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Interplay of Extrinsic and Intrinsic Cues in Cell-Fate Decisions

Abstract
A cell’s decision making process is coordinated by dynamic interplay between its extracellular environment
and its intracellular milieu. For example, during stem cell differentiation, fate decisions are believed to be
ultimately controlled by differential expression of lineage-specific transcription factors, but cytokine receptor
signals also play a crucial instructive role in addition to providing permissive proliferation and survival cues.

Here, we present a minimal computational framework that integrates the intrinsic and extrinsic regulatory
elements implicated in the commitment of hematopoietic progenitor cells to mature red blood cells (Chapter
2). Our model highlights the importance of bidirectional interactions between cytokine receptors and
transcription factors in conferring properties such as ultrasensitivity and bistability to differentiating cells.
These system-level properties can induce a switch-like characteristic during differentiation and provide
robustness to the mature state. We then experimentally test predictions from this lineage commitment model
in a model system for studying erythropoiesis (Chapter 3). Our experiments show that hemoglobin synthesis
is highly switch-like in response to cytokine and cells undergoing lineage commitment possess memory of
earlier cytokine signals. We show that erythrocyte-specific receptor and transcription factor are indeed
synchronously co-upregulated and the heterogeneity in their expression is positively correlated during
differentiation, confirming the presence of autofeedback and receptor-mediated positive feedback loops.

To evaluate the possibility of employing this minimal topology as a synthetic “memory module” for cell
engineering applications, we constructed this topology synthetically in Saccharomyces cerevisiae by
integrating Arabidopsis thaliana signaling components with an endogenous yeast pathway (Chapter 4). Our
experiments show that any graded and unimodal signaling pathway can be rationally rewired to achieve our
desired topology and the resulting network immediately attains high ultrasensitivity and bimodality without
tweaking. We further show that this topology can be tuned to regulate system dynamics such as activation/
deactivation kinetics, signal amplitude, switching threshold and sensitivity.

We conclude with a computational study to explore the generality of this interplay between extrinsic and
intrinsic cues in hematopoiesis. We extend our minimal model analysis in Chapter 2 to examine the more
complex fate decisions in bipotent and multipotent progenitors, particularly how these cells can make robust
decisions in the presence of multiple extrinsic cues and intrinsic noise (Chapter 5). Our model provides
support to both the instructive and stochastic theories of commitment: cell fates are ultimately driven by
lineage-specific transcription factors, but cytokine signaling can strongly bias lineage commitment by
regulating these inherently noisy cell-fate decisions with complex, pertinent behaviors such as ligand-
mediated ultrasensitivity and robust multistability. The simulations further suggest that the kinetics of
differentiation to a mature cell state can depend on the starting progenitor state as well as on the route of
commitment that is chosen. Lastly, our model shows good agreement with lineage-specific receptor
expression kinetics from microarray experiments and provides a computational framework that can integrate
both classical and alternative commitment paths in hematopoiesis that have been observed experimentally.
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ABSTRACT 

INTERPLAY OF EXTRINSIC AND INTRINSIC CUES IN  

CELL-FATE DECISIONS 

Santhosh Palani 

Supervisor: Casim A. Sarkar, Ph.D. 

A cell’s decision making process is coordinated by dynamic interplay between its extracellular 

environment and its intracellular milieu. For example, during stem cell differentiation, fate 

decisions are believed to be ultimately controlled by differential expression of lineage-specific 

transcription factors, but cytokine receptor signals also play a crucial instructive role in addition 

to providing permissive proliferation and survival cues.  

Here, we present a minimal computational framework that integrates the intrinsic and 

extrinsic regulatory elements implicated in the commitment of hematopoietic progenitor cells to 

mature red blood cells (Chapter 2). Our model highlights the importance of bidirectional 

interactions between cytokine receptors and transcription factors in conferring properties such as 

ultrasensitivity and bistability to differentiating cells. These system-level properties can induce a 

switch-like characteristic during differentiation and provide robustness to the mature state. We 

then experimentally test predictions from this lineage commitment model in a model system for 

studying erythropoiesis (Chapter 3). Our experiments show that hemoglobin synthesis is highly 

switch-like in response to cytokine and cells undergoing lineage commitment possess memory of 

earlier cytokine signals. We show that erythrocyte-specific receptor and transcription factor are 

indeed synchronously co-upregulated and the heterogeneity in their expression is positively 
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correlated during differentiation, confirming the presence of autofeedback and receptor-mediated 

positive feedback loops.  

To evaluate the possibility of employing this minimal topology as a synthetic “memory 

module” for cell engineering applications, we constructed this topology synthetically in 

Saccharomyces cerevisiae by integrating Arabidopsis thaliana signaling components with an 

endogenous yeast pathway (Chapter 4). Our experiments show that any graded and unimodal 

signaling pathway can be rationally rewired to achieve our desired topology and the resulting 

network immediately attains high ultrasensitivity and bimodality without tweaking. We further 

show that this topology can be tuned to regulate system dynamics such as activation/deactivation 

kinetics, signal amplitude, switching threshold and sensitivity. 

 We conclude with a computational study to explore the generality of this interplay between 

extrinsic and intrinsic cues in hematopoiesis. We extend our minimal model analysis in Chapter 2 

to examine the more complex fate decisions in bipotent and multipotent progenitors, particularly 

how these cells can make robust decisions in the presence of multiple extrinsic cues and intrinsic 

noise (Chapter 5). Our model provides support to both the instructive and stochastic theories of 

commitment: cell fates are ultimately driven by lineage-specific transcription factors, but 

cytokine signaling can strongly bias lineage commitment by regulating these inherently noisy 

cell-fate decisions with complex, pertinent behaviors such as ligand-mediated ultrasensitivity and 

robust multistability. The simulations further suggest that the kinetics of differentiation to a 

mature cell state can depend on the starting progenitor state as well as on the route of 

commitment that is chosen. Lastly, our model shows good agreement with lineage-specific 

receptor expression kinetics from microarray experiments and provides a computational 

framework that can integrate both classical and alternative commitment paths in hematopoiesis 

that have been observed experimentally. 
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Chapter 1 

Introduction 

‘It’s high time molecular biology became quantitative, it cries out to a physicist… for 

modeling. Modeling isn’t a crutch, it’s the opposite; it’s a way of suggesting experiments 

to do, to fill gaps in our understanding.’ 

- John Maddox, Editor of Nature, 1966-73 and 1980-95. 

1.1. From genes to behaviors 

Biological species show great diversity and exhibit a wide array of complex behaviors. 

The displayed behaviors in each species, the phenotype, have been traditionally attributed 

to its genetic framework, the genotype. Elucidation of this correlation between genotype 

and phenotype is among the most actively studied problems in the biological sciences. 

The crux of this challenge lies in the fact that complexity in biological systems is evolved 

rather than designed and therefore our knowledge of the underlying framework is 

unlikely to be complete. With the advent of molecular biology, the genotype-phenotype 

problem was reduced to the understanding of the molecular details of the genetic 

elements and their role in exhibiting robust cellular states. The sequencing of the human 

genome has led us to uncover most of the molecular elements and classical genetic and 

biochemical approaches have successfully revealed most of the cellular states. However, 
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we still lack the mechanistic understanding of how molecular interactions (e.g., protein-

protein or protein-DNA) regulate the processes (e.g., differentiation, proliferation, or 

apoptosis) involved in the achievement of cellular phenotypes. It is now well known that 

genetic elements are connected through large biochemical networks and their interactions 

tend to be highly non-linear. Technological advancement in quantifying gene expression 

at the single cell level has led us to identify various biochemical responses that dictate 

cellular phenotypes. By studying the network-response dynamics, we can potentially gain 

mechanistic insights into cellular behaviors. 

 

1.2. Analytical modeling 

Compared to the physical sciences, the role of mathematics in the biological sciences is 

far less appreciated. As explained above, non-linearity lies at the heart of biological 

problems and studying only the properties of individual molecules or interactions will not 

help us in predicting or understanding behaviors. Mathematical modeling and analysis 

has traditionally proven potent in understanding non-linear systems and in combination 

with classical experiments can provide an invaluable tool in studying biological 

processes1. 

 In the biological community, there is a great deal of skepticism about the utility of 

mathematical models in solving complex biological problems. The most popular criticism 

among biologist is that any attempt to quantitatively model biological systems is flawed, 

as we have not yet identified all of the molecular players or characterized all of the 

existing biochemical interactions. This concern is completely valid as we saw from the 
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recent discovery of the previously unknown world of short RNAs2. However, this 

limitation only affects those mathematical models that focus on accurately matching 

experimental data by exhaustively incorporating from incomplete lists of molecules and 

interactions. Even though these models can be closely fitted to data, they often prove less 

useful in predicting newer experiments or in uncovering underlying principles if 

fundamental mechanisms are missing from the model description. 

 An alternate modeling approach, which does not suffer from the limitations of 

exhaustive modeling is analytical modeling or in a more ideal case, minimal modeling 

that targets only the most important players in a given biological process and shows how 

topological connections between these molecules may influence the overall property of 

the system studied (Figure 1.1). These models, when constructed with reasonable 

approximations, tend to be predictive and can identify key processes that regulate the 

overlying behavior. 

 

1.3. Cell differentiation 

Cell differentiation is a process in which a progenitor cell commits and morphs into a 

more lineage-restricted progenitor or a mature cell. This process has been intensely 

studied for decades by cell and developmental biologists, therefore making it an attractive 

dynamic system to model. As shown in Figure 1.2, studies have characterized several 

network topologies and responses that lead to various phenotypic behaviors3. With 

respect to cell differentiation, the most well recognized response is the “all-or-none” 

switch-like response and the most studied players are the lineage-specific cytokines and 
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transcription factors (this is particularly true in the hematopoietic system, discussed 

further in Chapter 2).  Lineage-specific cytokines are cell-extrinsic molecules that bind to 

their cognate receptors on the cell surface and transmit signals through a cascade to the 

nucleus that promotes survival, proliferation and differentiation of the cell to a particular 

lineage. Lineage-specific transcription factors are cell-intrinsic, DNA-binding elements 

that bind to the promoter elements of the lineage-specific gene and regulate their 

expression. A primary focus of this dissertation is to examine how known topological 

connections between cell-extrinsic cues (e.g., cytokines) and cell-intrinsic factors (e.g., 

transcription factors) can give rise to all-or-none switch-like responses during 

differentiation. 

 

1.4. All-or-none response 

Cell differentiation was originally thought to be a process in which an undifferentiated 

cell gradually transitions into a mature state by traversing through a series of stable 

intermediate states. This theory originated when cell differentiation was studied with 

classical population averaging experiments like western blotting or RT-PCR. As seen in 

Figure 1.3A, when undifferentiated cells are treated with various levels of differentiation-

inducing stimulus and the population average of a lineage-specific gene is measured, the 

experiment shows a graded response, i.e., the expression of the lineage-specific gene 

increased linearly with stimulus concentration. This effect can be explained by the 

proposed theory that each cell rests on a stable intermediate state based on the 

concentration of the stimuli (Figure 1.3B). However, with the advent of single cell 
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measurements, when the same experiment was repeated, it was noticed that the cells do 

not navigate through stable intermediate states, whereas the percentage of cells resting in 

the initial state and final differentiated state changes with the concentration of the stimuli 

(Figure 1.3C). According to this observation, each cell either remains in the 

undifferentiated state or differentiates completely to the mature state, hence the name all-

or-none or bistable response4-8. 

 

1.5. Significance of a bistable response 

There can be several physiologically significant advantages in possessing a bistable 

response instead of a graded response during cell differentiation. Figure 1.4 shows the 

steady-state expression of a lineage-specific gene to varying concentration of stimulus for 

a graded and a bistable response. By comparing the plots, we can see that the bistable 

response is less noisy and requires a threshold concentration of stimulus to exhibit a 

strong expression. Also, the off-state and on-state, classified based on the expression of 

the gene, are discrete in a bistable response. Moreover, the high-expression on-state 

achieved in the bistable response is much more robust to fluctuations in stimulus 

concentration than graded response due to the presence of hysteresis or memory 

(discussed further in Chapter 2). 
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1.6. Positive feedback loops in cell differentiation 

It is not that apparent how the graded response curve arising from cytokine-receptor 

binding can give rise to an all-or-none response during cell differentiation. The answer 

may lie in the non-linear wiring of the signaling topology that transmits information into 

and out of the cell. Networks associated with cell differentiation that are capable of 

exhibiting bistable response most often require positive feedback loops for achieving 

non-linearity. Figure 1.5 shows examples of minimal topologies that exhibit different 

responses. Let us consider S as the stimulus and A as a transcription factor that activates 

a series of lineage-specific genes B, C, and D. If S activates A linearly and A 

correspondingly activates B, C and D, the system shows a graded response (Figure 1.5A). 

When an auto-activation loop is added to the first topology, the system shows an 

ultrasensitive response (Figure 1.5B). Ultrasensitivity is a system level property in which 

a less-than 81-fold increase in stimulus drives the system form 10% to 90% response9. 

Since the transition curvature is steeper in an ultrasensitive network compared to a graded 

network, they tend to be less noisy; however, they do not possess hysteresis or memory 

of the stimulus. When the auto-activation loop requires cooperative binding of the 

transcription factor A, the system shows bistability (Figure 1.5C). Transcription 

autofeedback loops with cooperativity are indeed the most recognized topology for 

showing all-or-none response during cell-differentiation10. 
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1.7. Significance of the research 

Throughout the normal lifespan of an organism, certain cells and tissues require adult 

stem cells for turnover and repair. Adult stem cells provide an excellent alternative to 

embryonic stem cells in basic research and clinical treatment. Also, using adult stem cells 

for research and clinical purposes avoids any ethical or legal issues that are associated 

with embryonic stem cells. However, the number of cell types that can be generated by 

multipotent adult stem cells compares poorly with pluripotent embryonic stem cells. 

Studies of adult stem cells can provide valuable information about complex signaling 

events occurring during tissue maintenance and repair. One of the most important 

motivations in these studies is understanding how undifferentiated cells differentiate and 

stay differentiated. Dysregulated cell division and differentiation can lead to various 

physiological disorders including various forms of cancer and tissue abnormalities. 

Understanding the molecular details of cell cycle progression and stem cell 

differentiation can suggest new therapies for such diseases. 

One of the most important potential applications of adult stem cells is cell-based 

therapies. The need for transplantable organs and tissues far surpasses the available 

supply. Stem cells directed to differentiate into specific cell types can offer an ever-

lasting source of replacement cells and tissues to treat diseases including anemia, 

leukopenia, thrombocytopenia, Type I diabetes, Parkinson’s, Alzheimer’s, spinal cord 

injury, heart disease, stroke, arthritis, burns and immunodeficiency diseases. For 

example, in anemia and thrombocytopenia, patients have lower-than-normal blood counts 
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of erythrocytes and platelets, respectively. Directed differentiation of stem cells to 

produce erythrocytes and megakaryocytes can provide potential therapies through 

autologous or allogeneic transplants. 

  It is well appreciated that understanding and manipulating cellular function 

requires much more than identifying cellular components and establishing component-

component interactions. There is a constant need to understand how these components 

work together to produce complex, often emergent, behaviors. Systems biology has been 

successfully used to study biological pathways and its interactions as non-linear 

networks. Mathematical modeling of these networks can help us gain a quantitative and 

predictive understanding of a biological system and can further assist in establishing the 

core topologies that can be used to re-wire or re-engineer native pathways to attain 

desired phenotypes. Systems biology can thus provide a design framework within which 

synthetic biology can operate. Synthetic biology is still an emerging field, which has 

great potential to contribute to a wide-range of applications from therapeutics to alternate 

fuels. Synthetic biologists are currently at the stage of constructing and testing out 

fundamental motifs, which can provide a wide range of complex behaviors including 

ultrasensitivity, bistability, hysteresis, oscillations, noise-reduction and logic gates. In the 

near future, these regulatory modules can be interfaced with various sensory inputs 

(environmental, physical or chemical) to confer desired, complex biological responses in 

processes ranging from metabolism to protein synthesis to cell differentiation. 



 9

 

1.8. Thesis statement 

We will use experimental and computational techniques to understand how 

integrating cell-extrinsic and cell-intrinsic elements can regulate lineage 

commitment during cell differentiation and can also be used to create tunable 

synthetic molecular switches for cell engineering applications. 

 

1.9. Chapter layout 

In Chapter 2, we present a deterministic model of a cytokine signaling pathway that plays 

a role in committing progenitor cells to red blood cells, the differentiation process known 

as erythropoiesis. This model connects erythropoietin (Epo), an erythrocyte-specific 

cytokine and GATA1, an erythrocyte-specific transcription factor. We show that, due to 

the presence of multiple topological connections between the cytokine receptor and 

transcription factor, the system can exhibit a bistable response to the cytokine even 

without cooperativity. Furthermore, we identify a minimal topology within this 

erythrocyte model that still gives rise to an all-or-none response. In Chapter 3, we 

experimentally demonstrate a positive correlation between EpoR and GATA1 expression 

during human progenitor cell differentiation and we explore the dynamics and phenotypic 

consequences of this correlation. In Chapter 4, to assess the possibility of using the 

minimal model discovered in Chapter 1 as a tunable bistable switch, we construct it 

synthetically in Saccharomyces cerevisiae using signaling elements from Arabidopsis 
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thaliana. We demonstrate that key features of our synthetic switch can be rationally tuned 

using predictions from our minimal model. In Chapter 5, we extend the minimal model in 

Chapter 1 to a multilineage commitment model and provide a stochastic framework for 

understanding both canonical and alternative pathways of lineage commitment in 

hematopoiesis.  



