images. In the method, landmark extraction is accomplished by modifying growing neural 

gas (GNG), which is a neural-network-based cluster-seeking algorithm. Using modified GNG 

(MGNG, a splitting-merging SOM) corresponding dominant points of contours extracted from 

two corresponding images are found. The contours are the boundaries of the regions generated by 

segmenting the MR brain image.  

Di Bona et al. [31] developed the "Volume-Matcher 3D" project - an approach for a data-

driven comparison and registration of three-dimensional (3D) images. The approach is based on a 

neural network model derived from self-organizing maps and extended in order to match a full 

3D data set of a "source volume" with the 3D data set of a "target volume."  In Zhang et al [55], 

an automatic surface-based rigid registration system using a neural network representation was 

proposed. The system was applied to register 3D volumes of human bone structures for image-

guided surgery. A multilayer perceptron neural network was used to construct a patient-specific 

surface model from pre-operative images. A surface representation function derived from the 

resultant neural network model was then employed for intra-operative registration. The optimal 

transformation parameters were obtained via an optimization process. Experiments using image 

datasets of the calcaneus and vertebrae demonstrated that the segmentation/registration system 

could achieve sub-voxel accuracy comparable to that of conventional techniques, and was 

significantly faster. 

Markaki et al. [56] proposed automatic point correspondence of unimodal medical 

images using Kohonen Network. Given a pair of 2D medical images of the same anatomical 

region and a set of interest points in one of the images, the algorithm detected effectively the set 

of corresponding points in the second image, by exploiting the properties of the Kohonen self 

organizing maps (SOMs) and embedding them in a stochastic optimization framework. The 

correspondences were established by determining the parameters of local transformations of point 
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mapping in an iterative way, using a modified competitive learning as implemented by SOMs. 

Experimental results from three different modalities (CT, MR and red-free retinal images) had 

used to validate both the accuracy and efficiency of the proposed algorithm, even in the case of 

noise corrupted data. However, the proposed iterative solution was very time-consuming, and an 

execution time for an image pair was about 1-2 minutes. This became even worse when a more 

complex transform like affine was used.  

3.2 Summary 

Medical Image Registration is an important technique for comparing and linking multiple 

related images from different points in time. Small changes that can occur, such as from breathing 

or movement, require adaptive and flexible techniques that can successfully identify common 

points between multiple images. Herein there are two important criteria, i.e. the accuracy and the 

efficiency. Complex point correspondence model may appear very time-consuming, especially 

when estimation using iterative optimization is employed.  

The ability of SOMs to organise their structures according to the topological arrangement 

of an input makes them well suited to image registration problems, where a SOM trained on a 

reference image can be applied to a second image. The mapping of input pixels from images, or 

other features if pre-processing has been performed, to output neurons in the SOM allows 

common features or points to be identified between both images. It is worth noting that 

combining the organisational ability of SOMs with other techniques can result in powerful 

registration algorithms. A Radial Basis Function was used in [26] as a warping method after the 

correlation between points in multiple images was found using a SOM. In [29] Coppini et al. 

discuss the use of Gabor Wavelets as an image representation technique, and note the need for 

appropriate data representation as dictated by the application and image content. Suitable pre-

processing can improve the registration accuracy and aid in interpreting both final results as well 

as intermediate model states. 

 

4. Neural Networks for Medical Image Segmentation and Edge Detection 

 

Medical image segmentation is a process for dividing a given image into meaningful regions with 

homogeneous properties. Image segmentation is an indispensable process in outlining boundaries 

of organs and tumours and in the visualization of human tissues during clinical analysis. 

Therefore, segmentation of medical images is very important for clinical research, diagnosis, and 

applications, leading to requirement of robust, reliable and adaptive segmentation techniques. 

Image segmentation and edge detection often follows image registration and can serve as an 
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additional pre-processing step in multi-step medical imaging applications. The following 

subsections describe applications of ANNs where segmentation or edge detection were the 

primary goals. 

4.1 Segmentation 

Kobashi et al. [15] proposed an automated method to segment the blood vessels from 3D 

time of flight (TOF) MRA volume data. The method consists of three steps: (1) removal of the 

background, (2) volume quantization, and (3) classification of primitives by using an artificial 

neural network. 

After volume quantization by using a watershed segmentation algorithm, the primitives in 

the MRA image stand out. To further improve the result of segmentation, the obtained primitives 

have to been separated into the blood vessel class and the fat class. Three features and a feed-

forward three-layered neural network are adopted for the classification. Compared with the fat, 

the blood vessel is like a tube - long and narrow. To this end, two features including vascularity 

and narrowness were introduced to measure such properties. As the histogram of blood vessels is 

quite different from that of the fat in shapes, a third feature, histogram consistency, is added for 

further improvement of the segmentation. 

The feed-forward NN is composed of 3 layers: an input layer, a hidden layer and an 

output layer. The structure of the described neural network is illustrated in Figure 4. 

 
Figure 4 Three layer feed-forward neural network 

 

As seen, three input units are included at the input layer, which is decided by the number 

of features extracted from medical images. The number of neuron in the output layer is one to 

produce and represent two classes. The number of neurons in the hidden layer is usually decided 

by experiments. Generally, a range of different numbers is tried in the hidden layer, and the 

number that achieves the best training results is selected. 
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In the proposed method, the ANN classifies each primitive, which is a clump of voxels, 

by evaluating the intensity and the 3D shape. In their experiments, the ANN was trained using 60 

teaching data sets derived from an MRA data set. Each primitive is classified into the blood 

vessel (indicated by the value of 1) or the fat (indicated by the value of 0) and the values of the 

three features are calculated. All these values were fed into the feed-forward ANN for training the 

weights of the neurons. Seven new MRA data, whose primitives were unclassified, were fed into 

the trained NN for testing. The segmentation performance is measured by the value of accuracy 

as defined below, and the rate achieved by the reported algorithm is 80.8%. 

%100
itiveser of primTotal numb

s primitiveclassifiedcorrectly Number of 
Accuracy     (4) 

Apart from the work proposed by Kobashi in ANN based segmentation there are many 

applications for the images generated by CT and MRI. Middleton et al. [16] combined use of a 

MLP and active contour model ('snake') to segment structures in magnetic resonance (MR) 

images. The reported work can be highlighted by the following two steps: the perceptron is 

trained to produce a binary classification of each pixel as either a boundary or a non-boundary; 

subsequently, the resulting binary (edge-point) image forms the external energy function for a 

snake model, which is used to link the candidate boundary points into a continuous and closed 

contour.  

Lin [17] applied a Hopfield neural network with penalized fuzzy c-means technique 

(called PFHNN) to medical image segmentation. In the algorithm, the pixels with their first and 

second order moments constructed from their n nearest neighbours as a training vector are 

mapped to a two-dimensional Hopfield neural network for the purpose of classifying the image 

into suitable regions. 

