
Automatic synthesis of TTA processor networks from

RVC-CAL dataflow programs

Jani Boutellier, Olli Silven, Mickaël Raulet
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ABSTRACT
The RVC-CAL dataflow language has recently become stan-
dardized through its use as the official language of Recon-
figurable Video Coding (RVC), a recent standard by MPEG.
The tools developed for RVC-CAL have enabled the transfor-
mation of RVC-CAL dataflow programs into C language and
VHDL (among others), enabling implementations for instruc-
tion processors and HDL synthesis.

This paper introduces new tools that enable synthesizing
RVC-CAL dataflow programs automatically into application
specific processor networks. Each processor in the network
performs the functionality of one RVC-CAL actor. The pro-
cessors are of the Transport Triggered Architecture (TTA)
type, for which a complete codesign toolset exists. The ex-
isting tools enable customizing the processors according to
the requirements of individual dataflow actors.

The functionality of the toolchain has been demonstrated
by synthesizing an MPEG-4 Simple Profile video decoder to
an FPGA. The decoder is realized into 21 processors that de-
code QCIF resolution video at 20 frames per second with a
50MHz FPGA clock frequency.

Index Terms— data flow computing, design automation,
multiprocessor interconnection

1. INTRODUCTION

Signal processing systems constantly need more and more
processing performance as their complexity increases. To
tackle the increasing program complexity, algorithm design-
ers have looked for new ways to express the programs in a less
error-prone and more portable fashion than traditional imper-
ative languages can offer. At the same time, processing hard-
ware designers try to come up with processing platforms that
offer better processing performance, scalability and energy-
efficiency.

On the software side, a major step into this direction has
been the CAL dataflow language [1]. A more restricted ver-
sion of the CAL language, named RVC-CAL, has been stan-
dardized and used to specify the algorithms and functions re-
quired by the Reconfigurable Video Coding standard, which

embodies the recent trends of software modularity, portability
and concurrency [2].

Dataflow programs written in RVC-CAL can be compiled
into implementation languages with the Open RVC-CAL
Compiler (Orcc) that has several backends: C, C++, LLVM
assembly and VHDL [3], which enable the algorithms speci-
fied in RVC-CAL to be executed on instruction processors or
dedicated integrated circuits.

This paper presents a design flow that allows a designer
of signal processing systems to write a program in the RVC-
CAL dataflow language and automatically generate a multi-
processor implementation out of it. In addition to describ-
ing the algorithm in RVC-CAL, the designer is responsible
for building the processors that are used in the system. The
processor design is based on the TCE toolset, which has a
graphical user interface and allows the designer to assemble
processors without any HDL design skills. The design flow
presented in this paper creates VHDL hardware descriptions
as a final output and thus enables direct synthesis on FPGA
boards. The functionality of the design flow is demonstrated
with an MPEG-4 Simple Profile (SP) video decoder that is
written in RVC-CAL.

2. BACKGROUND

Before going into the details of our design flow, the RVC-
CAL language and the used processor technology are ex-
plained.

2.1. The RVC-CAL Language

RVC-CAL is a dataflow language. Dataflow languages are
popular in signal processing system design, as they allow the
designer to abstract the signal processing system to logical
entities that interact with each other. It is up to the designer
to decide how to partition the signal processing system into
different dataflow entities, which are called actors.

A dataflow actor reads data from its inputs, performs some
data processing and finally outputs the results. In RVC-CAL
actors communicate with each other over FIFO buffers. The



set of actors interconnected with FIFOs is called an RVC-
CAL network. The data is wrapped inside tokens and each
FIFO carries tokens of a specified size. Internally, actors
work like finite state machines (FSMs) that contain states,
state transitions and internal variables.

Conditional execution is the most important feature of
RVC-CAL when it is compared to traditional dataflow lan-
guages: for example, Synchronous Data Flow (SDF) [4] does
not allow conditional execution.

2.2. Transport Triggered Architecture Processors

Transport Triggered Architecture processors resemble Very
Long Instruction Word processors (VLIW) in the sense that
they fetch and execute multiple instructions each clock cy-
cle. A major difference, however, is that TTA processors have
only one instruction: move, which simply transfers data from
an input location to an output. For example, one move in-
struction can initiate a data transfer from the output of an add
function unit (FU) to one of the inputs of a mul function unit.