Figure 1.1 

 

Figure 1-1 Topology of an autofeedback loop 

Stimulus S binds to the response element present upstream of gene A and initiates its 
transcription. Once expressed, A can regulate its own expression through an autofeedback loop.
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Figure 1.2 

 

Figure 1-2 List of well studied network topologies and responses 

Mechanistic understanding of genotype-phenotype association can be achieved by studying the 
underlying network-response dynamics. 
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Figure 1.3 

 

Figure 1-3 Graded vs bistable response in cell differentiation 

(A) Western blot showing linear increase in the population-average expression of a gene of 
interest with change in concentration of stimulus. (B) Two different models explaining the 
observed result in A; graded response (left) and bistable response (right) 
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Figure 1.4 

 

Figure 1-4 Steady-state plots for graded and bistable responses 

For each stimulus concentration, the system is allowed to reach steady state and the 
corresponding response or expression value is plotted. (A) Graded response shows linear change 
in the levels of response with increase in stimulus until the system reaches saturation. (B) Bistable 
response stays low for stimulus concentrations less the threshold concentration. Above threshold 
level, the system switches to the high-expression or on-state. Once the on-state is reached, the 
system can sustain the response, even when the stimulus is lowered from the initial threshold 
concentration due to hysteresis (dotted red line). 
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Figure 1.5 

 

Figure 1-5 Topologies that give rise to graded, ultrasensitive and bistable responses 

(A) Stimulus S activates a transcription factor A, which in turn activates several downstream 
genes (graded response). (B) Topology A with an additional transcriptional autofeedback loop 
(ultrasensitive response). (C) Topology B with cooperative binding of transcription factor 
(bistable response). 
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Chapter 2 

Receptor Feedback Loop Can Generate Bistability in GATA-1 

Expression 

(Adapted from Palani S. and Sarkar C.A. (2008) Positive Receptor Feedback during 

Lineage Commitment Can Generate Ultrasensitivity to Ligand and Confer Robustness to 

a Bistable Switch, Biophysical Journal, Volume 95, Issue 4, 1575-1589) 

 

2.1. Introduction 

The process of cellular differentiation entails a complex series of events through which 

an uncommitted progenitor can morph into a stable specialized cell. While many of the 

critical individual molecular components involved in specific differentiation processes 

have been identified, the complex interactions and topology of signaling and 

transcriptional networks can lead to non-intuitive behavior. Mathematical modeling and 

analysis can provide insights into the system-level properties that arise from such an 

array of interactions.  

 In cellular processes in which a binary decision must be made, bistability can be 

an important system-level property that arises from the corresponding signaling 

http://www.cell.com/biophysj/issue?pii=S0006-3495%2808%29X7004-3
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networks. Changes in the system input can toggle a bistable system between two steady 

states; additionally, the system can display memory by sustaining a high (or low) steady-

state response after significant reduction (or increase) in the magnitude of the stimulus1. 

Biological examples of bistability include cell-cycle regulation in Xenopus oocytes2 and 

Saccharomyces cerevisiae3, self-sustaining biochemical memory4, synthetic genetic 

switches5-9, and differentiation of common myeloid precursors into macrophages and 

neutrophils10. Bistability is often accompanied by ultrasensitivity to a stimulus, another 

common property of nonlinear systems11-13. Since, there is growing evidence that cell 

differentiation is an all-or-none ‘switch-like’ event, rather than a continuous transition of 

an unspecialized cell into a mature one2, 14, mathematical modeling of the commitment 

process is attractive because the switch-like response and cellular memory implicit in the 

biological process arise naturally in the formulation of such nonlinear models.  

 Hematopoiesis, the formation of blood cells, takes place in two distinct stages: 

primitive differentiation and terminal differentiation. During primitive differentiation, a 

hematopoietic stem cell differentiates into a multipotent or bipotent progenitor cell, 

which, upon terminal differentiation, gives rise to a mature cell. Lineage-specific 

cytokines (extrinsic) and transcription factors (intrinsic) are believed to be the important 

molecular components that affect cell survival, proliferation, and commitment during 

terminal differentiation15, 16.  

 Erythropoietin (Epo) is a hematopoietic cytokine responsible for the proliferation, 

survival, and differentiation of erythroid cells17. The Epo receptor (EpoR) has a single 

transmembrane domain, an extracellular domain for Epo binding, and an intracellular 

domain for signaling18. In the absence of ligand, Epo receptors exist predominantly as 
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inactive homodimers on the cell surface19. Binding of Epo to the receptor homodimer 

changes the orientation of the receptor subunits, which leads to activation of several 

signaling cascades including the PI3K/AKT, STAT5-BclXL, and Ras/MAPK pathways20. 

Erythroid progenitors lacking functional EpoR do not mature into erythrocytes and show 

phenotypic abnormalities21, 22. 

 The zinc-finger GATA-1 is a transcription factor that plays a critical role in 

erythroid differentiation23, 24. It binds as a monomer to the consensus sequence 

(A/T)GATA(A/G), which is present in the promoter and enhancer regions of virtually all 

erythroid-specific genes25-28. GATA-1 undergoes several post-translational modifications 

(acetylation, phosphorylation, sumoylation, and ubiquitination) that may be critical for its 

optimal transcriptional activity29. Analysis of the promoter regions of the EpoR gene 

shows no TATA or CAAT box, but does reveal the presence of a GATA-1 binding motif, 

thus providing a meaningful link between a lineage-specific transcription factor and a 

lineage-restricted receptor30-32. Active GATA-1 also binds to the regulatory region of its 

own gene, thereby enhancing its total expression through a positive feedback loop33-36. 

Disruption of the GATA-1 gene in murine embryonic stem cells by homologous 

recombination blocks erythroid development, emphasizing the absolute need for GATA-1 

in red blood cell maturation37. 

 Common myeloid progenitors give rise to erythroid burst-forming units (BFU-E), 

the earliest known erythroid precursor cells. BFU-E mature into erythroid colony-

forming units (CFU-E); this is accompanied by an increase in EpoR expression and the 

cells become increasingly dependent on Epo38, 39. EpoR and GATA-1 levels both rise in 

parallel and reach their maximum during CFU-E maturation into proerythroblasts and 
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their subsequent differentiation into early basophilic erythroblasts40, 41. Both GATA-1 and 

EpoR levels fall during further maturation from the basophilic stage to the polychromatic 

stage as cells synthesize large amounts of globins38, 41. Further differentiation from 

polychromatic erythrocytes to reticulocytes is independent of EpoR and GATA-1, as their 

levels fall sharply and the cells also show a decrease in globin expression. Hence, it is 

during the temporal window from an early CFU-E to a basophilic erythroblast that EpoR 

and GATA-1 may act in concert to drive commitment of the erythroid precursor to 

terminal differentiation and induce the synthesis of globins. 

 Recent evidence suggests several modes of crosstalk between EpoR signaling and 

GATA-1 transcriptional activity, and analysis of these interactions may offer insights into 

the commitment program during erythroid differentiation. In brief, EpoR signaling via 

AKT can lead to GATA-1 activation; in return, active GATA-1 can upregulate synthesis 

of both itself and EpoR. Epo activates AKT by phosphorylating this kinase at Ser-473 in 

a PI3K-dependent manner42. The importance of AKT signaling in erythropoiesis was 

demonstrated in JAK2-deficient fetal liver progenitor cells: erythroid differentiation can 

be supported in these cells by overexpressing active AKT and it can also be inhibited by 

downmodulating AKT using RNA interference43. Active AKT appears to have a 

significant role in enhancing GATA-1 transcriptional activity by mediating some of its 

post-translational modifications, including phosphorylation and acetylation. AKT 

phosphorylates GATA-1 at Ser-310 and enhances its transcriptional activity in primary 

fetal liver cells42. However, mice with a S310A mutation in GATA-1 showed no 

hematopoietic abnormalities during normal or stress erythropoiesis, indicating that 
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phosphorylation of GATA-1 is dispensable for red blood cell differentiation and may 

only be required for maximal activity44.  

 p300 and CBP acetyltransferases (AT) acetylate GATA-1 at lysine residues 

present in the C-terminal tail of its zinc fingers45-47. In vivo ChIP assays show that lysine 

to alanine mutations at the acetylation residues dramatically impair GATA-1 association 

with chromatin48, suggesting that acetylation is critical for GATA-1-mediated gene 

expression. p300 and CBP also have histone acetyltransferase (HAT) activity and may 

play a role in enhanceosome stability by acetylating GATA-1 and histones49, 50. AKT 

phosphorylates p300 at Ser-1834 and this has been shown to be essential for AT, HAT, 

and transcriptional activity of p30051-53. Interestingly, Ser-1834 lies in the E1A binding 

domain that is necessary for binding of p300/CBP to GATA-1. It has also been suggested 

that phosphorylation may aid in GATA-1 binding to CBP, since the Ser-310 residue of 

GATA-1 is within the C-terminal acetylation motif of GATA-1. Taken together, these 

results suggest an additional role for Epo (other than providing survival and proliferation 

cues) in erythroid precursor commitment and differentiation by activating GATA-1 

through the PI3K/AKT pathway and influencing the intrinsic signals that lead to 

commitment and differentiation. 

Based on this experimental evidence, we present a deterministic model of the 

upregulation and activation of the erythrocyte-specific transcription factor GATA-1, a 

‘master regulator’ of erythrocyte commitment. Lineage specification models previously 

reported suggest that erythrocyte differentiation from erythroid/myeloid bipotent 

precursor can arise due to the differential expression of antagonistic transcription factors 

(upregulation of GATA-1 and downregulation of PU.1) driven primarily by cell-intrinsic 
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events54, 55. These models provide insight into the dynamics of a binary cell-fate decision 

from the viewpoint of ‘multilineage priming,’ auto-stimulation, and reciprocal repression.  

 The present work focuses on erythrocyte commitment rather than differentiation 

and examines how both intracellular and extracellular factors may influence the cell-fate 

decision. As depicted in Figure 2.1, the topology of our model captures the essential 

elements of outside-in signaling (Epo-mediated activation of GATA-1), intracellular 

signal amplification (GATA-1-mediated upregulation of GATA-1 synthesis), and inside-

out signaling (GATA-1-mediated upregulation of EpoR). Using this model, we show that 

upregulation of EpoR in erythroid precursor cells upon Epo addition can generate 

ultrasensitivity to ligand as well as robust bistability in GATA-1 expression during 

commitment and this may provide ‘switch-like’ differentiation characteristics. 

 Further analysis of a generalized minimal model confirms that the topological 

connectivity of the two feedback loops alone is both necessary and sufficient for 

generating the overall system dynamics. Although there are several ways of achieving 

bistability1, 56, feedback loops are the most commonly identified mechanism; however, 

feedback loops that give rise to robust bistability in purely deterministic models have, to 

date, been shown to be highly cooperative in at least one reaction57-60. Here, we present a 

novel way of achieving robust bistability in cell signaling networks without molecular 

cooperativity through two linked positive feedback loops. This topology may have 

general implications for cellular decision-making. 
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2.2. Model Development 

2.2.1. Model construction and description 

The core reaction of the proposed erythrocyte commitment model is the activation of 

GATA-1 by AKT through EpoR signaling (Figure 2.1; light gray background). Our 

model concentrates exclusively on the two positive feedback loops that serve to increase 

the concentrations of the reactant species (AKTpp and GATA-1) in this core reaction, 

which leads to greater accumulation of GATA-1*, the activated form of a ‘master 

regulator’ of erythrocyte-specific genes. The model specifically incorporates the 

following components/motifs in the feedback loops which may have an effect on the 

overall system behavior. 1) EpoR homodimerization: Unlike many other cytokine-

receptor systems, EpoR homodimerizes (but does not signal) before Epo addition, which 

should therefore confer ultrasensitivity to the number of receptor dimers available to bind 

Epo. This effect was modeled as a two-step process of EpoR binding to JAK2 and EpoRJ 

dimerizing to form EpoRJD. Alternatively, EpoR homodimerization could be treated as a 

single-step process without considering the effect of JAK2. 2) PI3K/AKT pathway: 

Signaling in the MAPK cascade has been shown to convert graded signals into 

ultrasensitive responses61; therefore, the similar cascade structure in the PI3K/AKT 

pathway might ultrasensitize the signals from the cell surface to GATA-1. 3) Double 

phosphorylation of AKT: Recent reports have shown that bistability in signaling circuits 

can arise from multisite phosphorylation56; hence, we explicitly modeled AKT activation 

as two phosphorylation steps. 4) Transcription and translation: Delay in feedback loops 

have been shown to generate interesting behaviors in signaling networks62, so these two 

processes were modeled as separate steps. Additionally, explicit inclusion of mRNA 
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species in the model facilitates comparisons with experimental microarray data (see 

Figure 2.2). The construction of the full model therefore included the following reaction 

steps in Figure 2.1. 

 We have used a deterministic, ODE-based approach to model this signal 

transduction/transcriptional network. While this modeling framework represents an ideal 

approximation of the true intracellular milieu63, it can still provide useful information 

regarding the system dynamics, particularly for nonlinear systems of the type studied 

here64. In step 1, JAK2 binds to the intracellular domain of EpoR to form a receptor-JAK 

complex (EpoRJ). EpoRJ dimerizes to form EpoRJD in step 3. EpoRJ and EpoRJD 

undergo constitutive receptor endocytosis (steps 2 and 4). In step 5, Epo binds to the 

extracellular domain of EpoRJD forming the activated complex (EpoRJD*) and the 

endocytosis of the complex is shown in step 6. PI3K is activated (PI3K*) by the complex 

and is deactivated by a phosphatase (steps 7 and 8). PI3K* converts PIP2 to PIP3 in step 

9. PIP3 binds to the PH domain of AKT and phosphorylates AKT on Ser-473 and Thr-

308 (steps 11-15). This doubly phosphorylated form of AKT (AKTpp) catalyzes the 

activation of GATA-1 (step 16). Activated GATA-1 (GATA-1*) is deactivated and 

degraded in steps 17 and 26, respectively. Monomeric GATA-1* enhances transcriptional 

synthesis of nuclear EpoR mRNA (EpoRmRNAn) and GATA-1 mRNA 

(GATA1mRNAn) in steps 18 and 19. The nuclear mRNAs (EpoRmRNAn and 

GATA1mRNAn) are translocated to the cytoplasm (EpoRmRNAc and GATA1mRNAc, 

respectively), where they are either translated to their corresponding protein forms or 

degraded (steps 20 – 25). 
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EpoR and GATA-1 are present at basal levels in progenitor cells before the 

addition of Epo. The basal expression of Epo receptor may be independent of GATA-1 as 

there is also a Sp1 binding site on the 1.7 kb 5’-flanking region of the EpoR gene. Based 

on current evidence, it appears that, as EpoR is transported to the cell membrane, it is 

rapidly bound by JAK2 and homodimerizes. Accordingly, we have assumed 90% of 

EpoR to be initially present in the dimeric state, 9% to be monomers bound by JAK2, and 

1% to be free receptors. Activation and deactivation reactions of PI3K, PIP2, GATA-1, 

and AKT are assumed to have Michaelis-Menten kinetics. AKT phosphorylation is 

modeled as a two-step process65. Double phosphorylation of AKT by 3’-

phosphoinositide-dependent protein kinase 1 (PDK1) is necessary for its complete 

activation66, 67. Dephosphorylation of PI3K*, PIP3, and AKTpp are implicitly modeled 

without considering the rate of change of the phosphatases involved. The role of AKTpp 

in GATA-1 activation is modeled as a single enzymatic step, encompassing both direct 

(e.g., phosphorylation) and indirect (e.g., acetylation) mechanisms. It is important to note 

that Epo may activate GATA-1 by AKT-independent mechanisms, but this does not 

change the qualitative nature of the model (see minimal model below). The mRNA 

transcription rate is assumed to saturate hyperbolically with active transcription factor 

concentration, a rapid-equilibrium approximation68. The rate of translation is 

approximated to be proportional to the concentration of the cytoplasmic mRNA69. All 

degradation reactions are modeled with first-order kinetics. 

2.2.2. Positive feedback loops 

There are two feedback loops considered in this model. Since GATA-1* positively 

autoregulates its own transcriptional rate, reactions 19, 21, and 24 drive the first positive 
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feedback loop. This loop increases the concentration of inactive GATA-1 in the cell. The 

strength of this feedback is governed by the parameter F1V19, the maximal transcriptional 

rate of the GATA-1 gene, shown in reaction 19. GATA-1* is also shown to regulate the 

synthesis rate of EpoRJD through reactions 18, 20, 22, 1, and 3, which start the second 

positive feedback loop, whose strength is denoted by F2V18, the maximal rate of 

production of EpoR mRNA. In this loop, GATA-1* upregulates the expression of 

EpoRJD which in turn increases the number of complexes formed on the cell surface and 

leads to the increase in the concentration of activated AKT kinase (AKTpp). In this 

model, F1 and F2 determine the relative strengths of the feedback loops as V18 and V19 are 

kept equal and constant. The core reaction in the model is the activation of GATA-1 by 

AKTpp (reaction 16) and the two feedback loops work synchronously to drive this 

reaction and produce GATA-1*, which in turn drives both of the feedback loops and also 

regulates the transcription of other erythrocyte specific genes. 