Lin et al. [18] generalized Kohonen's competitive learning (KCL) algorithm with fuzzy 

and fuzzy-soft types called fuzzy KCL (FKCL) and fuzzy-soft KCL (FSKCL). These KCL 

algorithms fuse the competitive learning with soft competition and fuzzy c-means (FCM) 

membership functions. These generalized KCLs were applied to MRI and MRA 

ophthalmological segmentations. It is found that these KCL-based MRI segmentation techniques 

are useful in reducing medical image noise effects using a learning mechanism. The FSKCL 

algorithm is recommended for use in MR image segmentation as an aid to small lesion diagnosis.  

Dokur [19] proposed a Quantizer Neural Network (QNN) for the segmentation of MR 

and CT images. QNN is a novel neural network structure, which is trained by genetic algorithms. 

It was comparatively examined with a multilayer perceptron and a Kohonen network for the 
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segmentation of MR and CT head images. The QNN was reported to have the best classification 

performance with fewer neurons after a short training time. 

Stalidis et al. [20] presented an integrated model-based processing scheme for cardiac 

magnetic resonance imaging (MRI), embedded in an interactive computing environment suitable 

for quantitative cardiac analysis, which provides a set of functions for the extraction, modelling, 

and visualization of cardiac shape and deformation. In the scheme, a learning segmentation 

process incorporating a generating-shrinking neural network is combined with a spatiotemporal 

parametric modelling through functional basis decomposition.  

Chang et al. [21] developed an approach for medical image segmentation using a fuzzy 

Hopfield neural network based on both global and local gray-level information. The membership 

function simulated with neuron outputs is determined using a fuzzy set, and the synaptic 

connection weights between the neurons are predetermined and fixed to improve the efficiency of 

the neural network.  

Shen et al. [22] proposed a segmentation technique based on an extension to the 

traditional fuzzy c-means (FCM) clustering algorithm. In the paper, a neighbourhood attraction, 

which is dependent on the relative location and features of neighbouring pixels, is shown to 

improve the segmentation performance and the degree of attraction is optimized by a neural-

network model. Synthetic and real brain MR images with different noise levels are segmented to 

demonstrate the superiority of the proposed technique compared to other FCM-based methods.  

Fu et al. [57] proposed an automatic hybrid model, in which the statistical expectation 

maximization (EM) and the spatial pulse coupled neural network (PCNN) were integrated for 

brain MRI segmentation. In addition, an adaptive mechanism was developed to fine tune the 

PCNN parameters. The EM model served two functions including evaluation of the PCNN image 

segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. They 

concluded the adaptive EM–PCNN yielded the best results for gray matter and brain parenchyma 

segmentation. However, the adaptive solution produced insignificant results in segmenting brain 

parenchyma in comparison with other solutions including non-adaptive EM–PCNN and EM, 

though it outperformed BCFCM in this test.  

4.2 Edge Detection 

Chang et al [23] designed a two-layer Hopfield neural network called the competitive Hopfield 

edge-finding neural network (CHEFNN) to detect the edges of CT and MRI images. The 

CHEFNN extends the one-layer 2-D Hopfield network at the original image plane to a two-layer 

3-D Hopfield network with edge detection to be implemented on its third dimension. With the 

extended 3-D architecture, the network is capable of incorporating a pixel's contextual 
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information into a pixel-labelling procedure. As a result, the effect of tiny details or noises will be 

effectively removed by the CHEFNN and the drawback of disconnected fractions can be 

overcome. In addition, they [24] discovered that high-level contextual information cannot be 

incorporated into the segmentation procedure in techniques using traditional Hopfield neural 

networks and thus proposed contextual constraint-based Hopfield neural cube (CCBHNC) for 

image segmentation. The CCBHNC uses a three-dimensional architecture with pixel 

classification implemented on its third dimension. With the three-dimensional architecture, the 

network is capable of taking into account each pixel's feature and its surrounding contextual 

information, achieving up to 95.86% segmentation accuracy on real MRI images. Recently, still 

for the edge detection, Chang [25] presented a special design Hopfield neural network called the 

contextual Hopfield neural network (CHNN). The CHNN maps the 2-D Hopfield network at the 

original image plane. With the direct mapping, the network is capable of incorporating pixels' 

contextual information into an edge-detecting procedure. As a result, the CHNN can effectively 

remove the influence of tiny details and noise.  

In Suzuki et al [58], a neural edge detector (NED) is proposed to extract contours from 

left ventriculograms. A modified multilayer neural network is employed and trained using a 

modified back-propagation algorithm through supervised learning from a set of images with 

manually extracted edges by a cardiologist. It is found that the NED is able to extract the contours 

in agreement the ground truth, where an average contour error of 6.2% and an average difference 

between the ejection fractions at 4.1% are reported. However, how to deal with edges under 

severe noise and low contrast using techniques like active contour model needed to be further 

investigated. 

4.3 Summary 

Medical image segmentation and edge detection serve many useful purposes in medical imaging 

analysis. They can serve as a pre-processing step for further computer-aided diagnosis systems, or 

for human diagnosis. By classifying areas with similar properties more specialised diagnostic 

techniques can be applied with less risk of their misuse on non-relevant tissue. Identification of 

edges, particularly those of tumours and organs, can serve to simplify human diagnosis and 

reduce mistakes in the identification of image features. 

 The above sections describe a wide variety of different approaches, from various network 

types to a wide choice of feature extraction and pre-processing techniques. The commonly used 

network types include Hopfield, Kohonen, SOM, MLP, CNN, and QNN et al, where fuzzy c-

means and fuzzy clustering along with genetic algorithm, EM, and BP algorithm are used for 

training. It is difficult to conclude, even in a general sense, which methodologies are consistently 
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more appropriate than others. However, SOMs and contextual extension of conventional 

networks such as Hopfield net are often used in many different medical imaging applications due 

to their inherent topological mapping ability. Many imaging problems will require the topology of 

inputs, often in the form of raw pixel information or derived features, to be maintained through to 

the output stage, or at least clearly identifiable as a major component of the input-output mapping 

process. Other ANN approaches are, of course, still widely used. Their inherent differences can 

be mitigated for a single problem through careful data pre-processing or feature 

extraction/transformation. Hybrid or multipart systems can preserve the topology of inputs and 

produce derived features that are suitable for simpler network types such as MLPs. Still, when 

adopting a neural network solution choices are often dictated by the nature of the input data, or 

the desired form of output data. Simple numerical or nominal predictions may be more suited to a 

feed-forward or feed-back network, while solutions requiring spatial-based input and output 

might indicate a mapping network (such as a SOM) as a good starting point. In addition, it is 

useful to combine techniques like active contour model to achieve more robust image 

segmentation and contour extraction.  

Although most of these applications are developed based on CT or MRI images, a wide 

variety of neural network types have been adopted for their analysis, and reported research results 

show extremely promising outcomes for both image segmentation and edge detection. Some 

ANNs are able to reduce the influence of noise in the image and hence make the segmentation 

more robust, making them a good choice where image noise is a significant problem. In many of 

the applications ANN approaches can be applied directly onto the images in question, greatly 

simplifying the analysis procedure. This must be balanced against potentially greater accuracies 

in systems where ANNs are applied to images that have been processed in some way, such as 

through background removal, feature extraction or dimensionality reduction. 