In [5] it is stated that direct programming of the data
transports reduces the register file traffic when compared to
VLIWs, but on the other hand makes the compiler design
quite challenging, as it is the compiler that schedules the data
transports and makes sure that conflicts are avoided. As the
compiler does so many decisions at design time, the run-
time system is simplified and hence there are savings on the
processor gate count and energy consumption.

The design of custom TTA processors has become easy
and accessible to everyone through the open source TTA
Codesign Environment (TCE) toolset [6, 7]. The TCE toolset
offers a graphical user interface for custom processor, func-
tion unit and instruction design. The TCE toolset has a
compiler which is based on LLVM1 and contains a processor
simulator and profiler. TCE also provides a possibility to
realize the processors into VHDL files and memory images,
which enable easy FPGA synthesis.

2.3. Related Work

There has been prior work similar to that presented in this
paper. Park, Oh and Ha [8] list several multiprocessor sys-
tem design methods that use various dataflow models as in-
put. The difference of our work compared to the ones listed
in the article is that our toolchain is the first one that supports
the RVC-CAL language, and uses TTA processors.

In [9], a design flow is described for synthesizing hetero-
geneous multiprocessor systems out of CAL programs. The
difference to our work is that the methodology in [9] does
not target a specific platform, but remains on a more abstract
level. In contrast, our work targets TTA processor networks
and presents all necessary tools down to the level of FPGA
synthesis.

1http://www.llvm.org/
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Fig. 1. Production of the (abstract) processor network de-
scription and the actors’ C code.

3. PROPOSED SOLUTION

In this paper we propose a design flow that enables a signal
processing system designer to write a program in the RVC-
CAL language, and automatically produce an FPGA-ready
multiprocessor system out of it.

The design flow requires three different inputs from the
designer: 1) the actors, 2) the actor interconnection network,
and 3) the processors. The actors are source code files written
in the RVC-CAL language. An example of an actor is In-
verse Discrete Cosine Transform (IDCT) that reads 8 tokens
and produces 8 tokens of data. The actor interconnection net-
work is an XML file that describes the connections between
actors. Finally, the user needs to provide a processor speci-
fication for each RVC-CAL actor in the system. Thus, if the
signal processing system consists of 15 RVC-CAL actors, the
designer has to provide a total of 15 processors to the design
flow. These processors can be identical or heterogeneous.

The actor files (written in RVC-CAL) and the actor net-
work description file (written in XML) are processed by the
Orcc compiler2. For our purpose, Orcc produces a C language
file out of each RVC-CAL actor, as well as a network descrip-
tion file that is in a special format required by our design flow.
This part of the design flow is depicted in Figure 1.

The processors are designed with the TCE (TTA Codesign
Environment) toolset. The designer can create the processors
with a graphical user interface without writing any hardware
descriptions by hand. For each processor, the TCE toolset
produces an Architecture Definition File (ADF) and a set of
VHDL files. The ADF file is used by the TCE compiler to
compile the C code of each actor into TTA machine language
and produce memory images for the FPGA implementation.
This part of the design flow is depicted in Figure 2.

To enable the design flow presented in this paper, some
software tools and components had to be designed for Orcc
and TCE. For inter-processor communication, special TTA

2http://orcc.sourceforge.net/
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Fig. 2. The processor design in our design flow.

FIFO functional units had to be designed to enable the pro-
cessors to communicate over hardware FIFOs (see Figure 2).
For Orcc, a special TTA backend had to written (see Figure 1).
The TTA backend produces C code that is specially meant
for TTAs that contain FIFO function units. The network de-
scription produced by the TTA backend is processed by the
TTANetGen tool (Figure 3) that generates the interconnect be-
tween the TTA processors. Next, these components and tools
are described in detail.

3.1. The TTA FIFO Function Units

The special function units (FUs) for accessing external FIFO
memories were designed to enable inter-processor commu-
nication with minimal overhead. The ”FIFO read” TTA FU
implements three instructions: status (returns number of to-
kens in the FIFO), read (reads a token) and peek (shows the
value of the next token in the FIFO). The ”FIFO write” TTA
function unit, on the other hand, has just status and write in-
structions.

The instructions were implemented in C++ for the pro-
cessor simulator ttasim and in VHDL for FPGA implemen-
tations. The latencies of these new functions units range be-
tween 1 and 3 clock cycles depending on the instruction.