2.2.3. Nondimensionalization and computation 

The full model, which consists of 18 ordinary differential equations derived from 27 

reactions with 44 parameters, is given in Table 2.1. To simplify parameter estimation and 

mathematical analyses, the model was completely nondimensionalized; the 

nondimensional forms of the differential equations and the parameters are given in the 

Tables 2.2 and 2.3, respectively). In the nondimensional model, each reactant 

concentration is normalized by the total concentration of its respective basal inactive 

form. The species used in the mathematical analyses are Epo receptor homodimer 

(EpoRJD), complex (EpoRJD*), activated AKT (AKTpp), and activated GATA-1 

(GATA-1*). The respective nondimensional forms of these reactants are: 



 

A complete list of the nondimensional reactants and their initial conditions is 

provided in Table 2.4. The nondimensional equations were solved using the Systems 

Biology Toolbox (SBtoolbox) for MATLAB (The MathWorks, Natick, MA)70. Parameter 

sensitivity and parameter estimation were also performed with SBtoolbox. MATLAB 

was used for analyzing bistability and ultrasensitivity through steady-state response plots. 

2.2.4. Parameter estimation and sensitivity analysis 

Of the 44 parameters present in the model, 29 parameters were incorporated directly from 

the literature, 8 parameters were refined from values provided in the literature, and the 

remaining 7 parameters (V16, K16, V17, K17, F1, F2, k26) were estimated to fit time course 

measurements of GATA-1 DNA binding activity during erythroid precursor commitment 

and differentiation as reported by Dalyot et al. Of these 7 parameters, the steady-state 

values of the reactants in the model are highly sensitive only to F1, F2, and k26. To 

initially compare the model to these experimental data, a negative feedback loop was 

added to account for the degradation of GATA-1* after progenitor commitment. This was 

necessary since the experimental data covers a much broader temporal window of the 

differentiation process, from GATA-1* production in progenitors to complete GATA-1 

degradation in mature erythrocytes. We have assumed that the change in GATA-1 DNA 

binding activity is due to corresponding changes in the levels of GATA-1*. The fitted 

parameters were then used in mathematical analyses performed without the negative 

feedback loop, as our model is only intended to analyze the commitment decision of the 

progenitor cells much earlier in the differentiation process and not account for larger-
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scale phenotypic changes that are observed in mature erythrocytes after commitment. 

Tables 2.5 and 2.6 give the values of the estimated parameters and the initial conditions 

of the reactants in the model.  

Sensitivity analysis was performed for the Epo receptor dimer, complex, activated 

AKT, and activated GATA-1 by perturbing all 44 parameters and obtaining the 

normalized steady-state sensitivities (ranging from 0-1). EpoRJD steady-state levels are 

most sensitive to the transcriptional rate of EPOR (F2V18) and to the translation and 

degradation rate constants of cytosolic EpoR mRNA (k22 and k23, respectively) (Figure 

2.3A).  Epo receptor dimer is also highly sensitive to complex formation (k5) and to a 

lesser extent to complex dissociation (k-5) and endocytosis (k6). Epo-EpoR complex 

(Figure 2.3B) has a sensitivity profile similar to that of the receptor dimer, except that it 

is more sensitive to the internalization rate constant of the complex (k6) and less sensitive 

to binding kinetics (k5 and k-5). Activated AKT levels are sensitive to the activation and 

deactivation of PIP3 and AKT [V9-V15, K9-K15 and k11] and to the transcriptional rate of 

EPOR (F2V18) (Figure 2.3C). GATA-1* is most sensitive to the transcriptional rate of 

GATA1 (F1V19) and to the translation and degradation rate constants of cytosolic GATA-

1 mRNA (k24 and k25, respectively). GATA-1* is also highly sensitive to its degradation 

rate constant (k26) (Figure 2.3D). It is important to note that the sensitivity analysis was 

performed while keeping the system in the biologically relevant on-state (F1 = 0.04, F2 = 

0.123), which is F1-limited (cf. Figure 2.9B). Therefore, perturbation of F2 should not 

affect the steady-state levels of GATA-1*.  From the sensitivity analysis we can see that 

the steady-state values of the receptor dimer, complex, and activated AKT are influenced 

by feedback 2 (EpoR synthesis), whereas GATA-1* steady-state levels are influenced 



directly by feedback 1 (GATA-1 synthesis) and indirectly by feedback 2 (GATA-1 

activation via EpoR synthesis). 

 Estimation of the unknown rate constants was performed by fitting the GATA-1* 

time course with GATA-1 DNA binding ability during erythroid differentiation in 

primary human liquid cultures.  To fit the model with the experimental data, a simple 

negative feedback was added to account for the decrease in the levels of GATA-1 after 

progenitor commitment. The rate equations and the rate constants of the negative 

feedback loop are given below: 

Rate equations and initial condition: 

 

Rate constants: 

V28 = 6.90 x 10-5
 s-1; V29 = 3.92 x 10-5

 nM/s; K28 = 293.03 nM; K29 = 516.49 nM 

The EpoR and GATA-1 mRNA profiles from this EpoR/GATA-1 model with 

negative feedback were then compared with entirely independent microarray data from 

differentiating CD34+ human hematopoietic progenitor cells (NCBI Gene Expression 

Omnibus database (#GDS2431))71. As seen in Figure 2.2, the model trends compare 

favorably with the experimental data. EpoR and GATA-1 mRNA levels are low at the 

start of terminal differentiation. Upon Epo induction (day 0), both EpoR and GATA-1 

mRNA expression levels increase and reach a peak at days 8-9 (late Basophilic 
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Erythroblast/early Polychromatic Erythroblast stage) and their levels fall with further 

maturation.  

2.2.5. Identification of a generalized minimal model 

To ascertain what topological features in the EpoR/GATA-1 model are responsible for its 

robust bistability, the model was systematically reduced to a minimal form by stepwise 

elimination of various linear topological motifs, including EpoR homodimerization, 

PI3K/AKT cascading, multi-site phosphorylation, and individual transcription and 

translation steps (data not shown). Conversely, both feedback loops were critical for 

robust bistability (see Results). 

 The minimal model (Figure 2.4) consists of the following reactions. The cell-

surface receptor and the inactive lineage specific transcription factor (InactiveTF) are 

expressed at basal (ligand-independent) levels in the naïve cell. After addition of ligand, a 

fraction of the cell-surface receptors become complexes (step 2) and transmit a 

downstream signal to enzymatically activate the transcription factor (step 4). Constitutive 

receptor endocytosis, complex internalization, and InactiveTF degradation reactions are 

shown in steps 1, 3, and 8, respectively. The active transcription factor (ActiveTF) can 

then upregulate the expression of both receptor and inactive transcription factor (steps 6 

and 7, respectively). ActiveTF can be deactivated or degraded (steps 5 and 9, 

respectively). The activation of transcription factor by complex and its deactivation are 

modeled as single enzymatic steps and are assumed to have Michaelis-Menten kinetics. 

Complex internalization and all degradation reactions are modeled to have first-order 

kinetics. The transcription and translation reactions are modeled as a single step, where 

the rate of protein formation is assumed to saturate hyperbolically with the concentration 



of active transcription factor. The state of the system is represented by the concentration 

of ActiveTF; high levels denote the on-state (committed state) and low levels denote the 

off-state (naïve state). 

2.2.6. Nondimensionalization and computation of the minimal model 

The dimensional and nondimensional forms of the minimal model, each consisting of 

four differential equations, are provided in Tables 2.7 and 2.8, respectively. The species 

present in the minimal model are ligand (L, time-invariant), receptor (R), complex (C), 

inactive transcription factor (ITF), and active transcription factor (ATF). The 

nondimensionalization was performed in a manner analogous to the EpoR/GATA-1 

model (Tables 2.9 and 2.10): 

 

The system of differential equations was solved analytically using Maple (Maplesoft, 

Waterloo, Canada) and the full solution for all reactants is given in Table 2.11. Bistability 

and bifurcation analyses were performed using MATLAB. The values of the kinetic 

parameters in this model are given in Table 2.12. 

Sensitivity analysis was performed for the reactants in the minimal model by 

perturbing all 16 parameters and obtaining the normalized steady-state sensitivities. The 

most sensitive parameters for each of the reactants are shown in Figure 2.5. Receptor (R) 

steady-state levels were primarily sensitive to its transcriptional rate (F2V7) and complex 

formation (k2). Complex (C) steady-state levels were most sensitive to receptor 

transcriptional rate (F2V7) and complex endocytosis (k3). Inactive Transcription factor 
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(ITF) levels were mainly sensitive to receptor transcription rate (F2V7), ITF transcription 

rate (F1V6), complex endocytosis (k3), and activation of ITF by complex (V4, K4).  Active 

transcription factor (ATF) steady-state levels were largely sensitive to its degradation (k9) 

and ITF transcription rate (F1V6). From this analysis, we observe that receptor and 

complex steady-state levels are sensitive only to feedback 2; ITF levels are sensitive to 

both feedback 1 and feedback 2; and, ATF levels are sensitive solely to feedback 1. 

 

2.3. Results 

2.3.1. Bistability and ultrasensitivity in the EpoR/GATA-1 network 

Stimulus/response plots have been used to predict bistability, hysteresis, and 

ultrasensitivity in molecular networks. The system is induced over a wide range of input 

stimuli and the corresponding responses are obtained after the system reaches steady 

state. The state of our EpoR/GATA-1 network is represented by the concentration of 

GATA-1*; high levels (obtained from both accumulation and activation of GATA-1) 

denote the on-state (committed state) and low levels denote the off-state (uncommitted 

state). In this simulation, Epo was considered to be the stimulus and the responses of 

important downstream effectors activated by the ensuing signals were analyzed. In Figure 

2.6, the steady-state values of the nondimensionalized reactants [RJD, C, App, GA] are 

plotted against the concentration of Epo normalized to its dissociation constant (Kd = 58 

pM72). When [Epo] = 0, the system is in the off-state, with RJD at its basal steady-state 

value of 0.45 and C, App, and GA all at zero, as there are no complexes. As the Epo 

concentration increases from 0, the steady-state value of the Epo receptor dimer 
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decreases (Figure 2.6A) as a result of complex formation (Figure 2.6B) and there is a 

subsequent marginal increase in App and GA (Figure 2.6C and 2.6D). As the 

concentration of Epo is further increased to 0.96Kd, the number of complexes formed 

increases, but this is still not sufficient to maintain the positive feedback loops and the 

system remains in the off-state. Only when the input stimulus exceeds 0.96Kd does the 

system switch to the on-state, as the complexes can then generate enough AKTpp for 

GATA-1* levels to exceed the threshold concentration needed to sustain the feedback 

loops. Therefore, the system exhibits ultrasensitivity for a small perturbation in the 

concentration of Epo about 0.96Kd. The on-state is accompanied by a large burst of 

GATA-1*, an event known to precede the accumulation of various erythroid specific 

genes. The system continues to remain in the on-state with further increase in Epo levels. 

 To explore whether this network can exhibit memory, the system was taken to the 

on-state by increasing the concentration of Epo to its Kd value. The stimulus was then 

reduced to 0.96Kd and the system was allowed to reach steady-state. It can be seen from 

the plots that the system remains in the on-state as the active positive feedback loops can 

sustain the system in the committed state. Thus, the downstream effectors in the system 

exhibit hysteresis with respect to cytokine stimulus. As the Epo concentration is further 

reduced from 0.96Kd to 0.008Kd, the steady-state value of RJD increases since less 

complexes are formed and, in turn, there is a reduction in the levels of App; nonetheless, 

the number of complexes is still sufficient to sustain the feedback loops and to maintain 

high levels of GATA-1*. As Epo levels are reduced below 0.008Kd, the system switches 

back to the off-state due to a lack of sufficient Epo-mediated signaling. When the system 

is in the committed state, removal of the stimulus below the threshold level does not 
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immediately bring the system back to the off-state, instead exhibiting bistability over a 

large range of stimulus concentration. This bistable expression of GATA-1* can reduce 

the sensitivity of the system to noise by necessitating a high Epo concentration to initially 

achieve the on-state and, thereafter, by providing marked robustness to the active state. 

Though the on-state is still maintained when the stimulus level is reduced approximately 

120-fold below the threshold concentration, further decreases in Epo concentration drive 

the system back to the off-state, suggesting that it is not completely irreversible. This is in 

accord with the phenotypic change observed after commitment during which the cell 

becomes increasingly independent of EpoR signaling and GATA-1 levels start to fall. 

The high expression of GATA-1 achieved by Epo induction at commitment can initiate 

chromatin rearrangements and expression of lineage specific genes, thereby ‘locking’ the 

cell in the mature state. The steady states plotted in Figure 2.6 are only the stable values; 

the unstable steady states are omitted, as they are not experimentally accessible. 

2.3.2. Pretreatment can change the threshold concentration of the stimulus 

The steady-state response plot of GA (Figure 2.6D) shows that the Epo concentration has 

to be greater than 0.96Kd for the system to be in the on-state. Is there a way to attain the 

on-state for values of Epo less than the threshold concentration? Given the memory 

implicit in this network, we hypothesized that transient pretreatment of cells with high 

concentrations of Epo should influence their commitment decision since the switch to the 

on-state is determined by the number of complexes needed to sustain the positive 

feedback loops. If the cell were pretreated with a high concentration of Epo for a fixed 

amount of time, it should still be possible to achieve the on-state even if the Epo 

concentration were then reduced to a level lower than the threshold concentration 
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(0.96Kd), since there would be an appropriate accumulation of multiple activated species 

during pretreatment. To test this using our model, the concentration of Epo during 

pretreatment was fixed at its Kd value and was then reduced to the value given on the x-

axis in Figure 2.7. The minimum pretreatment time required for the system to attain the 

on-state for a range of constant Epo concentrations lower than the threshold concentration 

is plotted in Figure 2.7. The corresponding plots of RJD, C, App, and GA requirements to 

achieve the on-state for lower Epo concentrations are similar and are given in Figure 2.8. 

For Epo concentrations greater than 0.96Kd, the threshold concentration, the cell does not 

require pretreatment for commitment. As the Epo concentration is reduced from 0.96Kd 

to 0.008Kd (a range that corresponds precisely to the bistable window in Figure 2.6), the 

pretreatment time required to accumulate sufficient GATA-1* to attain the on-state 

increases exponentially. Reducing the Epo concentration below 0.008Kd, does not bring 

the system to the on-state for any pretreatment time, as the system is in the monostable 

off-state below this Epo concentration (see Figure 2.6).  

2.3.3. Double positive feedback loops lead to robust bistability 

The EpoR/GATA-1 network consists of two positive feedback loops that coordinate to 

create a burst of GATA-1*, an event critical for erythrocyte commitment. The first 

feedback loop is the transcription of GATA1 by GATA-1*, which increases the 

concentration of inactive GATA-1 (substrate), and the second feedback loop is the 

transcription of EPOR by GATA-1*, which leads to an increase in the levels of AKTpp 

(enzyme) in the presence of Epo. Parameters F1 and F2 govern the maximum 

transcriptional rates of GATA1 and EPOR, respectively, and hence represent the strength 

of the GATA-1*/GATA-1 and GATA-1*/EpoR/AKTpp feedback loops, respectively. 
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The parameter-fitted values of F1 and F2 are 0.04 and 0.123, which correspond to a 

steady-state value of GA = 295 as seen in Figure 2.6D. In addition to other epigenetic 

factors, one possible explanation for the difference in the transcriptional rates of GATA1 

and EPOR could be the distinct mechanisms by which GATA-1 binds to its consensus 

sequence present in the promoter regions of these genes. It should be noted that the two 

positive feedback loops are interdependent (linked via the GATA-1 activation reaction; 

reaction with light gray background in Figure 2.1) and are necessary for the commitment 

decision to accumulate GATA-1*. When F1 = 0, the cell cannot make more inactive 

GATA-1, and can only activate the existing low levels of GATA-1, so the system stays in 

the off-state for any value of F2 > 0; similarly, when F2 = 0, the cell cannot make enough 

surface complexes to activate GATA-1 via AKTpp, so the system remains in the off-state 

for any physiologically reasonable value of F1 > 0. For very large values of F1, however, 

high levels of GATA-1* can be achieved, albeit in a manner that does not impart memory 

to the system (the stimulus/response plot in this case is hyperbolic and monostable 

everywhere). 