 

5. Neural Networks for Computer Aided Detection, Diagnosis and Simulation 

 

This section describes a number of applications where ANNs have been successfully used for 

computer aided diagnosis, detection and simulation. While each application is different, 

similarities derived from their common goals can be seen throughout this section. Neural 

networks have been incorporated into many computer-aided diagnosis systems, most of which 

distinguish cancerous signs from normal tissues. Generally these systems enhance the images first 

and then extract interesting regions from the images, possibly through segmentation and edge 

detection approaches such as those discussed in the previous section. The values of many features 
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are calculated based on the extracted regions and are forwarded to neural networks that make 

decisions in terms of learning, training and optimizations. Among all applications, early diagnosis 

of breast cancers and lung cancers represents the most typical examples in the developed 

computer aided detection or diagnosis (CAD) systems. Some relevant survey papers can be found 

in [59, 60, 61]. 

5.1 Detection and Diagnosis of Breast Cancer using Digital Mammograms 

Ge et al. [1] developed a computer-aided detection system to identify microcalcification clusters 

automatically on full field digital mammograms (FFDMs). The whole system includes six stages: 

pre-processing; image enhancement; segmentation of microcalcification candidates; false positive 

(FP) reduction for individual microcalcifications; regional clustering; and FP reduction for 

clustered microcalcifications.  

To reduce FP individual microcalcifications, a convolution neural network (CNN) was 

employed to analysis 16 × 16 region of interest centred at the candidate derived from 

segmentations. CNN was designed to simulate the vision of vertebrate animals and can be 

considered as a simplified vision machine designed to perform the classification of the regions 

into two output types: disease and non-disease. Their CNN contains an input layer with 14 

neurons, two hidden layers with 10 neurons each, and one output layer. The convolution kernel 

sizes of the first group of filters between the input and the first hidden layer were designed as 5 × 

5, and those of the second group of filters between the first and second hidden layers were 7 × 7. 

The images in each layer were convolved with convolution kernels to obtain the pixel values to 

be transferred to the following layer. The logistic sigmoid function was chosen as the transfer 

function for both the hidden neurons and output neurons. An illustration of the neural network 

structure and its internal connections between the input layer, hidden layer and output layers is 

given in Figure 3. 

The convolution kernels are organized in a way to emphasize a number of image 

characteristics rather than those less correlated values obtained from feature spaces for input. 

These characteristics include: (a) the horizontal versus vertical information; (b) local versus non-

local information and (c) image processing (filtering) versus signal propagation [2]. 

The CNN was trained using back-propagation learning rule with the sum-of-squares error 

(SSE) function, which allows a probabilistic interpretation of the CNN output, i.e. the probability 

of correctly classifying the input sample as a true microcalcification ROI.  

At the stage of FP reduction for clustered microcalcifications, morphological features 

(such as the size, the mean density, the eccentricity, the moment ratio, the axis ratio features and 

number of microcalcifications in a cluster) and features derived from the CNN outputs (such as 
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the minimum, the maximum and the mean of the CNN output values) were extracted from each 

cluster. A total of 25 features (21 morphological features plus 4 CNN features) were extracted for 

each cluster. A linear discriminating analysis classifier was then used to differentiate clustered 

microcalcifications from false positives. The Stepwise LDA feature selection involves the 

selection of three parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Schematic diagram of a CNN 

 
 

In their study, a set of 96 images is split into a training set and a validation set, each with 

48 images. An appropriate set of parameters is selected by searching in the parameter space for 

the combination of three parameters of LDA that could achieve the highest classification 

accuracy with a relatively small number of features in the validation set. Then the three 

parameters of LDA are used to select a final set of features and LDA coefficients by using the 

entire set of 96 training images which contain 96 TP and over 500 FP clusters. The trained 

classifier is applied to a test subset to reduce the false positives (FP) in the CAD system, and 

through ROC analysis was shown to achieve FP reduction rates of 86%, 74% and 72% at 

sensitivities of 70%, 80% and 90% respectively when compared to classification without the 

CNN/LDA approach. 

To develop a computerized scheme for the detection of clustered microcalcifications in 

mammograms, Nagel et al. [3] examined three methods of feature analysis: rule based (the 

method currently used), an artificial neural network (ANN), and a combined method. The ANN 
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method uses a three layer error-back-propagation network with five input units corresponding to 

the radiographic features of each microcalcification, and one output unit corresponding to the 

likelihood of being a microcalcification. The reported work reveals that two hidden units are 

insufficient for good performance of the ANN and it is necessary to have at least three hidden 

units to achieve adequate performances. However, the performance is not improved any further 

when the number of hidden units is increased over three. Therefore, the finalised ANN has five 

inputs, three hidden units, and one output unit. The hybrid approach incorporating both a rule-

based classifier and an ANN achieved an error rate of 0.8 false positives per image at 83% 

sensitivity, compared to 1.9 and 1.6 for the rule-based method and the ANN alone respectively. 

Papadopoulossa et al. [4] presented a hybrid intelligent system for the identification of 

microcalcification clusters in digital mammograms, which can be summarised in three-steps: (a) 

preprocessing and segmentation, (b) regions of interest (ROI) specification and (c) feature 

extraction and classification. In the classification schema, 22 features are automatically computed 

which refer either to individual microcalcifications or to groups of them. The reduction of false 

positive cases is performed using an intelligent system containing two subsystems: a rule-based 

and a neural network based. The rule construction procedure consists of the feature identification 

step as well as the selection of the particular threshold value for each feature. Before using the 

neural network, the reduction in the number of features is achieved through principal component 

analysis (PCA), which transforms each 22-dimensional feature vector into a 9-dimensional 

feature vector as the input to the neural network. The neural network that is used for ROI 

characterisation is a feedforward neural network with sigmoid hidden neuron (Multiplayer 

Perceptron—MLP). 

In Halkiotis [62], ANN along with mathematical morphology is employed for the 

detection of clustered microcalcifications even under a non-uniform background. Considering 

each mammogram as a topographic representation, each microcalcification appears as an 

elevation constituting a regional maximum. Morphological filters are applied to suppress noise 

and regional maxima that do not correspond to calcifications. Two multi-layer perceptrons (MLP) 

and two radial basis function neural networks (RBFNN) with different number of hidden nodes 

are applied for classification. The MLP with ten hidden nodes achieved the best classification 

score with a true positive detection rate of 94.7% and 0.27 false positives per image. 

Verma et al [63] proposed a soft cluster neural network (SCNN) for the classification of 

suspicious areas in digital mammograms. The idea of soft clusters was employed to increase the 

generalisation ability of ANN by providing a mechanism to more aptly depict the relationship 

between the input features and the subsequent classification as either a benign or malignant class. 
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Soft clusters with least square based optimisation made the training process faster and avoid 

iterative processes. The proposed neural network technique was tested on the DDSM benchmark 

database, and the accuracy achieved was over 93% in comparison with 83% from k-means 

clustering. However, the performance of the approach proposed was dependent on the properties 

of the sampled images and might fail if these conditions change including the optical density 

range of the film scanner and the spatial resolution of the mammograms.  

