64,430 research outputs found

    Accepting networks of evolutionary picture processors

    Get PDF
    We extend the study of networks of evolutionary processors accepting words to a similar model, processing rectangular pictures. To this aim, we introduce accepting networks of evolutionary picture processors and investigate their computational power. We show that these networks can accept the complement of any local picture language as well as picture languages that are not recognizable. Some open problems regarding decidability issues and closure properties are finally discussed

    Accepting networks of evolutionary picture processors

    Get PDF
    We extend the study of networks of evolutionary processors accepting words to a similar model, processing rectangular pictures. To this aim, we introduce accepting networks of evolutionary picture processors and investigate their computational power. We show that these networks can accept the complement of any local picture language as well as picture languages that are not recognizable. Some open problems regarding decidability issues and closure properties are finally discussed

    Accepting Hybrid Networks of Evolutionary Processors with Special Topologies and Small Communication

    Full text link
    Starting from the fact that complete Accepting Hybrid Networks of Evolutionary Processors allow much communication between the nodes and are far from network structures used in practice, we propose in this paper three network topologies that restrict the communication: star networks, ring networks, and grid networks. We show that ring-AHNEPs can simulate 2-tag systems, thus we deduce the existence of a universal ring-AHNEP. For star networks or grid networks, we show a more general result; that is, each recursively enumerable language can be accepted efficiently by a star- or grid-AHNEP. We also present bounds for the size of these star and grid networks. As a consequence we get that each recursively enumerable can be accepted by networks with at most 13 communication channels and by networks where each node communicates with at most three other nodes.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Peer-to-Peer Networks: A Language Theoretic Approach

    Get PDF
    In this article a modification of a grammar systems theoretic construction, the so-called network of parallel language processors, is proposed to describe the behaviour of peer-to-peer (P2P) systems. In our model, the language processors form teams, send and receive information through collective and individual filters. The paper deals with the dynamics of string collections. The connection between the growth function of a developmental system and the growth function of networks of parallel multiset string processors with teams of collective and individual filtering is also established

    Automatic synthesis of TTA processor networks from RVC-CAL dataflow programs

    Get PDF
    International audienceThe RVC-CAL dataflow language has recently become standardized through its use as the official language of Reconfigurable Video Coding (RVC), a recent standard by MPEG. The tools developed for RVC-CAL have enabled the transformation of RVC-CAL dataflow programs into C language and VHDL (among others), enabling implementations for instruction processors and HDL synthesis. This paper introduces new tools that enable automatic creation of heterogeneous multiprocessor networks out of RVC-CAL dataflow programs. Each processor in the network performs the functionality of one RVC-CAL actor. The processors are of the Transport Triggered Architecture (TTA) type, for which a complete co-design toolset exists. The existing tools enable customizing the processors according to the requirements of individual dataflow actors. The functionality of the tool chain has been demonstrated by synthesizing an MPEG-4 Simple Profile video decoder to an FPGA. This particular decoder is automatically realized into 21 tiny, heterogeneous processors

    Distributed and parallel Ada and the Ada 9X recommendations

    Get PDF
    Recently, the DoD has sponsored work towards a new version of Ada, intended to support the construction of distributed systems. The revised version, often called Ada 9X, will become the new standard sometimes in the 1990s. It is intended that Ada 9X should provide language features giving limited support for distributed system construction. The requirements for such features are given. Many of the most advanced computer applications involve embedded systems that are comprised of parallel processors or networks of distributed computers. If Ada is to become the widely adopted language envisioned by many, it is essential that suitable compilers and tools be available to facilitate the creation of distributed and parallel Ada programs for these applications. The major languages issues impacting distributed and parallel programming are reviewed, and some principles upon which distributed/parallel language systems should be built are suggested. Based upon these, alternative language concepts for distributed/parallel programming are analyzed

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features

    Small Universal Accepting Networks of Evolutionary Processors with Filtered Connections

    Full text link
    In this paper, we present some results regarding the size complexity of Accepting Networks of Evolutionary Processors with Filtered Connections (ANEPFCs). We show that there are universal ANEPFCs of size 10, by devising a method for simulating 2-Tag Systems. This result significantly improves the known upper bound for the size of universal ANEPFCs which is 18. We also propose a new, computationally and descriptionally efficient simulation of nondeterministic Turing machines by ANEPFCs. More precisely, we describe (informally, due to space limitations) how ANEPFCs with 16 nodes can simulate in O(f(n)) time any nondeterministic Turing machine of time complexity f(n). Thus the known upper bound for the number of nodes in a network simulating an arbitrary Turing machine is decreased from 26 to 16
    • …
    corecore