 Figure 2.9A shows a 3D plot of the steady-state value of GA as a function of F1 

and F2 when the Epo concentration is equal to its Kd. Changing the values of F1 and F2 

can switch the system from the off-state to the on-state as well as change the set point of 

the reactants – specifically GA – in the on-state. As seen from the plot; for F1 = 0, F2 > 0 

or F1 > 0, F2 = 0, the system is in the off-state. For the estimated value of F1 = 0.04, as we 

increase F2 from 0 the system remains in the off-state until F2 reaches 0.118. Any 

increase of F2 over 0.118 causes the system to switch to the on-state with a GA set point 

value of 295. Further increasing F2 does not change the value of GA and the system 
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remains in the on-state. For the estimated value of F2 = 0.123, as we increase F1 from 0 

the system remains in the off-state until F1 = 0.01, at which point the system switches to 

the on-state with a low GA set point value. As we further increase F1 to 0.04, the system 

stays in the on-state and increases the GA steady-state value to the estimated value of 

295. When F1 is increased beyond 0.04, the steady-state value of GA increases and 

saturates at an F1 value of 1.2. 

        A top view of the 3D plot is given in Figure 2.9B to address the effect of changes 

in F1 and F2 on the set point of GA in the on-state. In this phase diagram, the on-state is 

divided into two regions: F1-limiting, where an increase in F1 (but not F2) will increase 

the set point of GA in the on-state, and F2-limiting, where an increase in F2 (but not F1) 

will increase the set point of GA in the on-state. It can also be seen that the critical value 

of F2 above which the system attains the on-state slightly decreases as we increase F1 and 

the critical line eventually asymptotes at F2 = 0.05 for very high F1. The EpoR/GATA-1 

system is likely to always be F1-limited because of the extremely high GATA-1 levels 

required to be F2-limited.  

Figure 2.10 shows the steady-state response plots of GA for several values of F1 

and F2 (analogous to Figure 2.6D). In Figure 2.10A, F1 is kept constant at 1.8 and F2 

levels are varied between 0.15 and 2.00, to span both the F1 and F2-limiting regions (see 

Figure 2.9B). For F2 = 0.15, the threshold concentration of Epo needed to switch the 

system to the on-state is 0.85Kd. As F2 is increased, the threshold Epo concentration 

decreases and the system reaches the on-state for lower stimulus values. It can also be 

seen that the set point value of GA in the on-state is dependent on F2 only in the F2-

limiting region. The bistable window shown here is comprised of a constant and a 
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variable on-state GA set point region. The constant on-state GA region is at its maximum 

width in the F1-limiting region (F2 = 2.0) and decreases for F2 values closer to the F2-

limiting region (F2 = 0.40, 0.25). For F2 values in the F2-limiting region (F2 = 0.20, 0.15), 

the on-state GA set point varies throughout the bistable window and decreases as the Epo 

concentration is decreased. In Figure 2.10B, F2 is kept constant at 0.20 and F1 is varied 

from 0.1 and 2.0. Increasing F1 value does not change the threshold concentration of Epo 

needed to achieve the on-state; however it increases the set point of GA in the on-state. 

Similar to Figure 2.10A, the constant on-state GA region in the bistable window 

decreases when moving from an F1-limiting region to an F2-limiting region. 

2.3.4. Bistable expression of GATA-1* 

The steady-state response plot in Figure 2.6D shows the wide range of Epo 

concentrations in which GATA-1* exhibits bistable expression for the fitted F1 and F2 

values. To understand the influence of the two positive feedback loops in defining the 

bistable window, we plotted the monostable (either ON or OFF) and bistable (ON and 

OFF) GATA-1* regions as a function of Epo concentration and feedback strength. Here, 

the F1 and F2 values are chosen to cover both the F1- and F2-limiting regions as shown in 

Figure 2.9B. In Figure 2.11A, a log-log plot of F1 vs. [Epo]/Kd, with F2 constant (0.20), 

shows the regions of monostable and bistable expression of GATA-1*. At low F1 values, 

the system only achieves bistability for a narrow range of Epo concentrations. As we 

increase F1, the bistable window increases and remains constant for larger F1 values. The 

increase in the bistable window is only due to the decrease in the bistable-on to 

monostable-off transition concentration, as the bistable-off to monostable-on threshold 

concentration remains constant for all values of F1. This reveals that the Epo 
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concentration at which the system initially switches to the on-state is independent of F1. 

However, F1 governs the extent of memory in the system by changing the Epo 

concentration at which the system switches from the on-state to the off-state. Figure 

2.11B shows a semi-log plot of F2 vs. [Epo]/Kd, with F1 constant (1.8). For values of F2 

less than 0.08, the system remains in the off-state for all Epo concentrations. The system 

attains the on-state for higher F2 values and also exhibits bistability for a wide range of 

Epo concentrations. In contrast to Figure 2.11A, the bistable window in Figure 2.11B 

shifts as we increase F2 due to a substantial decrease in the bistable-on to monostable-off 

transition concentration as well as a smaller decrease in the bistable-off to monostable-on 

threshold concentration. This indicates that F2 plays a role in determining the Epo 

concentration at which the system reaches on-state as well as in governing the magnitude 

of memory in the system. 

 Since basal levels of inactive GATA-1 are low, the system needs both F1 (for 

accumulation of GATA-1) and F2 (for activation of GATA-1) to attain the on-state 

(accumulation of activated GATA-1). For systems having a high basal expression level of 

inactive transcription factor or lineage specific receptor (though neither is the case for the 

erythrocyte differentiation problem), it becomes relevant to examine how bistability may 

be achieved. Can such systems potentially attain the on-state* (activation, no 

accumulation) even if F1 = 0 or F2 = 0? We tested this using our EpoR/GATA-1 model, 

with F1 fixed at 0. Figure 2.11C shows the bistable expression of the active transcription 

factor in the absence of F1. For a given F2, the Epo concentration at which the system 

attains the on-state does not change when compared with Figure 2.11B, but the respective 

concentration at which the system switches back to the monostable off-state is increased 
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dramatically, thus narrowing the bistable window, or memory, in the system. A system 

which has feedback 1 (upregulation of GATA-1 by GATA-1*) but no feedback 2 

(upregulation of EpoR by GATA-1*) does not exhibit bistability for any value of F1, 

confirming the observation that autoregulating positive feedback loops without 

cooperativity do not show bistability in deterministic models; bistability in a system 

lacking feedback 2 can be recovered by incorporating the need for transcription factor 

dimerization for activation (data not shown). In summary, this shows that the bistability 

and ultrasensitivity achieved in the Epo-GATA-1 model were primarily due to the 

presence of feedback 2, and that feedback 1 only plays a role in increasing the extent of 

memory in the system. The values of F1 and F2 may also change during the differentiation 

process, thus dynamically modulating the robustness of the system, though this time-

dependence was not considered here. 

2.3.5. Construction of a generalized minimal model 

The EpoR/GATA-1 model exhibits ultrasensitivity and bistability for a wide range of 

Epo, F1, and F2 values. The structural aspects of the EpoR/GATA-1 model are the two 

linked positive feedback loops, receptor homodimerization, PI3K/AKT signaling 

pathway, double phosphorylation of AKT, and the transcription and translation steps. We 

systematically developed and tested various sub-models of the parent model to identify 

the dispensable steps and to obtain a generalized minimal model that still retains the 

ultrasensitivity and robust bistability of the parent model (data not shown). This analysis 

revealed that the two positive feedback loops were both necessary and sufficient for 

recapitulating the overall system behavior of the full EpoR/GATA-1 model. This reduced 

lineage-specific receptor/transcription factor model (Figure 2.4) includes only four time-
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dependent species: receptor (R), complex (C), and inactive (ITF) and active (ATF) 

transcription factor. This model was solved analytically and the exact solution for each of 

the four reactants was determined. The steady-state response plots for these reactants for 

selected values of F1 and F2 are given in Figure 2.12. The bistability plots of ATF (Figure 

2.13) in the minimal model closely mimic those in the EpoR/GATA-1 model (Figure 

2.11). 

2.3.6. Bifurcation analysis of the minimal model 

Unlike the EpoR/GATA-1 model, the minimal model can be solved analytically, which 

can prove useful in understanding the contributions of each of the two positive feedback 

loops to the overall behavior of the system. The solution curves of ATF are plotted 

against L (normalized to its Kd) for various values of F2 holding F1 constant at 20 as 

shown in Figure 2.14A. The solid lines and the dotted lines denote the stable and unstable 

roots, respectively. For low values of F2 (0.01), the system has only two real roots (one 

stable and one unstable) and is purely monostable for all ligand concentrations. As F2 

value is increased to 0.1, the expression of the ActiveTF becomes narrowly bistable, with 

the endpoints of this bistable window defined by two saddle-node bifurcations that appear 

to depend on F2 but not on F1 (see below). The degree of bistability increases 

dramatically as F2 is increased to 1 and then to 10. It can be seen that, for these F2 values, 

the solution curves intersect to form a transcritical bifurcation. The transcritical set point, 

which constrains the maximum theoretical value of ATF, seems to be independent of F2. 

The transcritical bifurcation also divides the bistable window into F1-limiting (right; 

constant on-state value) and F2-limiting regions (left; variable on-state value). For low F2 

values, the bistable region is completely F2-limited and as we increase F2, the bistable 
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region becomes increasingly F1-limited. Finally, it can also be observed that the threshold 

ligand concentration to achieve the on-state decreases as we increase the F2 value. 

 Figure 2.14B shows the bifurcation diagrams for ATF plotted against L by 

varying F1 and keeping F2 constant at 10. Unlike the previous case (Figure 2.14A), the 

system can achieve bistability over a narrow range of L by forming two saddle-node 

bifurcations even when F1 is zero. As we increase F1, the size of the bistable window and 

the on-state set point value both increase. At a critical value of F1 (here 4.3), the 

maximum bistable window is achieved, coincident with the appearance of an apparent 

subcritical pitchfork bifurcation at the lowest value of L at which the system is still 

bistable. At this F1 value, the set point of the ATF in the bistable region is completely F1-

limited. As F1 is increased beyond 4.3, the solution curves form a transcritical bifurcation 

similar to that seen in Figure 2.14A. As we further raise the value of F1 to 20 and then 

200, the value of L at which the transcritical bifurcation occurs shifts from low to high, 

making the bistable region increasingly F2-limited. This is in contrast to Figure 2.14A, 

where the transcritical bifurcation point moves from right to left and the bistable region 

becomes increasingly F1-limited as we increase F2. Importantly, increasing F1 augments 

the maximum on-state set point value of ATF but has no effect on the threshold ligand 

concentration necessary for achieving the on-state. 

 By comparing the bifurcation plots of ATF in Figure 2.14 with various plots of 

activated GATA-1 (Figure 2.6D, Figure 2.10, and Figure 2.11), the following conclusions 

can be deduced for the EpoR/GATA-1 system: the width of the bistable region and the 

range of GATA-1* values in the on-state can both depend on F1 (under F1-limited 

conditions) and/or F2 (under F2-limited conditions); the maximum GATA-1* value in the 
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on-state is determined by F1; the threshold Epo concentration at which the system 

switches to the on-state is dictated by F2; the maximum bistable window achievable is set 

by F2; and, the system requires an F2 value above a critical threshold in order to exhibit 

bistability. 

 

2.4. Discussion  

EpoR and GATA-1 are both essential for erythrocyte precursor commitment and 

differentiation, and we present here a deterministic model that bidirectionally links the 

lineage-specific receptor and transcription factor. Based on recent biochemical data, we 

chose the PI3K/AKT cascade as the signaling pathway that connects EpoR and GATA-1. 

The model accounts for basal expression of EpoR and GATA-1, Epo binding to EpoR to 

activate the PI3K/AKT pathway, activation of GATA-1 by phosphorylated AKT, positive 

autoregulation of GATA-1 expression by GATA-1*, and upregulation of EpoR 

expression by GATA-1*. 

In order to gain mechanistic insights into system behavior, we chose to focus on 

this small set of critical molecular effectors implicated in erythropoiesis. However, it 

should be noted that our explicitly modeled topology represents only a fraction of the full 

regulatory network and, therefore, inferring cell fate from the level of a single metric 

(e.g., GATA-1*) represents an approximation of a high-dimensional attractor55, 73. 

Signaling pathways that were excluded from the present model include 

JAK2/STAT5/BclXL, which provides anti-apoptotic signals during erythrocyte 

differentiation74, and Ras/MAPK, which is involved in cell survival75, cell-cycle 
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regulation76, and the degradation of DNA-bound GATA-177. Also, the JAK2/STAT5 

pathway activated by Epo can initiate a negative feedback loop on the PI3K/AKT 

pathway by activating SOCS proteins which can suppress Epo receptor signaling78, 79. 

Our model, despite neglecting these additional complexities, can nevertheless effectively 

capture the system dynamics observed experimentally (see Figure 2.2). 

 Through steady-state response plots (Figure 2.6) and bistability plots (Figure 

2.11), it was revealed that the EpoR/GATA-1 network can exhibit ultrasensitivity and 

bistability. Since these properties may play important roles in erythrocyte commitment, it 

was informative to probe the role of positive feedback in such a topology. As shown in 

Figure 2.14A, positive receptor feedback can ultrasensitize the system to ligand and can 

generate a considerable memory effect once the on-state is achieved. Other transcription 

factors (e.g., GATA-380) are believed to be intracellularly amplified through a classical 

autoregulatory positive feedback loop: synthesis of the new transcription factor is 

followed by dimerization (or higher order oligomerization) and the complex is then 

transcriptionally active. If this is sufficient for programming cell fate, why, then, might a 

transcription factor such as GATA-1 have evolved to upregulate a lineage-specific 

receptor as well?  

 The answer may lie in the different modes of activation. While the dimerization 

step closes the positive feedback loop for some transcription factors, experimental 

evidence suggests that GATA-1 binds DNA as a monomer81, 82 and shows no detectable 

DNA-binding ability before the addition of Epo. Thus, EpoR signaling may be necessary 

to close the GATA-1 autoregulatory loop by activating the transcription factor via AKT. 

By upregulating EpoR to increase its own activation, GATA-1 can effectively mimic the 
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molecular cooperativity of other transcription factors in generating robust network 

bistability without employing any cooperative reactions. (The importance of 

cooperativity in achieving bistability is restricted to the class of deterministic models 

discussed in the present work; it is indeed possible to achieve steep sigmoidal responses 

through nonidealities such as molecular crowding83, stochastic focusing84, and 

dimensionally-restricted reactions.)  

 Two unique elements of the EpoR/GATA-1 model should be highlighted.  First, 

by decoupling the synthesis and activation steps in the positive GATA-1 autoregulatory 

loop, a cell may be able to independently tune the switching threshold, the on-state 

expression level, and the extent of memory in the network by separately modulating F1 

and F2 (e.g., epigenetically). Second, there is an external checkpoint (Epo) that modulates 

this autoregulatory loop. This is attractive because it provides a novel and meaningful 

link between canonically extrinsic (cytokine) and intrinsic (transcription factor) signals in 

regulating not only cell survival but also maturation. 

 The strengths of the positive feedback loops are governed by the rates of 

transcription of GATA1 (F1) and EPOR (F2). The estimated values of F1 and F2 are 0.04 

and 0.123, respectively. The difference in the rates of transcription of EPOR 

(chromosome 19p13.2) and GATA1 (chromosome Xp11.23) may be due to the distinct 

binding mechanisms of GATA-1 to these promoters, dissimilarities in the ease of 

accession of the GATA-1 binding sites, and the recruitment of other cofactors that may 

regulate EPOR and GATA1 expression differently. GATA-1 also interacts with other 

factors, notably the ubiquitous transcription factor Sp1, erythroid restricted factor EKLF, 



 46

and friend of GATA-1 (FOG1) that may alter its transcriptional activity among the 

various GATA-1 regulated genes29.  

 Though treated as constants in our model, F1 and F2 may also change temporally 

during commitment and differentiation due to additional biophysical (e.g., chromatin 

remodeling) and biochemical (e.g., co-factor upregulation/downregulation) processes. 

Accordingly, the values of F1 and F2 may also vary substantially between primary cells 

and immortalized lines, and may even differ among cell lines, depending upon how far a 

cell line is from commitment towards the erythrocyte lineage, relative expression of 

GATA-1 cofactors, basal levels of EpoR and GATA-1 expression, and expression of 

antagonistic transcription factors driving other lineages. Cell-specific feedback strengths 

that differ significantly from those used in our models may serve to attenuate or amplify 

the actual effects on the network. 

 Finally, system-level properties such as bistability and ultrasensitivity that may be 

generally applicable to lineage commitment can be experimentally corroborated. 

Pretreatment of progenitor cells with ligand, as outlined in the Results (Figure 2.7), can 

be performed to show expected hystereses in transcription factor activation and lineage 

commitment. Additionally, the models elucidate how the steady-state response profiles of 

activated transcription factor can be influenced by F1 and F2, and these can be 

experimentally validated by using pharmacological inhibitors or RNA interference to 

exogenously manipulate the values of F1 and F2. While the results presented here are 

motivated by the EpoR/GATA-1 network and its critical role in erythropoiesis, it will be 

interesting to see whether similar topologies are uncovered in other cell systems which 

enable their hosts to make robust decisions in response to external stimuli. 



