3,064 research outputs found

    Crosstalk and the Dynamical Modularity of Feed-Forward Loops in Transcriptional Regulatory Networks

    Get PDF
    Network motifs, such as the feed-forward loop (FFL), introduce a range of complex behaviors to transcriptional regulatory networks, yet such properties are typically determined from their isolated study. We characterize the effects of crosstalk on FFL dynamics by modeling the cross regulation between two different FFLs and evaluate the extent to which these patterns occur in vivo. Analytical modeling suggests that crosstalk should overwhelmingly affect individual protein-expression dynamics. Counter to this expectation we find that entire FFLs are more likely than expected to resist the effects of crosstalk (approximate to 20% for one crosstalk interaction) and remain dynamically modular. The likelihood that cross-linked FFLs are dynamically correlated increases monotonically with additional crosstalk, but is independent of the specific regulation type or connectivity of the interactions. Just one additional regulatory interaction is sufficient to drive the FFL dynamics to a statistically different state. Despite the potential for modularity between sparsely connected network motifs, Escherichia coli (E. coli) appears to favor crosstalk wherein at least one of the cross-linked FFLs remains modular. A gene ontology analysis reveals that stress response processes are significantly overrepresented in the cross-linked motifs found within E. coli. Although the daunting complexity of biological networks affects the dynamical properties of individual network motifs, some resist and remain modular, seemingly insulated from extrinsic perturbations-an intriguing possibility for nature to consistently and reliably provide certain network functionalities wherever the need arise

    Multistable Decision Switches for Flexible Control of Epigenetic Differentiation

    Get PDF
    It is now recognized that molecular circuits with positive feedback can induce two different gene expression states (bistability) under the very same cellular conditions. Whether, and how, cells make use of the coexistence of a larger number of stable states (multistability) is however largely unknown. Here, we first examine how autoregulation, a common attribute of genetic master regulators, facilitates multistability in two-component circuits. A systematic exploration of these modules' parameter space reveals two classes of molecular switches, involving transitions in bistable (progression switches) or multistable (decision switches) regimes. We demonstrate the potential of decision switches for multifaceted stimulus processing, including strength, duration, and flexible discrimination. These tasks enhance response specificity, help to store short-term memories of recent signaling events, stabilize transient gene expression, and enable stochastic fate commitment. The relevance of these circuits is further supported by biological data, because we find them in numerous developmental scenarios. Indeed, many of the presented information-processing features of decision switches could ultimately demonstrate a more flexible control of epigenetic differentiation

    Identification of the Proliferation/Differentiation Switch in the Cellular Network of Multicellular Organisms

    Get PDF
    The protein–protein interaction networks, or interactome networks, have been shown to have dynamic modular structures, yet the functional connections between and among the modules are less well understood. Here, using a new pipeline to integrate the interactome and the transcriptome, we identified a pair of transcriptionally anticorrelated modules, each consisting of hundreds of genes in multicellular interactome networks across different individuals and populations. The two modules are associated with cellular proliferation and differentiation, respectively. The proliferation module is conserved among eukaryotic organisms, whereas the differentiation module is specific to multicellular organisms. Upon differentiation of various tissues and cell lines from different organisms, the expression of the proliferation module is more uniformly suppressed, while the differentiation module is upregulated in a tissue- and species-specific manner. Our results indicate that even at the tissue and organism levels, proliferation and differentiation modules may correspond to two alternative states of the molecular network and may reflect a universal symbiotic relationship in a multicellular organism. Our analyses further predict that the proteins mediating the interactions between these modules may serve as modulators at the proliferation/differentiation switch

    Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages

    Get PDF
    This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments

    Network-based analysis of gene expression data

    Get PDF
    The methods of molecular biology for the quantitative measurement of gene expression have undergone a rapid development in the past two decades. High-throughput assays with the microarray and RNA-seq technology now enable whole-genome studies in which several thousands of genes can be measured at a time. However, this has also imposed serious challenges on data storage and analysis, which are subject of the young, but rapidly developing field of computational biology. To explain observations made on such a large scale requires suitable and accordingly scaled models of gene regulation. Detailed models, as available for single genes, need to be extended and assembled in larger networks of regulatory interactions between genes and gene products. Incorporation of such networks into methods for data analysis is crucial to identify molecular mechanisms that are drivers of the observed expression. As methods for this purpose emerge in parallel to each other and without knowing the standard of truth, results need to be critically checked in a competitive setup and in the context of the available rich literature corpus. This work is centered on and contributes to the following subjects, each of which represents important and distinct research topics in the field of computational biology: (i) construction of realistic gene regulatory network models; (ii) detection of subnetworks that are significantly altered in the data under investigation; and (iii) systematic biological interpretation of detected subnetworks. For the construction of regulatory networks, I review existing methods with a focus on curation and inference approaches. I first describe how literature curation can be used to construct a regulatory network for a specific process, using the well-studied diauxic shift in yeast as an example. In particular, I address the question how a detailed understanding, as available for the regulation of single genes, can be scaled-up to the level of larger systems. I subsequently inspect methods for large-scale network inference showing that they are significantly skewed towards master regulators. A recalibration strategy is introduced and applied, yielding an improved genome-wide regulatory network for yeast. To detect significantly altered subnetworks, I introduce GGEA as a method for network-based enrichment analysis. The key idea is to score regulatory interactions within functional gene sets for consistency with the observed expression. Compared to other recently published methods, GGEA yields results that consistently and coherently align expression changes with known regulation types and that are thus easier to explain. I also suggest and discuss several significant enhancements to the original method that are improving its applicability, outcome and runtime. For the systematic detection and interpretation of subnetworks, I have developed the EnrichmentBrowser software package. It implements several state-of-the-art methods besides GGEA, and allows to combine and explore results across methods. As part of the Bioconductor repository, the package provides a unified access to the different methods and, thus, greatly simplifies the usage for biologists. Extensions to this framework, that support automating of biological interpretation routines, are also presented. In conclusion, this work contributes substantially to the research field of network-based analysis of gene expression data with respect to regulatory network construction, subnetwork detection, and their biological interpretation. This also includes recent developments as well as areas of ongoing research, which are discussed in the context of current and future questions arising from the new generation of genomic data

    Interplay of Extrinsic and Intrinsic Cues in Cell-Fate Decisions

    Get PDF
    A cell’s decision making process is coordinated by dynamic interplay between its extracellular environment and its intracellular milieu. For example, during stem cell differentiation, fate decisions are believed to be ultimately controlled by differential expression of lineage-specific transcription factors, but cytokine receptor signals also play a crucial instructive role in addition to providing permissive proliferation and survival cues. Here, we present a minimal computational framework that integrates the intrinsic and extrinsic regulatory elements implicated in the commitment of hematopoietic progenitor cells to mature red blood cells (Chapter 2). Our model highlights the importance of bidirectional interactions between cytokine receptors and transcription factors in conferring properties such as ultrasensitivity and bistability to differentiating cells. These system-level properties can induce a switch-like characteristic during differentiation and provide robustness to the mature state. We then experimentally test predictions from this lineage commitment model in a model system for studying erythropoiesis (Chapter 3). Our experiments show that hemoglobin synthesis is highly switch-like in response to cytokine and cells undergoing lineage commitment possess memory of earlier cytokine signals. We show that erythrocyte-specific receptor and transcription factor are indeed synchronously co-upregulated and the heterogeneity in their expression is positively correlated during differentiation, confirming the presence of autofeedback and receptor-mediated positive feedback loops. To evaluate the possibility of employing this minimal topology as a synthetic “memory module” for cell engineering applications, we constructed this topology synthetically in Saccharomyces cerevisiae by integrating Arabidopsis thaliana signaling components with an endogenous yeast pathway (Chapter 4). Our experiments show that any graded and unimodal signaling pathway can be rationally rewired to achieve our desired topology and the resulting network immediately attains high ultrasensitivity and bimodality without tweaking. We further show that this topology can be tuned to regulate system dynamics such as activation/deactivation kinetics, signal amplitude, switching threshold and sensitivity. We conclude with a computational study to explore the generality of this interplay between extrinsic and intrinsic cues in hematopoiesis. We extend our minimal model analysis in Chapter 2 to examine the more complex fate decisions in bipotent and multipotent progenitors, particularly how these cells can make robust decisions in the presence of multiple extrinsic cues and intrinsic noise (Chapter 5). Our model provides support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor expression kinetics from microarray experiments and provides a computational framework that can integrate both classical and alternative commitment paths in hematopoiesis that have been observed experimentally

