708 research outputs found

    Mobility Management in beyond 3G-Environments

    Get PDF
    Beyond 3G-environments are typically defined as environments that integrate different wireless and fixed access network technologies. In this paper, we address IP based Mobility Management (MM) in beyond 3G-environments with a focus on wireless access networks, motivated by the current trend of WiFi, GPRS, and UMTS networks. The GPRS and UMTS networks provide countrywide network access, while the WiFi networks provide network access in local areas such as city centres and airports. As a result, mobile end-users can be always on-line and connected to their preferred network(s), these network preferences are typically stored in a user profile. For example, an end-user who wishes to be connected with highest bandwidth could be connected to a WiFi network when available and fall back to GPRS when moving outside the hotspot area.\ud In this paper, we consider a combination of MM for legacy services (like web browsing, telnet, etc.) using Mobile IP and multimedia services using SIP. We assume that the end-user makes use of multi-interface terminals with the capability of selecting one or more types of access networks\ud based on preferences. For multimedia sessions, like VoIP or streaming video, we distinguish between changes in network access when the end-user is in a session or not in a session. If the end-user is not in a session, he or she needs to be able to start new sessions and receive invitations for new sessions. If the end-user is in a session, the session needs to be handed over to the new access network as seamless as possible from the perspective of the end-user. We propose an integrated but flexible solution to these problems that facilitates MM with a customizable transparency to applications and end-users

    Survey Paper: Mobility Management in Heterogeneous Wireless Networks

    Get PDF
    AbstractEver increasing user demands and development of modern communication technologies have led to the evolution of communication networks from 1st Generation (1G) network to 4G heterogeneous networks. Further, 4G with heterogeneous network environment will provide features such as, “Always Best Connected”, “Anytime Anywhere” and seamless communication. Due to diverse characteristics of heterogeneous networks such as bandwidth, latency, cost, coverage and Quality of Service (QoS) etc., there are several open and unsolved issues namely mobility management, network administration, security etc. Hence, Designing proficient mobility management to seamlessly integrate heterogeneous wireless networks with all-IP is the most challenging issue in 4G networks. Mobile IPv6 (MIPv6) developed by Internet Engineering Task Force (IETF) has mobility management for the packet-switched devices of homogeneous wireless networks. Further, mobility management of homogeneous networks depends on network related parameter i.e., Received Signal Strength (RSS). However the mobility management of heterogeneous networks, not only depends on network related parameters, but also on terminal-velocity, battery power, location information, user-user profile & preferences and service-service capabilities & QoS etc. Designing mobility management with all-IP, while, considering issues such as context of networks, terminal, user and services is the main concern of industry and researchers in the current era

    Scenarios and research issues for a network of information

    Get PDF
    This paper describes ideas and items of work within the framework of the EU-funded 4WARD project. We present scenarios where the current host-centric approach to infor- mation storage and retrieval is ill-suited for and explain how a new networking paradigm emerges, by adopting the information-centric network architecture approach, which we call Network of Information (NetInf). NetInf capital- izes on a proposed identifier/locator split and allows users to create, distribute, and retrieve information using a com- mon infrastructure without tying data to particular hosts. NetInf introduces the concepts of information and data ob- jects. Data objects correspond to the particular bits and bytes of a digital object, such as text file, a specific encod- ing of a song or a video. Information objects can be used to identify other objects irrespective of their particular dig- ital representation. After discussing the benefits of such an indirection, we consider the impact of NetInf with respect to naming and governance in the Future Internet. Finally, we provide an outlook on the research scope of NetInf along with items for future work

    Mobile telecommunication networks and mobile commerce : towards its applications in chinese market