Figure 2.1 

 

Figure 2-1 EpoR-GATA1 model 
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Kinetic model of the EpoR/GATA-1 network implicated in erythrocyte progenitor commitment. 
EpoR and GATA-1 are present at low basal levels before the addition of Epo. Epo binds to EpoR 
homodimers (EpoRJD), thereby activating AKT through the PI3K/AKT pathway. Doubly 
phosphorylated AKT (AKTpp) activates GATA-1 directly and indirectly through covalent 
modifications (modeled here as a single step). GATA-1*, the activated form of the transcription 
factor, upregulates GATA-1 and EpoR gene expression by binding to GATA motifs present in the 
response elements of their corresponding genes. The core reaction of the model is the activation 
of GATA-1 by AKTpp and is highlighted with a light gray background. The reactants in the 
white boxes comprise one feedback process (with transcriptional strength F1), a synthesis loop 
that generates more inactive GATA-1 (substrate), and the species in the dark gray boxes represent 
a second feedback process (with transcriptional strength F2), an Epo-regulated loop that makes 
more AKTpp (enzyme). Both feedback loops provide inputs to the core reaction to form GATA-
1* (product). All reactants except Epo and JAK2 are time-variant. Reactions (1-6, 11, 20-21, 23, 
and 25-26), (7-10, 12-17, 22, and 24), and (18 and 19) are modeled with mass- action, Michaelis-
Menten, and rapid-equilibrium kinetics, respectively. The species names ending with mRNAc and 
mRNAn denote cytoplasmic and nuclear mRNA, respectively. Double-headed  and single-
headed  solid arrows indicate reversible and irreversible reactions respectively. Dashed  
arrows specify irreversible reactions (transcription, translation) in which reactants are not 
consumed. *, p, and pp denote the activated, singly phosphorylated, and doubly phosphorylated 
forms of species. All reactions going to null denote first-order degradation processes. The values 
of the rate constants shown in the figure are given in Table 2.5. 

http://upload.wikimedia.org/wikipedia/en/3/34/U%2B2194.gif�
http://upload.wikimedia.org/wikipedia/en/a/a9/U%2B21E2.gif�


Figure 2.2 

 

Figure 2-2 Comparison of the EpoR/GATA-1 model with experimental data 
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(A) GATA-1* time course plot generated from the EpoR/GATA-1 model is fitted to the 
experimental data to obtain the unknown kinetic parameters. (B & C) Relative EpoR and GATA-
1 mRNA plots obtained after parameter estimation are compared with microarray data during 
CD34+ progenitor differentiation. (D) Characterized stages of red blood cell development during 
terminal differentiation are drawn to scale using the x-axis in plots A, B, and C.  The 
EpoR/GATA-1 model is relevant only for erythrocyte commitment (CFU-E to Baso EB) and does 
not cover the latter stages of differentiation (from Poly EB (grayed out)) 



Figure 2.3 

 

Figure 2-3 Parameter sensitivity analysis 

(A) Epo receptor dimer [RJD]. (B) Epo-Epo receptor complex [C]. (C) Activated AKT [App]. 
(D) Activated GATA-1 [GA]. 
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Figure 2.4 

 

Figure 2-4 Generalized minimal model for lineage commitment 

Receptor and Inactive Transcription Factor (InactiveTF) are present at basal levels before the 
addition of ligand. Ligand binds to Receptor to form Complex and activates InactiveTF to form 
Active Transcription Factor (ActiveTF). ActiveTF upregulates the levels of InactiveTF and 
Receptor through two positive feedback loops. Reactions (1-3, 8, and 9), (4 and 5), and (6 and 7) 
are modeled with mass-action, Michaelis-Menten, and rapid-equilibrium kinetics, respectively. 
Double-headed  and single- headed  solid arrows indicate reversible and irreversible 
reactions, respectively. Dashed  arrows specify irreversible transcriptional activation and 
translation reactions (modeled as a single step). All reactants except ligand are time variant. All 
reactions going to null denote first-order degradation processes. The values of the rate constants 
shown in the figure are given in Table 2.12. (inset) A further simplified schematic of the minimal 
model highlighting the two feedback loops. L, R, ITF, and ATF denote the nondimensional forms 
of Ligand, Receptor, InactiveTF, and ActiveTF. Basally expressed R converts basally expressed 
ITF to ATF only in the presence of L. ATF upregulates itself by inducing the expression of both 
ITF (with transcriptional strength F1) and R (with transcriptional strength F2).  It should be noted 
that positive feedback to ITF is intrinsically regulated, whereas positive feedback via R (to 
activate ITF) is dependent on the external stimulus L. 
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Figure 2.5 

 

Figure 2-5 Normalized steady-state sensitivities of the reactants in the minimal model 
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Figure 2.6 

 

Figure 2-6 Nondimensionalized steady-state response plots 

(A) Epo receptor dimer [RJD]. (B) Epo-Epo receptor complex [C]. (C) Activated AKT [App]. 
(D) Activated GATA-1 [GA]. The stimulus, Epo, is normalized to its Kd value and each 
downstream effector is normalized to the total concentration of its respective basal inactive form. 
The plots show that, for the fitted values of F1 (0.04) and F2 (0.123), the system is ultrasensitive to 
Epo and exhibits bistability for a wide range of Epo concentrations (0.008Kd to 0.96Kd). 
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Figure 2.7 

 

Figure 2-7 Pretreatment time plot 

Minimum pretreatment time required for the system to attain the on-state for a range of Epo 
values lower than the threshold concentration (0.96Kd). Epo is normalized to its Kd. The 
pretreatment concentration of Epo is kept at its Kd value and is thereafter reduced to the value 
given on the x-axis. The plot suggests that for Epo concentrations greater than 0.96Kd, the cell 
should not require pretreatment and, for values less than the threshold concentration, the 
pretreatment time increases dramatically with decreases in Epo concentration. For Epo values less 
than 0.008Kd, the system will always remain in the monostable off-state for any pretreatment time 
(cf. Figure 2.6). 
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Figure 2.8 

 

Figure 2-8 Minimum reactant concentration plot 

Nondimensional minimum initial effector concentrations required for the system to achieve the 
on-state for a range of Epo concentrations lower than the threshold concentration (0.96Kd). Epo is 
normalized to its Kd value. (A) Epo receptor dimer [RJD]. (B) Epo-Epo receptor complex [C]. (C) 
Activated AKT [App]. (D) Activated GATA-1 [GA]. 
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Figure 2.9 

 

Figure 2-9 Effect of the two positive feedback loops on the on-state GA value 

(A) Steady-state GA values as a function of F1 and F2; Epo is kept at its Kd value. For the 
estimated values of F1 (0.04) and F2 (0.123), the system is strongly F1-limited. (B) Corresponding 
phase diagram of the 3D plot showing the off-state region, the F1-limited on-state, and the F2-
limited on-state. Increasing the values of F1 and F2 increases the on-state set point of GA in the 
F1-limited and F2-limited regions, respectively. The EpoR/GATA-1 system is likely to behave as 
an F1-limited system due the high GA values required to be F2 limiting. 
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Figure 2.10 

 

Figure 2-10 Steady-state response plots of GA for various values of F1 and F2 

Steady-state response plots of GA for various values of F1 and F2, spanning both the F1- and F2-
limiting regions. (A) Changing F2 keeping F1 constant at 1.8. (B) Changing F1 keeping F2 
constant at 0.20. 
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Figure 2.11 

 

Figure 2-11 Bistable expression of GATA-1* 
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(A) A log-log plot showing the change in the bistable expression of GATA-1* for varying F1 (F2 
= 0.20). The threshold Epo concentration needed to achieve the on-state appears to be 
independent of F1. The maximum bistable window achievable is dependent on F2; however, the 
width of the bistable window is F1-dependent for lower F1 values. (B) A semi-log plot showing 
the bistable expression of GATA-1* for changing F2 values (F1 = 1.8). There appears to be a 
threshold F2 value below which the system is purely monostable. Increasing F2 increases the 
width of the bistable window and, to a lesser extent, decreases the threshold Epo concentration 
required to reach the on-state. (C) Narrow bistable expression of GATA-1* for various F2 values 
when F1 = 0. The ON* state denotes an on-state due to activation but no accumulation. This state 
would not commit a cell to differentiate due to low basal levels of GATA-1. When F2 = 0, the 
system is monostable for any F1 value (e.g., the x-axis in Figure 2.11B). 



Figure 2.12 

 

Figure 2-12 Nondimensionalized steady-state response plots for the minimal model 

Nondimensionalized steady-state response plots showing both the stable (solid) and unstable 
(dotted) roots of the reactants in the minimal model: (A) Receptor [R]. (B) Complex [C]. (C) 
Inactive Transcription Factor [ITF]. (D) Active Transcription Factor [ATF]. The 
nondimensionalized stimulus, L, is the ligand concentration divided by its Kd value and each 
downstream effector is normalized to the total concentration of its respective basal inactive form. 

 

 60



Figure 2.13 

 

Figure 2-13 Bistability plots of ActiveTF 
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(A) A log-log plot showing the change in the bistable expression of ActiveTF for varying F1 (F2 = 
10). (B) A log-log plot showing the bistable expression of ActiveTF for varying F2 (F1 = 20). (C) 
Bistable expression of ActiveTF for various F2 values when F1 = 0. The ON* state denotes an on-
state due to activation but no accumulation. This state would not commit a cell to differentiate 
due to low basal levels of InactiveTF. When F2 = 0, the system is monostable for any F1 value 
(not shown). 



Figure 2.14 

 

Figure 2-14 Bifurcation analysis for the minimal model 
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(A) Solution curves obtained from the analytical solution of nondimensionalized Active 
Transcription Factor (ATF) are plotted against ligand concentration normalized to its Kd (L) by 
varying F2 (0.01, 0.1, 1, and 10); F1 is held constant at 20. The solid lines and the dotted lines 
denote the stable and unstable roots respectively. For low F2 values, the system is purely 
monostable. As we increase F2, two saddle-node bifurcations emerge and they determine the 
width of the bistable window and the threshold ligand concentration necessary to reach the on-
state. As we further increase F2, the solution curves intersect to form a transcritical bifurcation. 
The saddle-node set points and the transcritical set point (maximum achievable on-state value) 
are F2- and F1-dependent, respectively. (B) F1 is varied (0, 4.3, 20, and 200); F2 is held constant at 
10. The system can achieve bistable expression of ATF even when F1 = 0. As we increase F1, the 
bistable window increases and reaches a maximum width, which is determined only by the F2 
value. Increasing F1 further increases the on-state set point value of ATF but has no effect on the 
threshold ligand concentration required to reach the on-state. 

 

 



Table 2.1 

Table 2-1 Rate equations for EpoR/GATA-1 erythrocyte commitment model 
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Table 2.2 

Table 2-2 Nondimensional rate equations for EpoR/GATA-1 model 
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Table 2.3 

Table 2-3 Nondimensional parameters for EpoR/GATA-1 model 
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Table 2.4 

Table 2-4 Nondimensional ratios and initial conditions of the reactants  
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Table 2.5 

Table 2-5 Values of the kinetic parameters in the EpoR/GATA-1 model 

Michaelis-Menten constants (K7 – K10, K12 – K19) are given in nM; V7, V9, and V16 are given in s-

1; V8, V10, V12 – V15, V17 – V19 are given in nM/s. First- and second-order rate constants are given 
in s-1 and nM-1s-1 respectively. Numbers in brackets denote the values given in the literature 

 

1.   Yamada, S., S. Shiono, A. Joo and A. Yoshimura. 2003. Control mechanism of JAK/STAT signal 
transduction pathway. FEBS Lett. 534:190-196. 

2.   Lu, X., A.W. Gross and H.F. Lodish. 2006. Active conformation of the erythropoietin receptor: 
Random and cysteine-scanning mutagenesis of the extracellular juxtamembrane and transmembrane 
domains. J. Biol. Chem. 281:7002-7011. 

3.   Sarkar, C.A. and D.A. Lauffenburger. 2003. Cell-level pharmacokinetic model of granulocyte colony-
stimulating factor: Implications for ligand lifetime and potency in vivo. Mol. Pharmacol. 63:147-158. 

4.   Gross, A. W. and H.F. Lodish. 2006. Cellular trafficking and degradation of erythropoietin and novel 
erythropoiesis stimulating protein (NESP). J. Biol. Chem. 281:2024-2032. 

5.   Koh, G., H.F. Teong, M.V. Clement, D. Hsu and P.S. Thiagarajan. 2006. A decompositional approach 
to parameter estimation in pathway modeling: A case study of the akt and MAPK pathways and their 
crosstalk. Bioinformatics. 22:e271-80. 

6.   Hatakeyama, M., S. Kimura, T. Naka, T. Kawasaki, N. Yumoto, M. Ichikawa, J.H. Kim, K. Saito, M. 
Saeki, M. Shirouzu, S. Yokoyama and A. Konagaya. 2003. A computational model on the modulation 
of mitogen-activated protein kinase (MAPK) and akt pathways in heregulin-induced ErbB signalling. 
Biochem. J. 373:451-463. 

7.   Biondi, R.M., P.C. Cheung, A. Casamayor, M. Deak, R.A. Currie and D.R. Alessi. 2000. Identification 
of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. 
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 69



Table 2.6 

Table 2-6 Initial concentrations of the reactants before Epo addition 
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Table 2.7 

Table 2-7 Rate equations for the minimal model 
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Table 2.8 

Table 2-8 Nondimensional rate equations for the minimal model 
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Table 2.9 

Table 2-9 Nondimensional parameters for the minimal model 
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Table 2.10 

Table 2-10 Nondimensional ratios and initial conditions for the minimal model 
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Table 2.11 

Table 2-11 Exact solution of the minimal model 
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Table 2.12 

Table 2-12 Values of the kinetic parameters mentioned in the minimal model 
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Chapter 3 

Heterogeneity in the expression of EpoR and GATA1 is 

positively correlated during erythropoiesis 

 

3.1. Introduction 

Cell differentiation is the process during which a progenitor cell commits towards a 

particular lineage and remodels its transcriptome towards that lineage-restricted state. 

The process of lineage-commitment is believed to precede the drastic phenotype change 

during differentiation. During commitment, the progenitor cell makes a fate-decision 

between proliferation and one of the several available differentiation states.  

Lineage-specific cytokines and transcription factors are shown to be absolutely 

necessary to robustly reach mature cell states1-7. Cytokines are cell-extrinsic factors that 

bind to their cognate receptors on the progenitor cell surface and promote signals that 

help in the survival, proliferation and differentiation towards a specific lineage. Lineage-

specific transcription factors are cell-intrinsic factors that transcriptionally regulate most 

of the lineage-specific genes. It has been heavily debated whether the cell-fate 

commitment in hematopoiesis is an instructive or a stochastic process1, 8, 9. According to 
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the instructive theory, external cues such as cytokines regulate the process of cell 

commitment and bias the progenitor cell to a specific lineage, whereas the stochastic 

theory suggests that each progenitor cell has been pre-committed by the differential 

expression of lineage-specific transcription factors and cytokines merely provide survival 

and proliferation signals during differentiation. Recent groundbreaking studies using 

single-cell imaging techniques have unambiguously shown that cytokines can instruct 

cells during differentiation10. However, the extent of this instruction and the topological 

links between lineage-specific cytokine receptor signaling and lineage-specific 

transcription factor upregulation are still unclear. 

Progenitor cells tend to express low levels of all of the receptors and transcription 

factors that are specific to the various lineages to which they can potentially commit, a 

process known as transcriptional priming11. During differentiation, a specific 

transcription factor gets upregulated and, through cross-antagonism, downregulates other 

lineage-specific transcription factors2. Due to this, the heterogeneity in the expression of 

the transcription factors is shown to be directly correlated with their lineage choices3.  

However, correlations between lineage-specific receptor expression and the 

corresponding transcription factor or lineage specification have not been studied. Here, 

we study these previously unexplored correlations using erythropoiesis as a model 

system. 

Erythropoietin (Epo) is a cytokine that binds to the Epo receptor (EpoR) present 

on erythroid progenitor cells and provides signals of survival, proliferation and 

commitment towards erythropoiesis12-14. Of the several erythroid-specific transcription 

factors, GATA1 is believed to be the master regulator of erythropoiesis as it binds to 
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response elements upstream of most of the enzymes necessary for hemoglobin synthesis 

and upregulates their expression15-17. Previous studies have shown that GATA1 can 

autoregulate its own transcription as well as regulate the transcription of EpoR18-24. Also, 

recent biochemical evidence shows that EpoR signaling can directly result in post-

transcriptional modification of GATA1 (acetylation and/or phosphorylation) and enhance 

its DNA binding and transactivation capabilities25-32.  

Based upon these experimental observations, we previously developed a minimal 

model to analyze the topological connections between GATA1 and EpoR33. The minimal 

topology for accumulation of active GATA1 contains two positive feedback loops: an 

autofeedback loop that produces inactive GATA1 and an Epo-dependent, EpoR-mediated 

feedback loop that activates GATA1 (Figure 3.1). Dynamical systems modeling of this 

topology suggests that the presence of these two feedback loops can not only offer a 

direct positive correlation in the upregulation of GATA1 and EpoR, but can also provide 

cellular memory with respect to external cues, thereby establishing robustness in lineage 

commitment during differentiation. 