Christoyiani et al. [5] presented a method for fast detection of circumscribed mass in 

mammograms employing a RBF neural network (RBFNN). In the method, each neuron output is 

a nonlinear transformation of a distance measure of the neuron weights and its input vector. The 

non-linear operator of the RBFNN hidden layer is implemented using a Cauchy-like probability 

density function. The implementation of RBFNN could be achieved by using supervised or 

unsupervised learning algorithms for an accurate estimation of the hidden layer weights. The K-

means unsupervised algorithm is used to estimate the hidden-layer weights from a set of training 

data containing statistical features from both circumscribed lesions and normal tissue. After the 

initial training and the estimation of the hidden-layer weights, the weights in the output layer are 

computed by using Wincer-filter theory, or minimizing the mean square error (MSE) between the 

actual and the desired filter output. The method was tested using the The MIAS 

MiniMammiographic Database, and achieved a mean overlap value of 0.868 for true positives for 

both normal and abnormal mammograms. 

Patrocinio et al. [6] demonstrate that only certain features such as irregularity, number of 

microcalcifications in a cluster, and cluster area, are needed as the inputs of a neural network to 

separate images into two distinct classes: suspicious and probably benign. Setiono [7] developed 

an algorithm by pruning a feed-forward neural network, which produces high accuracy rates for 

breast cancer diagnosis with small number of connections. The algorithm extracts rules from a 

pruned network by considering only a finite number of hidden unit activation values. Connections 

in the network are allowed only between input units and hidden units as well as between hidden 

units and output units. The algorithm finds and eliminates as many unnecessary network 

connections as possible during the training process. The accuracy of the extracted rules from the 

pruned network is almost as high as the accuracy of the original network.   

The abovementioned applications cover different aspects of applying neural networks 

such as the number of neurons in the hidden layer, the reduction of features in classifications, the 

reduction of connections for better efficiency. Similar improvements could be made in applying 

ANN to other practical utilisations rather than just in identifying microcalcification clusters. For 
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other approaches rather than ANN in detection and classification of microcalcifications and 

masses in mammograms, details can be found in [61] and [64].  

5.2 Detection and Diagnosis of Lung Diseases 

ANNs also plays an important role in detecting cancerous signs in lungs. Xu et al. [8] 

developed an improved computer-aided diagnosis (CAD) scheme for the automated detection of 

lung nodules in digital chest images to assist radiologists, who could miss up to 30% of the 

actually positive cases in their daily practice. In the CAD scheme, nodule candidates were 

selected initially by multiple gray-level thresholds of the difference image (subtraction of a 

signal-enhanced image and a signal suppressed image) and then classified into six groups. 

Between 50% and 70% of false positives were eliminated by adaptive rule-based tests and an 

ANN. 

Zhou et al. [9] proposed an automatic pathological diagnosis procedure named Neural 

Ensemble-based Detection (NED) that utilizes an ANN ensemble to identify lung cancer cells in 

the specimen images of needle biopsies obtained from the bodies of the subjects to be diagnosed. 

An ANN ensemble is a learning paradigm where several ANNs are jointly used to solve a 

problem. The ensemble is built on a two-level ensemble architecture and the predictions of those 

individual networks are combined by plurality voting.  

Keserci et al. [10] developed a computer-aided diagnosis scheme for automated detection 

of lung nodules in digital chest radiographs based on a combination of morphological features 

and the wavelet snake. In their scheme, an ANN was used to efficiently reduce false positives by 

using the combined features. The scheme was applied to a publicly available database of digital 

chest images for pulmonary nodules. Qian et al. [11] trained a computer-aided cytologic 

diagnosis (CACD) system to recognize expression of the cancer biomarkers histone H2AX in 

lung cancer cells and then tested the accuracy of this system to distinguish resected lung cancer 

from preneoplastic and normal tissues. The major characteristics of CACD algorithms are to 

adapt detection parameters according to cellular image contents. Coppini et al. [12] described a 

neural-network-based system for the computer aided detection of lung nodules in chest 

radiograms. The approach is based on multi-scale processing and feed-forward neural networks 

that allow an efficient use of a priori knowledge about the shape of nodules and the background 

structure. 

5.3 Detection and Diagnosis in MRI 

ANN has also been widely applied in diagnosis of diseases in MR images. In Guo et al 

[65], a computer-aided diagnostic system was proposed to classify rat liver lesions from MR 
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imaging. Six parameters of texture characteristics and variance of 161 ROIs were calculated and 

assessed by gray-level co-occurrence matrices, then fed into a Back-Propagation neural network 

classifier to classify the liver tissue into two classes namely cirrhosis and HCC.  The accuracy of 

classification of HCC nodules from cirrhosis achieved was 91.67%.  

In Yamashita et al [66], ANN was utilised to evaluate the performance of radiologists for 

differential diagnosis of intra-axial cerebral tumours on MR Images. A single 3-layer feed-

forward ANN with a Levenberg-Marquardt algorithm was employed to differentiate among 4 

categories of tumours with the use of 2 clinical parameters and 13 radiologic findings in MR 

images. Subjective ratings for the 13 radiologic findings were provided independently by 2 

attending radiologists. In total 126 cases were used for training and testing of the ANN based on a 

leave-one-out-by-case method. In the observer test, MR images were viewed by 9 radiologists, 

first without and then with ANN outputs. The averaged area under the ROC curve for ANN alone 

was 0.949. The diagnostic performance of the 9 radiologists increased from 0.899 to 0.946 when 

they used ANN outputs. However, the setup of the experiments was unrealistic as it might have 

introduced a bias into the results by telling observers that only 1 in 4 possible diseases were 

correctly diagnosed, with normal cases and other diseases excluded. As a result, the whole 

experiments seemed incomplete due to this reason as well as insufficient sample cases used to 

train and validate the ANN. Döhler et al [67] proposed a cellular ANN (CNN) for the detection of 

hippocampal sclerosis in MRI. Using an exemplary database that consisted of a large number of 

volumes of interest extracted from T1-weighted magnetic resonance images from 144 subjects, 

the authors demonstrated that the network allowed classifying brain tissue with respect to the 

presence or absence of mesial temporal sclerosis. Results indicated the general feasibility of the 

proposed computer-aided systems for diagnosis and classification of images generated by medical 

imaging systems. Due to the straightforward structural architecture of SNN that restricted itself to 

local couplings, hardware realizations of such networks were already available and offered the 

potentiality of real-time applications. However, this approach appear as a black box could hardly 

render an expert neuroradiologist ―obsolete‖, since it did not provide information as to the origin 

of the obtained decision rule. In addition, at current stage it could only support T1-weighted 

volume scan, and further extension was needed to deal with T2 or FLAIR sequences when 

relevant high-resolution 3D-data became available. 