3.2. The TTA Backend for Orcc

The backends of the Orcc compiler are easy to customize, as
they are specified with StringTemplate (http://www.stringtem-
plate.org/) files that can be modified with any text editor. To
make each actor directly multiprocessing-capable, the Orcc C
language backend was modified such that it produces actors
that access FIFOs with their special instructions that were
introduced in Subsection 3.1.

Each FIFO connection of an actor is given an index num-
ber which directly invokes a TTA function unit that is con-
nected to the respective hardware FIFO. Thus, if a processor
executes actor A, and actor A has 5 input ports, the processor
has 5 separate function units that are directly connected to 5
different FIFOs.

HDL Synthesis

Network
Description

Interconnect in 
VHDL

Processor in 
VHDL

Proc. Me-
mory Images

TTANetGen

Fig. 3. Production of the interconnection network HDL de-
scription.

It is also worth mentioning that using C code as an inter-
mediate language between Orcc and TCE is not mandatory.
Actually Orcc is capable of directly producing LLVM assem-
bly [10], which is already an intermediate language of TCE.
Using LLVM assembly as a bridge between Orcc and LLVM
is a natural direction of future work.

3.3. Generating the Interconnect Between Processors

In general, the complexity of actors in an RVC-CAL network
can vary considerably from actor to actor. As each RVC-CAL
actor is running on a separate TTA processor, it is not sensible
to reserve the same amount of program memory, data mem-
ory or computational resources (such as multipliers) for each
processor.

The TTA Processor Designer (ProDe) software produces
instruction and data memory images for each processor. The
sizes of these memory images are analyzed by our TTANet-
Gen software, which produces VHDL envelopes for each
memory unit and processor, so that the processors with their
private memories are encapsulated into single entities at the
top level design file.

Finally, TTANetGen generates the top-level VHDL file for
the whole system. In the first phase, the output of Orcc is
analyzed to generate an internal representation of the actor
network. In the second stage this internal representation is
written to a top-level VHDL file that has each FIFO and each
processor as a separate entity. This part of the design flow is
depicted in Figure 3.

4. DESIGN FLOW

In this section we describe the use of the design flow that is
described in this paper.

We assume that in the very beginning the user has only an
abstract idea of the program that she or he wishes to imple-
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between the processors are FIFO buffers.

Fig. 5. The TTA processor that executes the serialize actor. The processor has 2 transport buses, 2 general register files (RF)
with sizes of 12 slots each. STREAM IN and STREAM OUT are the special FIFO function units.



ment with the design flow. The very first task the user needs to
do, is to split his program into logical entities. The division of
the application into entities is a very important part, because
it will later on affect the maximum attainable performance, as
well as the resource consumption on the target device.

After the partitioning of the abstract program the user
needs to write the functionality of the individual parts as
RVC-CAL actors, and draw data connections between the
actors where ever they need to communicate. The Orcc
compiler exists as a plugin to the Eclipse3 development en-
vironment and offers a text editor that assists in writing of
RVC-CAL. Finally, the user can use the Orcc compiler to
produce the C code implementations and interconnection in-
formation of the actor network. This phase was depicted in
Figure 1.

As it is quite hard to predict the computational resource
requirements of individual actors, it is recommended that the
user designs one low-performance processor that he uses as
the initial execution entity for each actor. This processor must
be designed such that it fills the minimum needs of every ac-
tor, but does not offer superfluous resources.

Next, the user provides the C code implementations of
the actors together with the processor description (ADF) to
the TCE compiler, which produces binary files for each actor.
Having the actor binaries, the user can now profile the per-
formance of actors on the initial processor. If necessary, the
user can create more powerful custom processors for actors
that need more performance. One of the most important ways
to improve TTA processor performance is adding more trans-
port buses. Each transport bus in the processor can perform
one data move each clock cycle.

As shown in Figure 2, the user produces the VHDL and
ADF description of the processor. As the processor network
generally forms a sort of a pipeline, it is desirable that all pro-
cessors have an identical latency in the final implementation.
Profiling can easily be performed with the cycle-accurate TTA
simulator proxim that belongs to the TCE toolset.