In this study, using an erythrocyte progenitor cell line, we experimentally 

demonstrate that hemoglobin synthesis is highly switch-like in response to Epo and cells 

undergoing lineage commitment possess memory of earlier Epo signals. We show that 

total GATA1 and cell-surface EpoR are indeed co-upregulated and follow a synchronous 

expression pattern during differentiation, confirming the presence of autofeedback and 

receptor-mediated positive feedback loops, respectively. Our results also show that the 

heterogeneity in EpoR expression during early-stage lineage commitment is positively 

correlated with GATA1 expression, reinforcing the topological connection between 
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lineage-specific receptor and transcription factor even in the presence of significant noise. 

Moreover, due to this positive association and its consequent effect on cell phenotype, we 

show that differential expression of EpoR in progenitor cells can be a marker for 

erythrocyte commitment, with cells expressing high levels of EpoR having significantly 

accelerated kinetics of differentiation. Our study highlights the interplay between cell-

extrinsic and cell-intrinsic factors in determining lineage commitment. These findings 

may be of general applicability to other lineage-specific receptor and transcription-factor 

pairs during differentiation, particularly in hematopoiesis. 

 

3.2. Materials and Methods 

3.2.1. Cell culture 

UT-7/GM cells were kindly provided by Dr. Norio Komatsu (Juntendo University School 

of Medicine) and Dr. Kenneth Kaushansky (University of California, San Diego). 

Recombinant human GM-CSF was purchased from Peprotech. UT-7/GM cells were 

maintained in Iscove’s modified Dulbecco’s medium (IMDM, Invitrogen) supplemented 

with 10% fetal bovine serum (FBS, HyClone) and 1 ng/ml GM-CSF. Cell viability was 

quantified through Trypan blue (Mediatech) dye exclusion, observed under light 

microscope (10x magnification). 
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3.2.2. Erythroid differentiation 

Recombinant human erythropoietin (Epo) was purchased from AppliChem. To induce 

erythroid differentiation, UT-7/GM cells were growth factor starved for 16 hours and 

then cultured in IMDM containing 10% FBS and 1U/ml Epo. 

3.2.3. Dianisidine staining 

Hemoglobin positive cells were identified by incubating cells in serum-free IMDM 

medium containing 0.2% 3,3’-dimethoxybenzidine, fast blue B (dianisidine, Sigma), 

0.3% acetic acid and 0.3% hydrogen peroxide for 20 minutes at room temperature. Cells 

were observed under light microscope (40x magnification) and the cells that stained dark 

blue were marked positive for hemoglobin. 

3.2.4. Analysis of surface EpoR expression by immunofluorescence 

Approximately 1x105 cells were extracted from culture and centrifuged to remove the 

medium. Cells were then washed twice with 1xPBS containing 0.5% bovine serum 

albumin (PBS-B). Cells were resuspended in 30 μl of PBS-B and incubated with 1 μg of 

human IgG antibody (R&D Systems) for 15 minutes at room temperature. Monoclonal 

anti-human EpoR antibody conjugated with phycoerythrin (150 ng) was added to the 

sample and incubated at 4°C for 45 minutes. Cells were then washed again with PBS-B 

and resuspended in 200 μl of PBS-B. The cells were then analyzed for EpoR expression 

using a Guava Flow Cytometer. 
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3.2.5. Analysis of GATA1 expression by western blotting 

Approximately 1x107 cells were extracted and centrifuged to remove culture media. Cells 

were then washed with 1xPBS and incubated in 500 μl lysis buffer (Invitrogen) 

supplemented with PMSF, protease inhibitors (Sigma) and phosphatase inhibitors 

(Sigma) for 30 minutes at 4°C. The samples were centrifuged at 13000 g for 15 minutes 

at 4°C. Total protein concentrations in the samples were estimated by BCA protein assay 

(Pierce) according to the manufacturer’s instructions. After the addition of 4x reducing 

agent (Invitrogen) and 10x sample buffer (Invitrogen), 20 μg of protein sample was 

boiled at 95°C for 5 minutes, separated by SDS-polyacrylamide gel electrophoresis (160 

volts, 95 minutes, 4°C), transferred onto nitrocellulose membrane (30 volts, 60 minutes, 

4°C) and blocked with Odyssey blocking buffer (LI-COR, 60 minutes, room 

temperature). The membrane was incubated with rat monoclonal GATA-1 (N6) antibody 

from Santa Cruz (sc-265, dilution 1:1000) and then washed five times with 1xPBS 

containing 0.2% Tween-20 (Bio-Rad). Lastly, the membrane was treated with rabbit anti-

rat IRdye-800 antibody from Rockland Immunochemicals (612-431-026, dilution 

1:15000) for 45 minutes at room temperature. The protein signals were detected using a 

LI-COR infrared imager and GATA1 bands were quantified with the analysis software 

provided by the manufacturer.  

3.2.6. Cell sorting based on surface EpoR expression 

Approximately 3x107 cells were extracted from culture, centrifuged to remove medium 

and washed with PBS-B. Cells were incubated with monoclonal anti-human EpoR 

antibody conjugated with phycoerythrin and prepared for sorting as described in the 
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section 3.2.4. The EpoR-antibody bound cells were resuspended in PBS-B and sorted for 

EpoR expression in a Becton Dickinson Digital Vantage cell sorter. EpoR (low, med, 

high) cells were classified as being the bottom, middle and top 5% of the unsorted cells, 

respectively. The sorted cells were either re-cultured for differentiation experiments or 

lysed to extract proteins for GATA1 western blot experiments.  

 

3.3. Results and Discussion 

3.3.1. Epo-induced lineage commitment and differentiation 

UT-7/GM cells, which are derived from a parental human megakaryoblastic leukemia 

cell line (UT-7), have been previously shown to be a successful model system to study 

erythrocyte differentiation34, 35. UT-7/GM is a growth factor dependent cell line and 

requires granulocyte-macrophage colony stimulating factor (GM-CSF) for its survival 

and proliferation36. The cells remain undifferentiated in the presence of GM-CSF and 

erythrocyte differentiation can be induced by replacing GM-CSF with Epo. The 

differentiation process closely mirrors that of other human erythrocyte progenitor model 

systems. One reason that the dynamics of receptor and transcription factor upregulation 

may have been overlooked to date is that a large number of studies have been performed 

in mouse models that possess fast differentiation kinetics (~ 2 days). By contrast, human 

UT-7/GM cells require two weeks in culture with 1U/ml Epo to reach their differentiation 

maximum (as assessed by hemoglobin staining). Figure 3.2A shows UT-7/GM cells 

grown in GM-CSF (left panel) and Epo (right panel) for 14 days and stained with 

dianisidine, a dye that indicates the presence of hemoglobin (dark blue spots). As seen in 
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this figure, Epo-induced cells show hemoglobin synthesis compared to the uninduced 

cells. 

We performed an Epo-dose response experiment to study the relationship between 

Epo induction and hemoglobin production (Figure 3.2B).  UT-7/GM cells cultured in 

GM-CSF were growth-factor starved for 16 hours, and then cultured in media containing 

different concentrations of Epo. The cells were stained with dianisidine, after 14 days of 

culture with Epo, to determine the percentage of hemoglobin positive cells. The plot 

shows an ultrasensitive, or switch-like, response, where a 10-fold increase in Epo level 

(from 0.001U to 0.01U) switches most of the undifferentiated cells to the differentiated 

state. This response is much steeper than a graded, hyperbolic response, which requires 

an 81-fold increase in stimulus to attain a change in response from 10% to 90%. 

Increasing the stimulus over 0.01U did not show significant improvement in 

differentiation efficiency. This switch-like response is also consistent with the presence 

of positive feedback loops in the differentiation circuitry.  

 We quantified the percentage of differentiated cells at different time points during 

the two-week period with Epo-induction (1U, 0.01U, 0.001U) (Figure 3.2C). The plot 

suggests that for Epo concentrations of 1U and 0.01U, the cells remained mostly 

undifferentiated for the first 4 days and then showed a linear increase in differentiation 

efficiency from day 4 to day 10. This is particular interesting when we compare these 

results to the cell viability data for the same time points during differentiation (Figure 

3.2D). The profile shows an initial decrease in cell viability, possibly due to the selection 

of cells expressing a minimum threshold level of EpoR since Epo signaling is absolutely 

necessary for cell survival. The cells appear to recover by day 4, suggesting that lineage-
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selection and differentiation are independent events, with selection precedes 

differentiation. Compared to cultures with 1U Epo, cultures with 0.01U Epo show 

decreased viability during initial selection as well as a lower percentage of hemoglobin- 

positive cells. Cells cultured at 0.001U show a marked decrease in viability during the 

initial selection and fail to recover. Due to the poor viability, these cultures showed a 

significantly lower percentage of differentiated cells during the two-week period. 

 There seems to be a threshold concentration of Epo (0.01U higher bound) 

necessary to achieve differentiation of large percentage of cells (approximately 75%). 

Since lineage commitment should occur during the initial stages of differentiation, we 

devised an experiment to pretreat the cells with a high concentration of Epo (0.01U for 3 

or 6 days) and then reduce the Epo concentration to a sub-threshold level for the 

remainder of the differentiation period. Pretreated cells achieved a significantly higher 

percentage of differentiation when compared to control cells grown at 0.001U Epo 

(Figure 3.2E). Cells pretreated for 6 days differentiated better than the 3 day pretreated 

cells, but their efficiency was significantly lower than the culture grown at 0.01U. The 

corresponding cell viability assay showed that pretreated cells achieved a greater 

percentage viability compared to the control cells grown at 0.001U. This experiment 

suggests that the initial pretreatment commits cells towards differentiation and that 

lowering of Epo concentration did not affect a large percentage of the committed cells as 

they retained the memory of high Epo concentration and continued to differentiate. 

3.3.2. Synchronous upregulation of GATA1 and EpoR during differentiation 

The memory seen during lineage commitment as well as the existence of a switch-like 

response (from section 3.3.1) can be due to the presence of the two positive feedback 
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loops between GATA1 and EpoR, induced by Epo. It is well recognized that lineage-

specific transcription factor expression gets upregulated during differentiation due to the 

need to upregulate all lineage-specific genes and to downregulate other lineage-specific 

transcription factors. We confirmed the presence of the autofeedback look by showing 

the upregulation of total GATA1 during Epo-induced differentiation of UT-7/GM cells 

through quantitative western blots (Figure 3.3A). We also quantified cell-surface EpoR 

levels from viable cells during differentiation by flow cytometry (Figure 3.3B).  EpoR 

levels were expected to decrease with Epo-induction since Epo/EpoR complex 

endocytosis is much faster than EpoR constitutive endocytosis. Indeed, we noticed an 

initial decrease in EpoR expression in the first few hours after Epo induction and the 

receptor levels quickly reached steady state (data not shown); however, after 24 hours, 

the EpoR levels slowly began to climb and, by day 8, reached a maximum of 

approximately 12-fold that of the initial steady-state. This shows that EpoR is 

significantly upregulated, confirming the presence of an Epo-induced positive feedback 

loop through the receptor during differentiation. This result is interesting, because as seen 

from the viability plot (Figure 3.2D), the initial selection happens in the first few days of 

differentiation, when the EpoR levels are still low. After selection, the cells should 

express enough EpoR to provide survival signals and do not have the need to increase 

EpoR expression; hence, the upregulation of EpoR should be an event necessary for 

commitment rather than selection.  
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3.3.3. Heterogeneity in EpoR and GATA1 expression is positively correlated in 

differentiating cells 

After establishing the presence of the two positive feedback loops during Epo-induced 

differentiation, we wanted to analyze whether EpoR and GATA1 expression are 

correlated during differentiation. UT-7/GM cells were induced with Epo and the 

heterogeneity in EpoR levels in viable cells was measured by flow cytometry (Figure 

3.4A). Histograms show significant broadening on day 2 when compared with the day-0, 

day-4 or day-7 populations. This deviation from unimodal distribution in EpoR 

expression seems to be driven by Epo and possibly through the two positive feedback 

loops that regulate GATA1 and EpoR. 

In section 3.3.2, the average expression levels of EpoR and GATA1 were shown 

to be positively correlated by synchronous upregulation during differentiation. We 

wanted to further analyze whether this correlation existed even within subpopulations of 

the same culture on day 2, when a broadening of the EpoR expression histogram was 

observed (Figure 3.4A). Cells cultured with Epo for two days were sorted into three 

different populations based on the surface EpoR levels – EpoRlow, bottom 5%; EpoRmed, 

middle 5%; and EpoRhigh, top 5% of the unsorted cells (Figure 3.4B). The sorted 

populations were lysed and the total GATA1 level in each of the populations was 

determined through quantitative western blotting. As seen in Figure 3.4C, the sorted 

fractions also showed a positive correlation between EpoR and GATA1. This suggests 

that EpoR and GATA1 may be part of the same biochemical network, as the change in 

GATA1 levels due to the heterogeneity in its expression reflects on EpoR expression. 

This shows that cell-intrinsic noise can be transferred to cell-extrinsic components and, 
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conversely and perhaps more importantly, extrinsic factors can potentially regulate or 

bias intrinsic factors during lineage commitment. 

3.3.4. Differential expression of EpoR as a marker for erythrocyte progenitor 

commitment 

Erythroid progenitors that have committed to differentiate with Epo induction start to 

express hemoglobin-synthesizing genes. Synthesis of hemoglobin seems to be preceded 

by the upregulation of GATA1 and EpoR. Since EpoR and GATA1 expression are 

correlated as shown in Figures 3.3 and 3.4, selecting progenitor cells based on differential 

EpoR levels should alter the kinetics of commitment. We sorted day 2 Epo-induced cells 

into EpoRlow, EpoRmed and EpoRhigh populations as in section 3.3.3. The sorted 

populations were immediately transferred to Epo-containing media to continue the 

differentiation program. The surface EpoR level in all three populations was quantified 

on day 4 and day 7 and compared to the unsorted population (Figure 3.5A). EpoRlow cells 

could not be propagated, likely due to insufficient EpoR signaling for survival. 

Comparison of EpoR levels revealed no significant change in the mean between the 

unsorted population and the EpoRmed population, whereas the receptor expression level in 

the EpoRhigh population was significantly higher than in the other two samples. From the 

dianisidine assay, EpoRhigh and EpoRmed populations showed approximately 4.0-fold and 

2.5-fold increases in positive cells, respectively, compared to the unsorted population on 

day 4 (Figure 3.5B). On day 7, EpoRhigh and EpoRmed populations showed approximately 

2.0-fold and 1.6-fold increase in positive cells, respectively, compared to the unsorted 

population (Figure 3.5B). This result suggests that progenitor cells expressing high levels 

of EpoR are intrinsically primed towards erythrocyte commitment and possess enhanced 
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kinetics of differentiation. Hence, due to the positive correlation between GATA1 and 

EpoR, differential expression of EpoR in progenitor cells can serve as a marker for 

sorting and recovering erythrocyte-committed cells. 



Figure 3.1 

 

Figure 3-1 Positive feedback loops connecting EpoR and GATA1 

A model showing the topological connections between EpoR and GATA1: Epo binds to EpoR to 
activate signaling pathways that can post-transcriptionally activate GATA1. GATA1 can 
upregulate its own inactive form through an autofeedback loops as well as upregulate the 
expression of EpoR, thereby enhancing its own activation. The autofeedback loop is intrinsically 
regulated, whereas Epo extrinsically regulates the receptor-mediated feedback loop. 
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Figure 3.2 

 

Figure 3-2 Epo-induced differentiation of UT-7/GM cells 
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(A) Dianisidine staining: Control cells growing in GM-CSF showing no synthesis of hemoglobin 
(left panel), Cells induced with Epo (1U/ml) for 14 days showing the presence of hemoglobin 
through the dark spots (right panel). (B) Epo dose response curve: Cells were growth factor 
starved and treated with different concentrations of Epo and stained with dianisidine after 14 
days. Percentage of dianisidine positive cells (presence of hemoglobin) is plotted against Epo 
concentration. The plot shows an ultrasensitive, or switch-like, response in differentiation to Epo 
concentration. (C) Kinetic of differentiation: Cells were growth factor starved and treated with 
1U/ml, 0.01U/ml and 0.001U/ml of Epo and the percentage of dianisidine positive cells were 
quantified at different time points during the differentiation period. High percentage of cells with 
Epo 1U/ml and 0.01 U/ml differentiated by day 13, whereas cells grown with Epo 0.001 U/ml 
remained largely undifferentiated. (D) Cell viability during differentiation: During the 
differentiation kinetics experiment in C, differentiating cells were also checked for percentage 
viability through Trypan blue dye exclusion assay. Cell viability decreases sharply in the first two 
days (~75% for Epo 1U/ml and ~65% for Epo 0.01U/ml) and then recovers to initial levels 
(~95%). Cells grown with Epo 0.001 U/ml showed sustained decrease in viability and did not 
recover. (E) Pretreatment experiment: Cells were grown with Epo 0.01 U/ml for 3 or 6 days and 
then switched to 0.001 U/ml Epo. Cells grown all through with 0.01 or 0.001 U/ml of Epo are 
shown as controls. (F) Cell viability during the pretreatment assay: For the data point in E, cells 
were also analyzed to quantify the percentage viability. 