    Computational design and designability of gene regulatory networks

    Full text link
    Nuestro conocimiento de las interacciones moleculares nos ha conducido hoy hacia una perspectiva ingenieril, donde diseños e implementaciones de sistemas artificiales de regulación intentan proporcionar instrucciones fundamentales para la reprogramación celular. Nosotros aquí abordamos el diseño de redes de genes como una forma de profundizar en la comprensión de las regulaciones naturales. También abordamos el problema de la diseñabilidad dada una genoteca de elementos compatibles. Con este fin, aplicamos métodos heuríticos de optimización que implementan rutinas para resolver problemas inversos, así como herramientas de análisis matemático para estudiar la dinámica de la expresión genética. Debido a que la ingeniería de redes de transcripción se ha basado principalmente en el ensamblaje de unos pocos elementos regulatorios usando principios de diseño racional, desarrollamos un marco de diseño computacional para explotar este enfoque. Modelos asociados a genotecas fueron examinados para descubrir el espacio genotípico asociado a un cierto fenotipo. Además, desarrollamos un procedimiento completamente automatizado para diseñar moleculas de ARN no codificante con capacidad regulatoria, basándonos en un modelo fisicoquímico y aprovechando la regulación alostérica. Los circuitos de ARN resultantes implementaban un mecanismo de control post-transcripcional para la expresión de proteínas que podía ser combinado con elementos transcripcionales. También aplicamos los métodos heurísticos para analizar la diseñabilidad de rutas metabólicas. Ciertamente, los métodos de diseño computacional pueden al mismo tiempo aprender de los mecanismos naturales con el fin de explotar sus principios fundamentales. Así, los estudios de estos sistemas nos permiten profundizar en la ingeniería genética. De relevancia, el control integral y las regulaciones incoherentes son estrategias generales que los organismos emplean y que aquí analizamos.Rodrigo Tarrega, G. (2011). Computational design and designability of gene regulatory networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1417

    Towards a comprehensive modeling framework for studying glucose repression in yeast

    Get PDF
    The yeast Saccharomyces cerevisiae is an important model organism for human health and for industry applications as a cell factory. For both purposes, it has been an important organism for studying glucose repression. Glucose sensing and signaling is a complex biological system, where the SNF1 pathway is the main pathway responsible for glucose repression. However, it is highly interconnected with the cAMP-PKA, Snf3-Rgt2 and TOR pathways. To handle the complexity, mathematical modeling has successfully aided in elucidating the structure, mechanism, and dynamics of the pathway. In this thesis, I aim to elucidate what the effect of the interconnection of glucose repression with sensory and metabolic pathways in yeast is, specifically, how crosstalk influences the signaling cascade; what the main effects of nutrient signaling on the metabolism are and how those are affected by intrinsic stress, such as damage accumulation. Here, I have addressed these questions by developing new frameworks for mathematical modeling. A vector based method for Boolean representation of complex signaling events is presented. The method reduces the amount of necessary nodes and eases the interpretation of the Boolean states by separating different events that could alter the activity of a protein. This method was used to study how crosstalk influences the signaling cascade.To be able to represent a diverse biological network using methods suitable for respective pathways, we also developed two hybrid models. The first is demonstrating a framework to connect signaling pathways with metabolic networks, enabling the study of long-term signaling effects on the metabolism. The second hybrid model is demonstrating a framework to connect models of signaling and metabolism to growth and damage accumulation, enabling the study of how the long-term signaling effects on the metabolism influence the lifespan. This thesis represents a step towards comprehensive models of glucose repression. In addition, the methods and frameworks in this thesis can be applied and extended to other signaling pathways

    Translational Oncogenomics and Human Cancer Interactome Networks

    Get PDF
    An overview of translational, human oncogenomics, transcriptomics and cancer interactomic networks is presented together with basic concepts and potential, new applications to Oncology and Integrative Cancer Biology. Novel translational oncogenomics research is rapidly expanding through the application of advanced technology, research findings and computational tools/models to both pharmaceutical and clinical problems. A self-contained presentation is adopted that covers both fundamental concepts and the most recent biomedical, as well as clinical, applications. Sample analyses in recent clinical studies have shown that gene expression data can be employed to distinguish between tumor types as well as to predict outcomes. Potentially important applications of such results are individualized human cancer therapies or, in general, ‘personalized medicine’. Several cancer detection techniques are currently under development both in the direction of improved detection sensitivity and increased time resolution of cellular events, with the limits of single molecule detection and picosecond time resolution already reached. The urgency for the complete mapping of a human cancer interactome with the help of such novel, high-efficiency / low-cost and ultra-sensitive techniques is also pointed out
    corecore