    Get PDF
    La tĂ©lĂ©communication mobile connecte les personnes de n'importe oĂč Ă  tout moment. La transmission de la voix et des donnĂ©es Ă  travers les rĂ©seaux de tĂ©lĂ©communication mobile permet d'envoyer des informations et de diriger des transactions d'une maniĂšre nouvelle. Cela crĂ©e un nouveau domaine d'affaires qui s'appelle du commerce mobile, une affaire Ă©tendue basĂ©e sur l'Internet avec de nombreux des caractĂ©ristiques uniques ajoutĂ©s. Comme un soutien fondamental du plate-forme, les rĂ©seaux de la tĂ©lĂ©communication mobile joue un rĂŽle essentiel dans le commerce mobile. Leurs caractĂ©ristiques techniques et le dĂ©ploiement dĂ©terminent l'essence pour le commerce mobile. Dans cette mĂ©moire, nous Ă©tudions et prĂ©sentons les caractĂ©ristiques techniques des technologies communications mobiles du rĂ©seau 1G Ă  3G et au-delĂ . Nous Ă©tudions Ă©galement les technologies WLAN et WAP qui sont courantes dans le commerce mobile en Chine et dans le monde. Le commerce mobile est en train de se dĂ©velopper, le nombre d'utilisateurs de tĂ©lĂ©phones mobiles sont de plus en plus en Chine et dans ce monde. Les utilisateurs mobiles Ă©normes en Chine ainsi que la maturitĂ© des technologies 3G affichent un fort potentiel pour offrir et d'adopter plus les nouveaux services mobiles. AprĂšs rĂ©viser l'Ă©volution du commerce mobile et l'histoire du succĂšs i-mode au Japon, nous nous concentrons sur le mobile du marchĂ© chinois de maniĂšre Ă  dĂ©couvrir son marchĂ©, l'infrastructure du rĂ©seau mobile, et le modĂšle d'affaires. FondĂ© sur la base de notre enquĂȘte sur le commerce mobile chinois, nous prĂ©sentons, selon notre jugement, les services mobiles et des applications que sont convenables pour la Chine. Parmi eux, nous pensons qu'il y a la tendance sur les services basĂ©s sur la localisation et services orientĂ©es de l'architectures. Cette tendance peut attirer plus d'attention Ă  offrir de nouveaux services. En plus, elle peut offrir des services d'intĂ©gration et de personnalisation qui viennent de fournisseurs de services mobiles et des utilisateurs finaux. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Gestion intĂ©grĂ©e et Ă©cosystĂ©mique, Principe de prĂ©caution, Communication entre acteurs, Risques sur l'environnement et la santĂ©

    Delay-centric handover in SCTP

    Get PDF
    The introduction of the Stream Control Transmission Protocol (SCTP) has opened the possibility of a mobile aware transport protocol. The multihoming feature of SCTP negates the need for a solution such as Mobile IP and, as SCTP is a transport layer protocol, it adds no complexity to the network. Utilizing the handover procedure of SCTP, the large bandwidth of WLAN can be exploited whilst in the coverage of a hotspot, and still retain the 3G connection for when the user roams out of the hotspot’s range. All this functionality is provided at the transport layer and is transparent to the end user, something that is still important in non-mobile-aware legacy applications. However, there is one drawback to this scenario - the current handover scheme implemented in SCTP is failure-centric in nature. Handover is only performed in the presence of primary destination address failure. This dissertation proposes a new scheme for performing handover using SCTP. The handover scheme being proposed employs an aggressive polling of all destination addresses within an individual SCTP association in order to determine the round trip delay to each of these addresses. It then performs handover based on these measured path delays. This delay-centric approach does not incur the penalty associated with the current failover-based scheme, namely a number of timeouts before handover is performed. In some cases the proposed scheme can actually preempt the path failure, and perform handover before it occurs. The proposed scheme has been evaluated through simulation, emulation, and within the context of a wireless environment

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Energy-efficient vertical handover parameters, classification and solutions over wireless heterogeneous networks: a comprehensive survey

    Get PDF
    In the last few decades, the popularity of wireless networks has been growing dramatically for both home and business networking. Nowadays, smart mobile devices equipped with various wireless networking interfaces are used to access the Internet, communicate, socialize and handle short or long-term businesses. As these devices rely on their limited batteries, energy-efficiency has become one of the major issues in both academia and industry. Due to terminal mobility, the variety of radio access technologies and the necessity of connecting to the Internet anytime and anywhere, energy-efficient handover process within the wireless heterogeneous networks has sparked remarkable attention in recent years. In this context, this paper first addresses the impact of specific information (local, network-assisted, QoS-related, user preferences, etc.) received remotely or locally on the energy efficiency as well as the impact of vertical handover phases, and methods. It presents energy-centric state-of-the-art vertical handover approaches and their impact on energy efficiency. The paper also discusses the recommendations on possible energy gains at different stages of the vertical handover process

    Investigation of an intelligent personalised service recommendation system in an IMS based cellular mobile network

    Get PDF
    Success or failure of future information and communication services in general and mobile communications in particular is greatly dependent on the level of personalisations they can offer. While the provision of anytime, anywhere, anyhow services has been the focus of wireless telecommunications in recent years, personalisation however has gained more and more attention as the unique selling point of mobile devices. Smart phones should be intelligent enough to match user’s unique needs and preferences to provide a truly personalised service tailored for the individual user. In the first part of this thesis, the importance and role of personalisation in future mobile networks is studied. This is followed, by an agent based futuristic user scenario that addresses the provision of rich data services independent of location. Scenario analysis identifies the requirements and challenges to be solved for the realisation of a personalised service. An architecture based on IP Multimedia Subsystem is proposed for mobility and to provide service continuity whilst roaming between two different access standards. Another aspect of personalisation, which is user preference modelling, is investigated in the context of service selection in a multi 3rd party service provider environment. A model is proposed for the automatic acquisition of user preferences to assist in service selection decision-making. User preferences are modelled based on a two-level Bayesian Metanetwork. Personal agents incorporating the proposed model provide answers to preference related queries such as cost, QoS and service provider reputation. This allows users to have their preferences considered automatically
    • 

    corecore