Figure 3.3 

 

Figure 3-3 Synchronous upregulation of GATA1 and EpoR 

(A) Upregulation of total GATA1: Cell lysates collected at different time points during 
differentiation were blotted for total GATA1. The quantified protein bands show an upregulation 
in total GATA1 levels. (B) Upregulation of surface EpoR: Cells from differentiating cultures 
were treated with monoclonal antibody to EpoR conjugated with phycoerythrin and surface EpoR 
levels were quantified by flow cytometry. Surface EpoR levels show upregulation during Epo-
induced differentiation.  
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Figure 3.4 

 

Figure 3-4 Heterogeneity in EpoR and GATA1 expression is positively correlated 

(A) Histograms showing the heterogeneity in surface EpoR expression at different time points 
(days 0, 2, 4 and 7) during differentiation. (B) Cell sorting based on surface EpoR expression: 
Cells grown in Epo for two days were sorted into three distinct populations: bottom 5% 
(EpoRlow), middle 5% (EpoRmed) and top 5% (EpoRhigh). (B) Total GATA1 levels in each of the 
three sorted populations were measured by quantitative western blots. The noise in EpoR 
expression is correlated with GATA1 levels. 

 100



Figure 3.5 

 

Figure 3-5 Differential expression of EpoR as a marker for progenitor commitment 

(A) Surface EpoR expression during differentiation: Sorted populations (EpoRlow, EpoRmed and 
EpoRhigh) from Figure 3.4 were immediately re-cultured with Epo (1U/ml). EpoRlow cells could 
not be propagated, likely due to the lack of survival signals from Epo. Surface EpoR levels in 
EpoRmed and EpoRhigh cells were compared to the unsorted cells on day 4 and day 7. (B) 
Hemoglobin positive cells: Percentage of differentiation on day 4 and day 7 from the sorted cells 
(EpoRmed and EpoRhigh) were quantified by dianisidine staining and compared to the unsorted 
cells. 
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Chapter 4 

Converting a Linear Signaling Pathway into an Externally-

Regulated, Tunable, and Reversible Switch  

 

4.1. Introduction 

In response to extracellular cues, natural biological systems can evoke dynamic internal 

responses that can be critical for achieving robust phenotypic changes. Natural systems 

can exhibit a wide array of responses with modularity and specificity by integrating 

signaling elements at the cell surface, cytoplasm and nucleus. Cell-surface receptors 

enable cue-specific recognition and signaling, cytoplasmic messengers provide signal 

processing modules and transcriptional elements in the nucleus regulate complex changes 

in gene expression. The signal-response circuitry in natural biological systems is 

extremely unwieldy due to evolved complexity. Synthetic biology provides a means to 

dissect these complex signaling motifs in order to better understand the design principles 

underlying the dynamics of a network of interest and, ultimately, the phenotypic 

response1-3. 
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  Synthetic biology as a field possesses tremendous potential4-8 in improving drug 

delivery, producing alternative fuels, detecting cancer, engineering tissues, and enhancing 

gene therapy; however, it has faced major challenges due to the inefficiency of individual 

modules, incompatibility between interacting parts, unpredictability in large circuitry and 

inconsistency due to cellular variability9. The solution to some of these drawbacks can 

arise from designing generalizable methodologies to invoke specific responses from any 

given circuitry with minimal modifications.  

Changes in gene expression are fundamental to any phenotypic response and two 

molecular components that invariably regulate this process are cell surface receptors and 

nuclear transcription factors. These two signaling elements are ubiquitously present in 

most natural systems and control survival, apoptosis, proliferation, lineage commitment 

and differentiation10-12. Here, we present an externally-regulated autofeedback topology, 

inspired from lineage commitment networks in stem cells and progenitors13, 14, which is 

capable of converting any linear receptor-to-transcription factor signaling pathway into a 

reversible switch.  

Most of the synthetic systems developed to date utilize autofeedback loops 

activated by membrane diffusible small molecules to achieve a bimodal response15-20. 

These systems are typically irreversible and require extensive tuning to achieve the 

desired response. In contrast, natural systems can regulate their autofeedback loops 

through external ligand and achieve robustness in the exhibited response by incorporating 

signaling modules between the receptors and transcription factors. Previously, we 

developed a mathematical model of a minimal topology that can generate robust bistable 

responses for any linearly connected receptor/transcription factor pair13, 14. In this 
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topology, a ligand binds to its cognate cell-surface receptor and transmits a signal that 

activates a downstream transcription factor. The activated transcription factor activates its 

own transcription as well as that of the cognate cell-surface receptor. Since the 

transcription factor requires a post-transcriptional modification for activation, the 

displayed response is reversible and externally regulatable. Furthermore, our synthetic 

approach only requires rewiring of existing components (as opposed to introducing new 

components), and therefore requires minimal tweaking to achieve a robust response.  

As proof of principle, we tested our approach in Saccharomyces cerevisiae using 

a pathway that involves synthetic receptor (CRE1 from Arabidopsis thaliana) signaling to 

an endogenous yeast transcription factor (SKN7)21. This basic pathway, which is graded 

and unimodal, was rationally rewired to achieve our desired topology and the resulting 

network immediately showed high ultrasensitivity and bimodality without tweaking. We 

further show that this topology can be tuned to regulate system dynamics such as 

activation/deactivation kinetics, signal amplitude, switching threshold and sensitivity. 

 

4.2. Materials and Methods 

4.2.1. Plasmids 

Plasmids and their properties are provided in Table 4.1. E. coli strain XL1-Blue was used 

for all plasmid construction. Yeast integration plasmids pRS403 and pRS405 were 

purchased from Stratagene. Yeast centromere plasmids DQ232595, DQ232596 and 

DQ232600 were kindly provided by Ron Weiss (Massachusetts Institute of Technology). 

The SKN7 gene was PCR amplified from the S. cerevisiae genome. Plasmids were 
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constructed as follows: for pSP001, DQ232600 was cut with Pvu1 to remove 

CEN6/ARSH4 component and ligated into pRS405 digested with Pvu1; for pSP002 and 

pSP003, DQ232600 was digested with BamH1 to excise AtCRE1a-PSSRE region and 

cloned into DQ232595 and DQ232596. CEN6/ARSH4 and HIS3 component were 

removed from the modified DQ232595 and DQ232596 plasmids (Pvu1 site) and ligated 

into pRS405; for pSP004, the SKN7 gene was cloned to replace yEGFP3 in DQ232596 

using the BamH1/Asc1 restriction sites.  The CEN6/ARSH4 component in the modified 

DQ232596 vector was removed (Pvu1 site) and ligated into pRS403 plasmid. All plasmid 

constructs were verified by sequencing. 

4.2.2. Yeast strains, genomic screens and culture 

Yeast strains and their properties are listed in Table 4.2. Yeast transformations were 

performed using the high-efficiency LiAc/SS carrier DNA/PEG method with the standard 

synthetic dropout (SD) media. The no-feedback strain cRcTF was constructed by 

integrating a single copy of pSP001 into the LEU2 locus of the TM182 strain. Receptor 

feedback strains sRcTF and tRcTF were built by integrating a single copy of pSP002 and 

pSP003, respectively, into the LEU2 locus of TM182 strain. The transcription factor 

feedback strain cRtTF was constructed by integrating a single copy of pSP004 into the 

HIS3 locus of the cRcTF strain. Double feedback strains sRtTF and tRtTF were built by 

integrating a single copy of pSP004 into the HIS3 locus of the sRcTF and tRcTF strains, 

respectively. Yeast genomic DNA isolation was performed using the 

phenol:chloroform:isoamyl alcohol (PCI) method. The isolated genomic DNA was 

probed for stable single integration of the transformed gene at the desired locus through 

PCR. 
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The wild-type TM182 strain was used as a negative control in all experiments. 

Yeast strains were grown at 30ºC in their respective SD Ura-/His-/Leu- medium with 2% 

galactose. IP was purchased from Sigma-Aldrich.  

4.2.3. Analysis of GFP expression 

For all IP-induction experiments, GFP levels were quantified by fluorescence-activated 

cell sorting (FACS) using a Guava flow cytometer containing a 488 nm argon excitation 

laser and a 525/30 nm emission filter. For each sample, 10,000 events were acquired and 

the fluorescence data was analyzed using FlowJo 7.5. 

 

4.3. Results and discussion 

4.3.1. Network design 

A cell-surface receptor from A. thaliana has previously been coupled to signaling 

components from S. cerevisiae to successfully create a synthetic linear signaling 

pathway21. In this work, we have rationally constructed several topological variations of 

this pathway to achieve switch-like bimodality in system response, as well as tunability in 

set-point, EC50 and ultrasensitivity.  Previous work with these signaling elements used 

yeast centromere plasmids for pathway construction21. Due to the difference in copy 

number of transformed genes in the cells, we observed a high degree of heterogeneity in 

the expression of the signaling elements (data not shown). To minimize this variability, 

we chose to use yeast integrating plasmids and performed genomic screens to obtain 

clones with stable, single integrations of the transformed genes.  
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The basic pathway without feedback loops (cRcTF) was created by integrating a 

single copy of AtCRE1, an A. thaliana cytokinin receptor gene22, driven by the 

constitutive CYC1 promoter and a single copy of yEGFP3, yeast green fluorescent gene 

driven by the SSRE promoter.  The synthetic SSRE promoter contains the binding site for 

the yeast endogenous transcription factor SKN7. The plant cytokinin isopentenyl 

adenine23 (IP) was used as the ligand to activate the AtCRE1 receptor. The activated 

receptor signals via a yeast endogenous pathway to phosphorylate SKN724, 25. Phospho-

SKN7 can bind to the SSRE promoter and activate GFP expression (Figure 4.1).  

Networks with only receptor feedback (sRcTF and tRcTF) were created by 

replacing the CYC1 promoter of AtCRE1 with SSRE or TR-SSRE (contains two binding 

sites for phosphorylated SKN7), thereby creating an IP-regulated positive feedback loop 

through the receptor.  The network with only transcription-factor feedback (cRtTF) was 

created by integrating a single copy of the SKN7 gene, driven by the TR-SSRE promoter, 

to the basic pathway. Networks with both receptor and transcription-factor feedback 

(sRtTF and tRtTF) were constructed by integrating a single copy of the SKN7 gene 

(driven by TR-SSRE promoter) and by replacing the CYC1 promoter of AtCRE1 with 

either SSRE or TR-SSRE. 

4.3.2. Set-point and synthesis kinetics 

Expression of GFP is dependent on the concentration of phosphorylated SKN7 (phospho-

SKN7). Synthesis of phospho-SKN7 requires the expression of SKN7 and its subsequent 

posttranslational modification via IP:AtCRE1 complex signaling. Hence, the expression 

of GFP can be limited either by the insufficiency of SKN7 (transcription factor limited) 

or IP:AtCRE1 complex (receptor limited).  
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 All six strains were grown overnight in their respective SD media to reach steady-

state. The cultures were then diluted to an OD660 reading of 0.1 and induced with 1μM IP. 

Aliquots from the growing cultures were extracted at different time points to quantify 

GFP levels by flow cytometry. 

Change in receptor feedback strengths (CYC1, SSRE, TR-SSRE) did not change 

the achieved steady-state set-point of GFP when the transcription factor SKN7 was 

driven only by the constitutive promoter. This is probably due to the fact that receptor 

expression from all the promoters was sufficient to activate the endogenous levels of 

SKN7; hence, these systems are transcription-factor limited (Figure 4.2A).  

When we added an exogenous copy of the SKN7 gene, driven by a TR-SSRE 

promoter, to the network, the system became receptor-limited. Strain cRtTF was most 

limited by the synthesis of AtCRE1, which was significantly overcome by replacing the 

constitutive CYC1 promoter with SSRE promoter (Figure 4.2B). A further increase in 

GFP expression was obtained by switching the SSRE promoter to the stronger TR-SSRE 

promoter (Figure 4.2B). In contrast to the strains with constitutive (and limiting) 

expression of SKN7 (cRcTF, sRcTF and tRcTF), strains cRtTF and sRtTF are limited by 

the synthesis of AtCRE1. 

 Also, the kinetics of production of GFP seems to vary based on the network 

topology due to the variation in the rate of synthesis of Phospho-SKN7. In Figure 4.2C, 

the kinetic profiles of all the strains were normalized to their steady-state value. The 

strain with the basic pathway is the fastest to reach steady-state (60% level is reached 

around ~4 hours), followed by the receptor-feedback strains (60% level in ~5 hours for 
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sRcTF and ~ 6 hours for tRcTF). The transcription-factor feedback strain and sRtTF 

double feedback strain reached 60% level ~ 7.5 hours; whereas the tRtTF strain was the 

slowest and attained the 60% mark ~ 9 hours post IP-induction.  

This shows that by operating the system with different strengths of feedback at 

the transcription factor and receptor level, we can achieve tunability in the steady state 

set-point as well on the time to reach steady-state. 

4.3.3. Ultrasensitivity and EC50 

All six strains were grown overnight in their respective SD medium and then diluted back 

to an OD660 of 0.1 and induced with different concentrations of IP spanning from 0.01 to 

10 µM. The steady-state levels of GFP were plotted against IP concentration to analyze 

the dynamics of the response. We noticed that the basic pathway and the networks with 

only receptor-mediated feedback showed a graded response with respect to IP 

concentration, whereas the strains with transcription-factor feedback and with both 

feedback loops showed a highly switch-like response to change in IP (Figure 4.3). No 

feedback and receptor feedback strains reached set-point saturation around 1 µM IP, 

whereas the other three strains reached saturation at 10-fold lower IP (Figure 4.3). 

The steady-state dose-response curves show that the ultrasensitivity was lowest in 

the no-feedback (Hill coefficient ~2) and receptor-feedback networks (Hill coefficient 

~2), significantly higher in the transcription-factor-feedback network (Hill coefficient 

~11) and, higher still in the double-feedback networks (Hill coefficient ~24). Also, the 

networks with transcription-factor feedback and double feedback showed 2-fold lower 

EC50 when compared with no feedback and receptor-feedback networks (Figure 4.3). 
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 This shows that the basic pathway in this system is ultrasensitive and its 

sensitivity can be increased by the incorporation of transcription factor feedback, and 

further improved by the addition of receptor-feedback loops. Also, with feedback loops, 

the system can be tuned to switch on at lower IP concentrations than those that activate 

the basic pathway. 

4.3.4. Bimodality and degradation kinetics 

Degradation kinetics for the no feedback control strain cRcTF and double feedback strain 

tRtTF were compared in Figure 4.4A. The two strains were grown in 1 µM IP for 24 

hours to achieve saturated levels of GFP. The cells were then spun down, washed three 

times with regular media and cultured in their respective SD media without IP. Aliquots 

from the cultures were extracted and quantified for GFP levels. The figure shows that 

both systems are reversible and therefore ultimately shut off; however, there is a delay in 

the degradation kinetics of tRtTF when compared to cRcTF (Figure 4.4A). This could 

possibly be due to the higher accumulation of phospho-SKN7 in tRtTF than in cRcTF at 

steady state. Another possible explanation is that, due to the higher cell-surface receptor 

expression on the cells with receptor feedback, more residual IP may be bound on tRtTF 

cells than on cRcTF cells. 

 When IP was only reduced to a sub-threshold concentration (rather than 

completely removed), the degradation kinetics of the GFP signal became markedly 

different between the two strains. When IP was lowered to 0.025 μM, the tRtTF strain 

retained ~50% of its maximal response after 10 hours whereas the cRcTF strain only 

sustained ~10% of its response (Figure 4.4B). When IP was lowered to 0.05 μM, the 
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tRtTF strain sustained ~70% of its response but the cRcTF strain only retained ~10% of 

its maximal response (Figure 4.4C). This shows that the tRtTF topology confers memory 

to the cell with respect to the receptor-specific ligand (here, IP).  The initial induction 

with high IP triggers this memory, which helps to sustain the response even after 

lowering the IP to sub-threshold levels. We analyzed the GFP histograms from time 

points in Figure 4.4C. As seen from the plot, the entire histogram for the cRcTF strain 

shifted to lower mean fluorescence at each time point when a step change in IP (from 1 

µM to 0.05 µM) was introduced into the system (Figure 4.4D). This shows a typical 

monostable response, as each cell with the basic pathway lost its fluorescence gradually 

over time once the IP concentration was lowered. By contrast, the tRtTF strain showed 

bimodality in GFP expression as the IP concentration was lowered to 0.05 μM; a high 

percentage of cells remained in the high-GFP state and a low percentage of cells 

completely lost their fluorescence, with virtually no cells exhibiting intermediate 

fluorescence intensities (Figure 4.4D). The aggregate decrease in fluorescence of a 

population of tRtTF cells does not result from a decrease in the mean fluorescence 

intensity of the overall population but, rather, from a shift in the relative populations of 

the high-GFP and low-GFP states. 

In conclusion, we have presented here a method by which any linear signaling 

pathway with incorporation of two positive feedback loops can be rewired to exhibit a 

bimodal response. This system is completely reversible and by changing the strengths of 

the feedback loops, we show tunability in kinetics, set-point, EC50 and ultrasensitivity. 