In Bathen et al [68], multivariate models are proposed for the prediction of histological 

grade, hormone status, and axillary lymphatic spread in breast cancer patients. The multivariate 

methods applied are variable reduction by principal component analysis (PCA), and modelling by 

probabilistic neural network (PNN). Finally, the model is verified using prediction of blind 
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samples. The verification results show that hormone status is well predicted by both PNN and 

PLS (partial least-squares regression) as a supplement for future clinical decision-making-

concerning adjuvant treatment and the adaptation to more individualised treatment protocols. 

Although PNN produced satisfactory results in calibrating lymphatic spread from MR spectra in 

terms of sensitivity and specificity, predictions in blind samples were not as optimistic, which 

showed lack of generality of the proposed approach. In addition, more patients with less advanced 

breast cancer needed to be included in the test to balance the sample data for the feasibility testing 

the proposed method. 

5.4 Functional MRI (fMRI) Simulation 

Since the mid of 1990s, functional connectivity study using fMRI has drawn increasing attention 

of neuroscientists and computer scientists, which opens a new window to explore functional 

network of human brain [50]. Among quite a few work reported, ANN has been found as a 

natural way and powerful tool for simulating the connectivity and function of special areas of 

brain [47, 48, 69]. A comprehensive survey in this topic can be referred to in [49], [50] and [70]. 

In Kim and Horwitz [47], different kinds of fMRI functional connectivity are analysed to 

reflect the underlying interregional neural interactions, where a biologically realistic neural model 

is employed to simulate both neuronal activities and multiregional fMRI data from a blocked 

design. Topics involved include psycho-physiological interaction (PPI) analysis and interregional 

correlation analysis, and a large-scale neural model is applied to simulate the neurobiological 

underpinnings of PPI. The experimental results have clearly shown that neural modelling can be 

used to help validate the inferences one can make about functional connectivity based on fMRI 

data. However, the sensitivity of their findings could be a result of some artificial aspect of the 

attained neural model, such as the selection of 50% neurons in each region to be nonspecific in 

the task is arbitrary as the actual percentage of such neuron is unknown. The neural 

underpinnings of functional connectivity analysis for event-related fMRI designs and the 

adequacy of deconvolution in the neural model also needed to be further investigated. 

In Marrellec et al [48], a novel approach based on the partial correlation matrix is 

proposed to develop data-driven measures of effective connectivity in functional MRI. To 

achieve this target, a large-scale, neurobiologically realistic neural network model is employed to 

generate simulated data with both structural equation modelling (SEM) and the partial correlation 

approach. Unlike real experimental data, where the interregional anatomical links are not 

necessarily known, the links between the nodes of the neural model are fully specified for easily 

judging the results of SEM and partial correlation analyses. The results reported have fully 

validated the partial correlation method with respect to the underlying neuroarchitecture. Since 
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synthetic data were generated based on the comparison of SEM and partial correlation analysis 

with the true connectivity structure, this might be unrealistic thus the plotted shape of partial and 

marginal correlation coefficients and the proposed thresholding methods might lose of generality. 

Also it was unclear about the exact relationship between partial correlation and structural model 

analysis.  

In Guenther et al [69], a neural model of speech acquisition and production is described 

that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the 

control of speech movements. The components of the ANN model correspond to regions of the 

cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical 

areas. Computer simulations of the model verify its ability to account for compensation to lip and 

jaw perturbations during speech. Specific anatomical locations of the model’s components are 

estimated, and these estimates are used to simulate fMRI experiments of simple syllable 

production. Although the described model accounted for most of the activity in fMRI study of 

speech production, it did not provide a complete explanation of the cortical and cerebellar 

mechanism involved such that better neural modelling and simulation could be achieved. 

5.5 Detection and Diagnosis of Other Diseases 

Apart from the applications in breast cancer and lung cancer, ANN has been adopted in 

many other analyses and diagnosis. Mohamed et al. [13] compare bone mineral density (BMD) 

values for healthy persons and identify those with conditions known to be associated with BMD 

obtained from Dual X-ray absorptiometry (DXA). An ANN was used to quantitatively estimate 

site-specific BMD values in comparison with reference values obtained by DXA (i.e. BMDspine, 

BMDpelvis, and BMDtotal). Anthropometric measurements (i.e. sex, age, weight, height, body 

mass index, waist-to-hip ratio, and the sum of four skinfold thicknesses) were fed to an ANN as 

independent input variables. The estimates based on four input variables were generated as output 

and were generally identical to the reference values for all studied groups. 

Scott [14] tried determining whether a computer based scan analysis could assist clinical 

interpretation in this diagnostically difficult population. Artificial neural networks (ANNs) were 

created using only objective image-derived inputs to diagnose the presence of pulmonary 

embolism. The ANN predictions performed comparably to clinical scan interpretations and with 

the results of angiography. 

In Chiu [45] et al, ANN model is employed for predicting skeletal metastasis in patients 

with prostate cancer. Through analysis of data consecutively collected from patients in five years, 

the predictors in terms of the patient’s age and radioimmunometric serum PSA concentration are 

analysed. To assess the classification performance for clinical study, the discrimination and 
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calibration of an ANN model is estimated and the one of the best performance is determined as 

four-layered perceptrons. Evaluations using the area under the receiver-operating characteristics 

curve and the Hosmer–Lemeshow statistics suggest that ANN appears to be a promising method 

in forecasting of the skeletal metastasis in patients with prostate cancer. However, the proposed 

model had several limitations including i) small number of patients enrolled, ii) single nuclear 

medicine physician used for interpretation of bone scintigraphic images, and iii) lack of a 

quantitative scale or scoring system for image interpretation. In addition, how to use PET/CT 

rather than scintigraphy for detecting skeletal metastasis also needed further attention. 

In [71] Zhang et al. propose a computer-aided diagnosis system named LiverANN for 

classifying the pathologies of focal liver lesions into five categories using the artificial neural 

network (ANN) technique. On each MR image, a region of interest (ROI) in the focal liver lesion 

was delineated by a radiologist. The intensity and homogeneity within the ROI were calculated 

automatically, producing numerical data that were analyzed by feeding them into the LiverANN 

as inputs. Of the 320 MR images obtained from 80 patients with liver lesions, the ANN classifier 

can achieve a training accuracy of 100% and a testing accuracy of 93% in classifying the cases 

into five classes. Moreover, four kinds of MR imaging were considered including T1- and T2- 

weighted MR imaging, dynamic arterial phase and dynamic equilibrium phase. 

Tägil et al [72] employed ANN for quality assurance of image reporting in terms of 

automatic interpretation in myocardial perfusion imaging. The networks were used to identify 

potentially suboptimal or erroneous interpretations of myocardial perfusion scintigrams (MPS). 

Reversible perfusion defects in each of 5 myocardial regions, as interpreted by one experienced 

nuclear medicine physician, were assessed by ANN in 316 consecutive patients undergoing MPS. 