After the user has customized the processors and reached
the performance requirements, she or he can use the TCE
processor generator to produce VHDL implementations of
each processor. The VHDL description of the interconnect
between processors, on the other hand, is produced by our
TTANetGen. By default, the design flow offers a special
source actor that can be used to input processing data to the
network from a dedicated on-chip memory. If the user wishes
to use another kind of a data source, he must at this stage
design it. Likewise, the default data output is the display,
which enables directing the computation results to FPGA
general output pins (such as LEDs). For the actual synthesis,
the user can use his favourite design environment. However,
the interfaces to on-chip memories (required by FIFOs, and
processor memories) have been designed only Altera devices
in mind.

3www.eclipse.org

Table 1. Instruction memory and data memory requirements
of actors.

Entity I. Words Buses DMem Depth
Add 334 2 91
Address 844 6 118
Broadcast VID 29 2 87
Buffer 107 2 22265
Interpolation 500 2 88
Block Exp. 188 2 94
MV Rec. 1217 2 176
MV Seq. 569 2 97
Parser 3707 2 980
Broadcast BTYPE 53 2 87
Serialize 53 2 89
DC Rec. Addr. 597 2 209
DC Rec. I. Pred. 859 2 157
DC Split 49 2 88
Inv. AC Pred. 249 6 992
IDCT 2D 1085 6 153
Inv. Quant. 154 2 92
Inv. Scan 578 2 203
Display 232 2 94
Source 13 2 87
Merger 930 2 1117

5. EXPERIMENTS

To demonstrate the functionality of our design flow, we took
the RVC-CAL program describing an MPEG-4 Simple Pro-
file decoder and synthesized it using our design flow as a
multi-TTA processor network. The total number of generated
processors was 21.

The synthesis results were transferred to the Altera Cy-
clone IV EP4CE115F29C7 FPGA. We used a video stream
of QCIF resolution as test data to verify the correct operation
of the network. The decoding result was compared against a
checksum that had been computed for each frame on a work-
station beforehand.

All of the memories and video bitstream fit on the FPGA
on-chip resources (EP4CE115 has 432 kB of on-chip RAM),
when the maximum video resolution was limited to QCIF.
Higher video resolutions would make the size of the predic-
tion buffer explode and would require resorting to off-chip
memory, which was not done at this stage.

Table 1 shows the resources consumed by each processor
for the MPEG-4 SP decoder. The most notable figures are the
instruction memory usage of the parser and the data memory
usage of buffer. Parser is by far the most complex actor in
the network and it requires almost 4000 instruction words in a
two-bus TTA processor. The buffer actor, on the other hand, is
very simple, but its large data memory contains the prediction
buffer.



Table 2. Total resource usage.
Resource Used Available %
Logic Elements 66’762 114’480 58%
1kB Mem. Blocks 427 432 99%
Block Interconnects 108’511 342’891 32%

Table 3. Performance
Unit Clock Cycles
Intra frame 2’904’000
Pred. frame 29’300
Intra macrob. 2’633’000
Pred. macrob. 26’600

Most of the processor instances in the network are identi-
cal. As the tools that form the basis of the toolchain, TCE and
Orcc, allow creating heterogeneous processors, this was done
for some actors that required more than an average amount
of resources. The processors that required more performance
can be seen in Table 1: they have more than 2 transport buses.
On the contrary, Figure 5 shows a tiny TTA processor that
was used to execute the code of the serialize actor.

Table 3 shows the number of clock cycles consumed by
intra frames and predicted frames, which was well-balanced
due to the possibility to tune the performance of each proces-
sor. It was detected that the main limiting factor in the sys-
tem performance was in the backend that generates code for
TTAs. The TTA processors could compute much faster, but
the automatically generated code still had some unnecessary
computations at this stage. Improving this is a clear direction
for future work.

Regarding the FPGA resource usage (see Table 2), the ex-
ample application fit well to the FPGA board. The TTA fea-
ture of instruction word compression helped alleviate need of
scarce on-chip memory resources. Through instruction word
compression, it was possible to save on the usage of memory
blocks with the expense of logic element usage.

6. CONCLUSION

In this paper we have presented a design flow that enables au-
tomatic synthesis of RVC-CAL actor networks to application
specific transport-triggered processor networks. The func-
tionality of the toolchain has been demonstrated by applying
it to an RVC-CAL network, which defines an MPEG-4 SP
video decoder. The performance of the resulting implementa-
tion was 20 frames per second on a 50 MHz FPGA and QCIF
video resolution.
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