After training, the ANNs were used to select 20 cases in each region that were more likely to 

have a false clinical interpretation. These cases, together with 20 detected control cases with no 

likelihood of false clinical interpretation, were randomly presented to three experienced 

physicians for a consensus re-interpretation. Due to small and mild perfusion defects and 

localization of defects, clinical routine interpretation by an experienced nuclear medicine expert 

and ANN differed in 53 of the 200 cases. The results demonstrated that ANN could identify those 

MPS that might have suboptimal image interpretations. However, the approach had two 

limitations. The first was that the processed images used for clinical interpretation and re-

evaluation were nearly identical. The second was the lack of sufficient clinical information at the 

visual re-evaluation stage though such information was available at the clinical interpretation. 

Such difference might lead to different interpretation results in such a context. 
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In Pan et al [73], BP based ANN was utilised for bleeding detection in wireless capsule 

endoscopy (WCE). Colour texture features distinguishing the bleeding regions from non-bleeding 

regions were extracted in RGB and HSI colour spaces, and used as the feature vector inputs to the 

ANN to recognize the bleeding regions. The experiments demonstrated that the bleeding regions 

could be correctly recognized with a sensitivity of 93% and a specificity of 96%. However, 

inconsistent measurements in terms of sensitivity and specificity at 97% and 90% were also 

reported. 

5.6 Summary 

In all the computer aided diagnosis related applications mentioned above, the roles of ANNs have 

a common principle in the sense that they all are applied to reduce FP detections in both 

mammograms and chest images via examining the features extracted from the suspicious regions. 

Combining automatic detection of suspicious regions with human examination and diagnosis can 

significantly improve overall detection accuracy while minimising the amount of false negatives, 

as we can see from the reported research results. However, it is important to note that ANNs are 

not limited to academic research, but also play important roles in commercially available 

diagnosis systems. For example, R2 Technology’s ImageChecker for mammograms was recently 

approved by the U.S. Food and Drug Administration for use in real-world diagnostic situations. 

The main drawbacks of these approaches towards a successful CAD system can be found 

in several aspects including i) insufficient samples of patient, ii) lack of sufficient clinical 

information applied in diagnosis, iii) biased setting-up of the experiments, and iv) sensitive to 

imaging conditions. The imaging conditions here refer to how the images are produced, which 

can be image sequences from different sources (such as T1- and T2- weighted volume scan or 

FLAIR sequence in MRI) or differences in terms of spatial resolution and optical range of the 

film scanner. As a result, a practical system need to consider these issues in implementation the 

corresponding algorithms hence some multi-resolution analysis might help in this context, though 

it suffers high computational complexity.   

According to the results reported in [46] and [64], it is interesting to note that combined 

classifiers tend to yield better results than single ones. However, ANN still can generate results as 

well as an expert mammographer, although in some work it is suggested that SVM may produce 

better results in detecting microcalcification. In Chen et al [74], it is found that the diagnostic 

performance of ANN is not different from that of SVM and LRA (Logistic regression analysis) as 

demonstrated by ROC curve analysis. The inconsistency here may refer to the differences 

between the test data and test conditions, i.e. how much of the data is used for training and how 

the classifiers are optimised.  
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6. Other Medical Applications using Neural Network 

 

The preceding sections grouped together examples of ANN applications where a large domain 

existed, presenting multiple approaches for addressing similar medical image analysis problems. 

In this section a variety of ANN applications are presented that are not easy to categorise. It is 

hoped that this section may inspire readers to consider using ANNs for slightly less obvious tasks 

by showing how they have been successfully applied in the past. In addition to the areas 

mentioned above, ANN has also been applied to other relevant areas such as medical image 

compression [33-38], enhancement [39-44],, and tumour tracking [46]. 

6.1 Compression and Coding 

Medical images, such as mammograms, are usually quite large in size and stored in databases 

inside hospital computer systems, which can present some difficulties in image transfer over the 

Internet. Image compression [32] attempts to alleviate these problems by reducing the size of 

medical images without losing important information. Some researchers have applied ANN to 

existing compression algorithms to select interesting regions for transmission or reduce the errors 

during the quantization in compression [33-37, 41]. 

Panagiotidis et al. [33] proposed a neural network architecture to perform lossy 

compression of medical images. To achieve higher compression ratio while retain the significant 

(from medical point of view) image content, the neural architecture adaptively selects regions of 

interest (ROI) in the images. 

Karlik [34] presented a novel and combined technique for image compression based on 

the Hierarchical Finite State Vector Quantization (HFSVQ) and neural networks. The algorithm 

performs nonlinear restoration of diffraction-limited images concurrently with quantization. The 

neural network is trained on image pairs consisting of a lossless compression named hierarchical 

vector quantization.   

Meyer-Base et al. [35] developed a method based on topology-preserving neural 

networks to implement vector quantization for medical image compression. The method can be 

applied to larger image blocks and represents better probability distribution estimation methods. 

The quantization process is performed by a "neural-gas" network which applied to vector 

quantization converges quickly to low distortion errors and reaches a distortion error lower than 

that resulting from Kohonen's feature map or the LBG algorithm. The influence of the neural 
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compression method on the phantom features and the mammo-graphic image is not visually 

perceptible up to a high compression rate. 

Jaiswal et al. [36] trained a resilient back propagation neural network to encode and 

decode the input data so that the resulting difference between input and output images is 

minimized. Lo et al [37] developed a neural-network-based framework to search for an optimal 

wavelet kernel that can be used for a specific image processing task. In the algorithm, a linear 

convolution neural network was employed to seek a wavelet that minimizes errors and maximizes 

compression efficiency for an image or a defined image pattern such as microcalcifications in 

mammograms and bone in computed tomography (CT) head images.  

In Dokur [75], ANN was applied to medical images like magnetic resonance (MR), 

computer tomography (CT) head images and ultrasound imaging for compression and decision 

making, where Kohonen map and incremental self-organizing map (ISOM) were employed. In 

the proposed method, the image was first decomposed into blocks of 8 × 8 pixels, from which 2D 

discrete cosine transform (DCT) coefficients were computed. The dimension of the DCT 

coefficients vectors was reduced by low-pass filtering, a similar way like vector quantization. The 

decision making was realised simultaneously with compression to cluster codewords into several 

classes, which also formed a kind of segmentation of the original image. Higher compression 

rates with large signal to noise ratio were gained compared to the JPEG standard. Also it was 

found that ISOM generated better reconstructed images than Kohonen.   

6.2 Image Enhancement and Noise Suppression 

To enhance original images, ANN has been used to suppress unwanted signals such as 

noise and tissues affecting cancerous sign. Suzuki et. al. [38] proposed an analysis method that 

makes clear the characteristics of the trained NF (i.e. Nonlinear filters based on multilayer neural 

networks) and developed approximate filters that achieves very similar results but is efficient at 

computational cost.  

To detect lung nodules overlapped with ribs or clavicles in chest radiographs, Suzuki et al. 

[39] developed an image-processing technique for suppressing the contrast of ribs and clavicles in 

chest radiographs by means of a multi-resolution massive training artificial neural network 

(MTANN). The structure of this neural network is illustrated in Figure 6, in which ―bone‖ images 

are obtained by use of a dual-energy subtraction technique [40] as the teaching images to 

facilitate the neural network training. After that, the multi-resolution MTANN is able to provide 

―bone-image-like‖ images which are similar to the teaching bone images. By subtracting the 

bone-image-like images from the corresponding chest radiographs, they are able to produce ―soft-

tissue-image-like‖ images where ribs and clavicles are substantially suppressed. 
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Figure 6 Architecture of MTANN 

 

The MTANN consists of a linear-output multilayer ANN model, which is capable of 

operating on image data directly. The linear-output multilayer ANN model employs a linear 

function as the transfer function in the output layer because the characteristics of an ANN were 

improved significantly with a linear function when applied to the continuous mapping of values 

in image processing [41]. The inputs of the MTANN are the pixel values in a size-fixed sub-

image and can be rewritten as },...,,{ 21, Nyx IIII  , where N is the number of inputs i.e. the 

number of pixels inside a sub-image. The output of the nth neuron in the hidden layer is 

represented by 
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Where wmn is a weight between the m
th
 unit in the input layer and the nth neuron in the hidden 

layer, and fh is a sigmoid function. The output of the neuron in the output layer is represented by: 
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where w
o

m is a weight between the m
th
 neuron in the hidden layer and the neuron in the output 

layer, bo is an offset of the neuron in the output layer. 

To train MTANN, a dual-energy subtraction technique is used to obtain the teaching 

image T (i.e. ―bone‖ images) for suppression of ribs in chest radiographs. Input chest radiographs 

are divided pixel by pixel into a large number of overlapping sub-images. Each sub-image I(x,y) 

corresponds to a pixel T(x, y) in teaching image, and the MTANN is trained with massive sub-

image pairs as defined below: 

Overlapped 

Sub-image 

Linear-output 

multiplayer ANN 

Intensities of 

output pixels 
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where RT is a training region corresponding to the collection of the centres of sub-images, NT is 

the number of pixels in RT.  After training, the MTANN is expected to produce images similar to 

the teaching images, i.e. ―bone-image-like‖ images. The technique was evaluated using a set of 

118 images by applying the algorithm to each image and then quantitatively comparing it to a 

dual-energy soft-tissue image where the bone regions had been deemphasised. 

Since Ribs in chest radiographs include various spatial-frequency components and it is 

difficult in practice to train the MTANN with a large sub-image, multi-resolution decomposition/ 

composition techniques are employed in the algorithm. Three MTANNs for different resolutions 

are trained independently with the corresponding resolution images: a low-resolution MTANN is 

in charge of low-frequency components of ribs, a medium-resolution MTANN is for medium-

frequency components, and a high-resolution MTANN for high-frequency components. After 

training, the MTANNs produce a complete high-resolution image based on the images with 

different resolution. 

Hainc et al. [42] found the artificial neural network can also be used as a kind of a 

sophisticated non-linear filter on local pixel neighbourhood (3x3) since linear systems are not 

good in their sensitivity to impulse (isolated) noise.  

Chen et al. [43] introduced an ANN architecture for reducing the acoustic noise level in 

magnetic resonance (MR) imaging processes. The proposed ANN consists of two cascaded time-

delay ANN. The ANN is used as the predictor of a feedback active noise control (ANC) system 

for reducing acoustic noises. Preliminary results also show that, with the proposed ANC system 

installed, acoustic MR noises are greatly attenuated while verbal communication during MRI 

sessions is not affected.   

6.3 Miscellaneous Applications 

Apart from the categories of applications described above, ANN has been applied to medical 

image processing for other purposes. Wu et al. [44] presents a new method to extract the patient 

information number (PIN) field automatically from the film-scanned image using a multilayer 

cluster neural network. Cerveri et al. [76] presented a hierarchical radial basis function (HRBF) 

network to correct geometric distortions in X-ray image intensifier, which reduces the accuracy of 

image-guided procedures and quantitative image reconstructions.  

Hsu et al. [77] establish a method to predict and create surface a profile of bone defects 

by a well-trained 3-D orthogonal neural network. The coordinates of the skeletal positions around 

the boundary of bone defects are input into the 3-D orthogonal neural network to train it to team 
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the scattering characteristic. The 3-D orthogonal neural network avoids local minima and 

converges rapidly. After the neural network has been well trained, the mathematic model of the 

bone defect surface is generated, and the pixel positions are derived. 

In Goodband et al. [46], application of ANN in image-guided radiation therapy is 

presented, aiming to improve the accuracy of treatment delivery by tracking tumour position and 

compensating for observed movement. Due to system latency it is sometimes necessary to predict 

tumour trajectory evolution in order to facilitate changes in beam delivery. A comparison is made 

between four different adaptive algorithms for training time-series prediction ANNs in analyzing 

optimized training and potential errors. A hybrid algorithm combining Bayesian regularization 

with conjugate-gradient backpropagation is demonstrated to give the best average prediction 

accuracy, whilst a generalized regression NN is shown to reduce the possibility of isolated large 

prediction errors. However, the four training algorithms proposed were used to train TSN NNs for 

tracking tumour movement, where it relied on external marker. 

It is difficult to generalise all these applications of ANN into to several united models. 

However, it might be possible to analysis the general pattern of applying ANNs. In the next 

section, a comparison is made of the applications as described in all previous sections.   

 

7. Discussions and Conclusions 

 

As described in the previous five sections, applications of neural networks have been classified 

into four major categories. These applications seem quite different from each other and cover 

many aspects of medical image processing. The various different architectures available for 

medical imaging problems can present a dilemma for a prospective user. There are no rules or 

defined criteria that can be used to select the best network type, though the authors are confident 

that the examples presented throughout this paper will offer rules-of-thumb and guided 

inspiration for future efforts. To this end, all the neural networks successfully applied to medical 

imaging are highlighted and compared based on their application patterns, structures, operations, 

and training design etc. in Table 1. Since there is no theory nor compelling evidence to indicate a 

single ―best‖ neural network approach for medical image processing and pattern recognition, the 

information such as ―Type of Network‖, "Type of input", "Number of Inputs", "Neurons in 

Hidden" and "Neurons in Output" is listed to help with searching and designing similar neural 

networks for the future applications. Although these applications may come from different areas 

such as CAD and segmentation, and inputs for neural networks are various, the essential purpose 

of applying these neural networks lies in their classifications, providing inspiring summary for 
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existing modes of neural network applications and thus leading to further developments. Since the 

dataset for these applications are quite different, it is not possible to compare their results and the 

performance of these algorithms.  The table does not cover all applications surveyed in this paper 

as information about numbers of neurons, layers, training and testing methodologies etc. were not 

always included in the referenced works. 

In contrast to feed forward neural network, the applications of feedback neural networks 

for medical image processing are quite limited in the past decade and most of them are in the area 

of image segmentation, which are primarily based on Hopfield neural networks. The similarities 

between these applications are again limited but all of them need to minimise an energy function 

during convergence of the network. The energy function has to be designed individually, which 

might affect its application in medical imaging. Since the Hopfield neural network is 

unsupervised, it may not work for CAD like feed forward neural network that requires priori 

knowledge in classifications.  

Although the applications of Kohonen’s SOM are not as numerous as those of feed forward 

neural networks, its clustering and unsupervised properties make it very suitable for image 

registration. SOM converges to a solution that approximates its input data by adapting to 

prototype vectors. During this process, the relation of its neighbourhood neurons is also taken into 

account, leading to preservation of topology and mapping of training sets. This makes them 

particularly suitable for applications where dimensionality reduction is desirable and an output 

that can be easily interpreted is a necessary outcome. In this sense SOMs may be more suitable 

for certain applications than other neural network architectures, and other pattern recognition and 

classification approaches. For the applications of image registration, the input vectors of the 

neurons in SOM usually contain the spatial coordinate and intensity of pixels. For applications in 

image compression, SOM is used as a topology preserving feature map to generate vector 

quantization for code words. Sometimes, SOM produces the segmentation results for feed 

forward neural networks due to its unsupervised clustering property. 

In summary, the applications of ANNs in medical image processing have to be analysed 

individually although many successful models have been reported in the literature. ANN has been 

applied to medical images to deal with the issues that can not be addressed by traditional image 

processing algorithms or by other classification techniques. By introducing artificial neural 

networks, algorithms developed for medical image processing and analysis often become more 

intelligent than conventional techniques. While this paper provided a focused survey on a range 

of neural networks and their applications to medical imaging, the main purpose here is to inspire 



 34 

further research and development on new applications and new concepts in exploiting neural 

networks. 

 
Table 1 Comparative summary of feed-forward neural network applications in medical imaging 

Source Type of 

Network 

Purpose Type of Input Number  

of Inputs 

Neurons in 

Hidden 

layers 

Neurons in 

Output 

Train/Test 

/validation 

[1] CNN
*
 /BP* Detect FP

*
 Pixel intensity 256 14/10 1 268ROI

*
/267ROI 

[3] BP Reduce FP Value of 

features 

5 5 1 1448 clusters/ 

leave-one-out 

[4] MLP
*
 Reduce FP Value of 

features 

9 20/10 1 Unknown 

[5] RBFNN
*
 Classify 

tissues 

Value of 

features 

4 5 2 44 regions 

/54 images 

[8] BP Detect FP Value of 

features 

11 9 1 100 images / 

100 images/ 

Jackknife[47] 

[10] BP Detect FP Value of 

features 

10 5 1 397ROI/397 

ROI/Jackknife 

[12] Feed-

forward 

Classify 

boundary 

Coordinate 

/magnitude 

3 30/10 1 100 images/ 147 

images & 65 

image CV Classify 

region 

Coordinate 

/intensity 

3 50 1 

[14] BP Predict 

tissue 

Value of 

features 

8 5 1 262/leave-one-

out/Jackknife 7 3 1 

[15] BP Classify 

tissues 

Value of 

features 

3 10 1 60 primitives   

/983 primitives 

[20] BP Classify 

tissues 

Statistical 

indexes 

3 Unknown 3 Small number, 

improved by 

interaction 

[22] MLP Classify 

boundary 

Intensity of 

pixels 

49 30 1 1200 patterns / 

400 slices 

[38] BP Remove 

noise 

Intensity of 

pixels 

25 20 1 Unknown 

[39] MTANN
*
 

(BP) 

Classify 

tissues 

Intensity of 

pixels 

81 20 1 5000 Regions 

/118 images 

[62] MLP 

/RBFNN 

Detect 

MCCs 

intensity 5 10 1 107 RIO/ 19 

images 

[73] BP Classify & 

evaluation 

Clinic & 

radiological 

findings 

15 9 4 MR images of 

126 cases, leave-

one-out 

[78] BP Classify 

MC 

Value of 

features 

14 13 1 100 ROI/ leave-

one-out 

[79] MLBNN
*
 

(BP) 

Classify 

MC 

Vectors from 

SOM 

5 25/14 7 32 cases/ 64 

cases 

[80] BP Classify 

tissues 

Vectors from 

SOM 

3 7 7 Unknown/ 80 

images 

[81] BP Detect 

Edge 

Intensity of 

pixels 

121 20 1 24 images/ 

fourfold CV 

 BP: Back-propagation (feed forward) 

 CNN: Convolution neural network 

 CV: Cross validation 

 FP: False positive MC or regions 

 MC: Microcalcification cluster 

 MLBNN: Multi-layered BP neural network 

 MLP: Multiplayer perceptron 

 RBFNN: Radial basis function neural 

network 

 ROI: Region of interest 

 SOM: Self-organizing map 

 MTANN: Massive training ANN   
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While neural networks are undoubtedly powerful tools for classification, clustering and 

pattern recognition there are potential disadvantages when applying them to a given problem. 

Neural networks are notoriously hard to interpret and analyse, and in situations where it is 

desirable to simply and concisely define the process transforming inputs to output values it can be 

difficult to justify their use. While analysis of the internal weight and bias values for neurons in a 

network is possible, and a network itself can be represented formulaically, they are usually too 

large to be explained in a way that a human can easily understand. Despite this, they are still 

widely used in situations where a black-box solution is acceptable, and where empirical evidence 

of their accuracy is sufficient for testing and validation. 

When compared to other machine learning approaches neural networks have many 

positive characteristics that must be considered by a prospective user. The variety of different 

network architectures and learning paradigms available, coupled with a theoretically limitless 

number of combinations of layers amounts, connections topologies, transfer functions and neuron 

amounts, make ANNs incredibly flexible processing tools. They can be applied to data with 

almost any number of inputs and outputs, and are well supported in different programming 

languages and software suites. Through manual modification of weights prior to training, and 

through imposing custom limitations on their modification during training, existing expert 

knowledge can be incorporated into their design and construction. Additionally, neural networks 

are usually computationally inexpensive to use after they have been trained, making them ideal 

for real-time applications where immediate output is desirable. Recent results suggest they can 

still generate comparable results to state-of-art classifiers like SVM [74]. 

Although this paper focuses on the various types of neural networks and how they can be 

applied to medical imaging, there are a variety of other approaches available for such an 

application. There are no clear rules or procedures that can be followed to determine if using a 

neural network is the best choice for a specific imaging problem, though guidance can be laid out 

to assist those that might consider their use. As discussed above, their inherent complexity makes 

them generally unsuitable for applications where post-training analysis of the way outputs are 

formed is necessary. In these situations there are clearly better choices of algorithm, such as 

decision trees, rule induction or Bayesian Networks where the impact that each input has upon the 

final result can be seen more clearly, and often in an inherently human-understandable way. 

However, neural networks unarguably possess strong potential for accurate output prediction, 

data clustering and topography-based mapping as can be seen by their widespread use in almost 

every discipline involving modelling and prediction.  
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