Figure 4.1 

 

Figure 4-1 Network design 

Plant cytokinin IP binds and activates the plant receptor AtCRE1. Signaling from this receptor 
results in phosphorylation of the yeast endogenous transcription factor SKN7. Phospho-SKN7 
binds to synthetic promoters SSRE and TR-SSRE and expresses the downstream genes. AtCRE1 
is either expressed constitutively or expressed via SSRE or TR-SSRE promoters to form a 
receptor feedback loop. SKN7 is expressed constitutively and in some networks, an additional 
copy is regulated through the TR-SSRE promoter to form an autofeedback loop. GFP is only 
expressed through the SSRE promoter. 
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Figure 4.2 
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Figure 4-2 Variation in set-point and synthesis rate of GFP 

All strains were grown in 1 µM IP until GFP levels reached saturation. Aliquots from the cultures 
at different time points were taken to determine the synthesis kinetics of GFP (A) Expression of 
GFP limited by transcription-factor expression: Kinetic profiles of strains with variable strength 
of receptor feedback loop and constitutive expression of transcription factor. AtCRE1 receptor 
expression from cRcTF, sRcTF and tRcTF strains were sufficient to activate the endogenous 
levels of SKN7. (B) Expression of GFP limited by receptor expression: Kinetic profiles of strains 
with variable strengths of receptor feedback loop and autofeedback driven expression of 
transcription factor. When an additional copy of SKN7, driven by the TR-SSRE promoter, was 
added to the system, the strains cRtTF and sRtTF became receptor limited. (C) Kinetic profiles of 
the strains are normalized to their steady-state set-point. All six strains achieve steady-state at 
different times; cRcTF seems to be the fastest and tRtTF the slowest. 
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Figure 4.3 

 

Figure 4-3 Tunability of set-point, EC50 and ultrasensitivity 

All six strains were grown at different IP concentrations spanning from 0.01 µM to 10 µM. 
cRcTF, sRcTF and tRcTF showed graded responses to changes in IP, whereas cRtTF, sRtTF and 
tRtTF exhibited switch-like responses. Also, cRcTF, sRcTF and tRcTF, when compared to 
cRtTF, sRtTF and tRtTF, needed two-fold higher IP to achieve the half-maximal response and 
10-fold higher IP to achieve the full response. 
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Figure 4.4 

 

 119



 

Figure 4-4 Degradation kinetics and bimodality 
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Strains cRcTF and tRtTF were grown in their respective SD media with 1 µM IP for 24 hours. 
After reaching saturation in GFP set-point, the cultures were washed and moved into media with 
different sub-threshold IP concentrations: (A) IP = 0, both the strains show reversibility by 
switching off GFP expression; however, the degradation kinetics of tRtTF are slower than those 
of cRcTF. (B) IP = 0.025 µM, after 10 hours, tRtTF sustained ~50% of maximal response, 
whereas cRcTF managed only ~10%. (C) IP = 0.05 µM, after 10 hours, tRtTF retained ~70% of 
its steady-state response, whereas cRcTF managed only ~10%.  (D) Histograms of GFP 
expression from (C) at time points 0, 4.5 and 10 hours. Strain cRcTF shows a unimodal response, 
whereas tRtTF shows a bimodal response. 



Table 4.1 

Table 4-1 Plasmids used in this study 

 

 1. Chen, M.T. & Weiss, R. Artificial cell-cell communication in yeast Saccharomyces 
cerevisiae using signaling elements from Arabidopsis thaliana. Nature biotechnology 23, 
1551-1555 (2005). 
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Table 4.2 

Table 4-2 Yeast strains used in this study 

 

 1. Maeda, T., Wurgler-Murphy, S.M. & Saito, H. A two-component system that regulates 
an osmosensing MAP kinase cascade in yeast. Nature 369, 242-245 (1994). 
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Chapter 5 

Integrating Extrinsic and Intrinsic Signals into a Multilineage 

Cell-Fate Model 

(Adapted from Palani S. and Sarkar C.A. Integrating Extrinsic and Intrinsic Cues into a 

Mininal Model of Lineage Commitment for Hematopoietic Progenitors (2009) PLoS 

Computational Biology, September 2009, Volume 5, Issue 9, e1000518) 

 

5.1 Introduction 

Multipotent stem cells have the ability to both self-renew and differentiate, thus 

sustaining the stem cell pool and giving rise to mature, specialized cells, respectively. 

The hematopoietic stem cell (HSC), located in the adult bone marrow, is well 

characterized and has served as a popular model system for understanding self-renewal, 

lineage commitment, and differentiation1. HSCs are responsible for producing the entire 

repertoire of blood cells through the process of hematopoiesis. During hematopoiesis, 

HSCs lose the capacity to self-renew and differentiate into common myeloid (CMP) and 

common lymphoid (CLP) progenitors2, 3. Multipotent progenitors undergo further 

lineage-restricted differentiation to give rise to mature cells via bipotent progenitors. In 
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addition to this classical commitment paradigm in hematopoiesis, alternative pathways 

are emerging. For example, it has also been observed that HSCs and multipotent 

progenitors can bypass canonical intermediate states during commitment4, 5. The exact 

molecular events that direct lineage commitment at the stem cell stage or at the 

multipotent progenitor level remain elusive, but it is well appreciated that lineage-specific 

transcription factors and cytokine receptors play critical roles. 

 Lineage-specific transcription factors have been identified as master regulators of 

commitment and differentiation. They drive the expression of pertinent lineage-specific 

genes, thereby initiating the phenotypic change in the progenitor cell down a specific 

differentiation path6, 7. Developmental potency of a multipotent progenitor is reflected by 

the co-expression of multiple lineage-specific transcription factors at low levels, a 

phenomenon known as transcriptional priming8. This promiscuous gene expression 

pattern in the progenitor cell necessitates that, during cell differentiation, a specific 

transcription factor is upregulated, chiefly by positive autoregulation9, 10, and other 

lineage transcription factors are downregulated, primarily through cross-antagonism11-13.  

 In addition to lineage-specific transcription factors, cell differentiation is also 

believed to be tightly regulated by cytokines. Cytokines signal via their cognate receptors 

whose cytoplasmic domains activate various pathways involved in survival, proliferation, 

and differentiation14-16. It has been extensively debated whether cell fate during 

differentiation is a stochastic or an instructive process. The stochastic theory claims that 

the differential expression of lineage-specific transcription factors due to intrinsic noise 

in progenitor cells dictates the commitment decision17-19, whereas the instructive theory 

argues that the absolute dependence on lineage-specific cytokine receptor signals during 
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differentiation shows that cell-fate decisions are regulated by extrinsic growth factor 

cues20, 21. An underlying question evoked by both of these theories is whether cytokines 

provide instructive cues or select lineage-committed progenitors by providing permissive 

survival and proliferation signals. The instructive model does not account for the 

occurrence of certain mature cell types even when their lineage-specific receptors are 

knocked out. The predetermined distribution of the heterogeneous progenitor population 

into mature cells, as suggested by the stochastic model fails to explain how specific cell 

types can be enriched during stress or how homeostasis is restored after infections or 

therapy. A recent groundbreaking study utilizing bioimaging techniques at the single-cell 

level suggests that there is validity to both of these theories20. These authors showed that 

lineage-specific cytokines can strongly instruct lineage choice, although differentiation 

was still possible in the absence of lineage-specific cytokines. 

 A more comprehensive understanding of lineage commitment may emerge by 

analyzing the biochemical associations that coordinate cell-extrinsic and cell-intrinsic 

events. The promiscuous gene expression pattern during differentiation is observed not 

only in lineage-specific transcription factors, but also in lineage-specific receptors. A 

critical commitment signal during differentiation is the upregulation of the transcription 

factor, which aids in expressing the lineage-specific genes; however, the need to 

upregulate the lineage-specific receptor, an event also integral to commitment, is still 

unclear. This is particularly confounding since the low number of lineage-specific 

receptors present in a progenitor cell is sufficient for providing permissive survival cues. 

During lineage commitment, the expression of the cytokine receptor mirrors the 

expression of the transcription factor, often due to the presence of transcription factor 
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binding domains in the promoter region of the receptor gene22-25. The advantage of 

regulating the lineage-specific receptor expression through the lineage-specific 

transcription factor is not apparent. Recent biochemical evidence also suggests that 

cytokines can provide signals to functionally activate lineage-specific transcription 

factors through post-translational modifications26 and can also regulate the expression of 

transcription factors during cell differentiation27. 

 Cell differentiation is believed to be an all-or-none "switch-like" event rather than 

a gradual transition of a precursor cell to a stable, mature cell. Mathematical modeling 

and analysis have been successfully used to provide insights into the biological networks 

that give rise to such switch-like behaviors28. Typically, the networks involved in lineage 

specification seem to engender cellular memory through nonintuitive behaviors, such as 

bistable response profiles. The components that generate bistability, the toggling of the 

system between two stable steady states, include nonlinear feedback loops29, 30, external 

noise31, and multi-site covalent modifications32. Previous lineage commitment models 

have suggested that transcriptionally primed multipotent progenitors are capable of 

exhibiting bistability purely via cell intrinsic events of autoregulation and cross-

antagonism33, 34, but these models have assumed the existence of cooperative positive 

feedback loops to achieve bistability and do not consider the role of extracellular cues. 

 While cooperativity is a widely recognized biological mechanism that may play 

an important role in lineage commitment, alternative mechanisms can generate similar 

switch-like behavior in networks where cooperativity has not been observed. For 

example, we have previously shown that cytokine-regulated, positive feedback of 

receptor can generate robust bistability to stimulus without cooperativity in a 
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deterministic model for unilineage commitment35 (Chapter 2). Furthermore, even in 

networks with cooperativity, receptor-mediated feedback may provide additional 

robustness to the system behavior and, perhaps more importantly, offer an external mode 

of regulation of cell-fates. 

Here, we present a minimal model that integrates the bidirectional regulation 

between lineage-specific cytokines and transcription factors with previously explored 

autofeedback loops and cross-antagonism to understand the interplay between cell-

extrinsic and cell-instrinic factors in fate decisions of hematopoietic progenitors. The 

model is formulated under the premise that cell-fate decisions are stochastic in nature, but 

external cues such as lineage-specific cytokines can heavily bias this stochasticity, 

effectively instructing lineage choice (as has now been experimentally observed). Our 

model shows that the strength of cross-antagonism can be a critical determinant in 

achieving multistability. The analyzed network exhibits a “bilayer” of memory with 

respect to external stimuli to provide robustness to both the bipotent and committed 

states. The model suggests that noise in the network can enable stochastic switching 

between the stable states; however, the distribution of the uncommitted population among 

the various states during differentiation can still be strongly biased by external cues. 

Furthermore, this modeling framework captures both classical and alternative modes of 

lineage commitment seen in hematopoiesis. Although discrete cell fates are likely to 

represent high-dimensional attractors36, our minimal model may provide an initial step 

towards understanding how extrinsic factors integrate with intrinsic factors and may 

elucidate new mechanisms that underlie cell-fate decisions. 
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5.2. Methods 

5.2.1. Deterministic model 

The minimal model shown in Figure 5.1 represents a regulatory network for lineage 

commitment of a multipotent progenitor to lineages A and B. The multipotent progenitor 

expresses basal levels of both lineage-specific transcription factors TFA and TFB (present 

in their inactive forms ITFA and ITFB) and lineage-specific receptors RA and RB before 

the addition of ligand. Addition of LA to the system leads to receptor-ligand complex CA 

formation. Complex CA activates signaling pathways that lead to the activation of ITFA to 

form ATFA. Even though a mechanistic understanding of how this occurs via cytokine-

mediated signaling has not fully emerged, we have modeled it to be rapidly regulated at 

the protein level (e.g., by post-translational modification). There may be other 

mechanisms involved (e.g., transcriptional and translational regulation) that are not 

considered here. The activated form of the transcription factor, ATFA, upregulates the 

transcription of its own gene through positive autoregulatory feedback loop, enhancing 

production of ITFA. ATFA also upregulates the expression of the lineage-specific receptor 

RA forming a ligand-regulated positive feedback loop. The model also accounts for basal 

synthesis of RA and ITFA, degradation of RA, CA, ITFA and ATFA and inactivation of 

ATFA (not explicitly shown in Figure 5.1). For simplification, we consider the network 

topology in the commitment of the two lineages to be symmetric: the reactions involved 

in the activation of ITFB to ATFB by ligand LB and the formation of the two positive 

feedback loops are analogous to those described in lineage A. To account for the cross-

antagonism between the transcription factors TFA and TFB, ATFA and ATFB are modeled 

to downregulate the induced expression of [ITFB, RB] and [ITFA, RA] by competitively 
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inhibiting the binding of ATFB and ATFA to the regulatory domains present upstream of 

their lineage-specific receptor and TF genes. This multilineage commitment network led 

to a deterministic model with eight ordinary differential equations (ODEs) as shown in 

Table 5.1. The initial conditions and the values of the rate constants are provided in Table 

5.2. A single-compartmental homogenous system is assumed and the pathways involved 

in TF activation and in the synthesis of TF and receptor are lumped as single-step 

reactions. 

5.2.2. Stochastic version of the deterministic model 

The Gillespie stochastic algorithm was employed to simulate a stochastic version of the 

ODE model37. The stochastic reactions and their probability functions are given in Table 

5.3. Conversion of the deterministic model to its stochastic form was performed by using 

composite Michaelis-Menten type rate expressions in the propensity function instead of 

decomposing the minimal model into a series of elementary reactions; this was done to 

directly compare the dynamics of both the approaches38, 39.  

The probability functions and reactions for the stochastic model are provided in 

Table 5.3. The model was run either from the uncommitted state or from the bipotent 

state to reach the committed state. The initial conditions for both starting states are also 

provided in Table 5.2.  

To achieve values close to the true stable steady states, the simulations for both 

the deterministic and the stochastic models were run for 100,000 mins or ~70 days. As an 

example, for one representative set of parameter values, the deterministic model reached 

99% of its 100,000-minute value at approximately 2500 mins. Thus, even for conditions 
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that took significantly longer to reach steady state, our simulation time was more than 

sufficient. Also, since the time point that we picked is arbitrary, we performed 100 

repetitions for each simulation condition to account for random fluctuations. Around this 

time point, the noise distribution had low variance and was relatively constant. 

Small perturbations in the initial conditions for active species have no effect on 

the steady-state values or the distribution among the final states. Large perturbations also 

have no effect on the steady-state values, but can significantly alter the final-state 

distribution by priming the system with active receptors and/or transcription factors. 

Parameters used to generate Figure 5.5 

All simulations were started from the uncommitted state with LA|LB values of 0|350, 

100|250, 175|175, 250|100 and 350|0. 

Initial conditions of the reactants: 

[RA]0 = 10; [RB]0 = 10; [CA]0 = 0; [CB]0 = 0; [ITFA]0 = 10; [ITFB]0 = 10; [ATFA]0 = 0; [ATFB]0 = 0 

For no inhibition condition: KIA = KIB = ∞ 

For moderate inhibition condition (in molecules): KIA = KIB = 400 

For strong inhibition condition (in molecules): KIA = KIB = 50 

All other parameter values are given in Table 5.2. For each condition, the simulations 

were run for 100,000 minutes and repeated 10,000 times. 

Parameters used to generate Figure 5.6 
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All simulations were run using the moderate inhibition condition (in molecules): KIA = KIB 

= 400 

Initial conditions of the reactants starting from the uncommitted state: 

[RA]0 = 10; [RB]0 = 10; [CA]0 = 0; [CB]0 = 0; [ITFA]0 = 10; [ITFB]0 = 10; [ATFA]0 = 0; [ATFB]0 = 0 

Initial conditions of the reactants starting from the bipotent state: 

[RA]0 = 30; [RB]0 = 30; [CA]0 = 125; [CB]0 = 125; [ITFA]0 = 6; [ITFB]0 = 6; [ATFA]0 = 273; 

[ATFB]0 = 273 

LA|LB values for different trajectories: 

Uncommitted to committed A – 250|5  

Uncommitted to committed B – 5|250 

Uncommitted to bipotent – 250|250 

Bipotent to committed A – 250|5 

Bipotent to committed B – 5|250 

All other parameter values are given in Table 5.2. For each condition, the simulations 

were run for 100 hours and repeated 100 times. 

Parameters used to generate Figures 5.7B and 5.7C 

All simulations were started from the uncommitted state with LA|LB values of 175|175. 

Initial conditions of the reactants starting from the uncommitted state: 
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[RA]0 = 10; [RB]0 = 10; [CA]0 = 0; [CB]0 = 0; [ITFA]0 = 10; [ITFB]0 = 10; [ATFA]0 = 0; [ATFB]0 = 0 

For moderate inhibition condition (in molecules): KIA = KIB = 400 

For strong inhibition condition (in molecules): KIA = KIB = 50 

All other parameter values are given in Table 5.2. For each condition, the simulations 

were run for 100,000 minutes and repeated 200 times. 

5.2.3. Computational methods 

The ODE-based deterministic model was solved using the numerical stiff solver ode15s 

in MATLAB (The Mathworks, Natick, MA). Time course, steady-state response and 

multistability plots were also created using MATLAB. The Gillespie algorithm for the 

stochastic model was programmed in C++. Histograms, phase plots and time trajectories 

of the stochastic simulations were created using the open-source statistical package R. 

5.2.4. Microarray analysis 

Normalized microarray data were generously provided by Tariq Enver (University of 

Oxford)40. The detailed experimental procedures for the microarray experiments and 

analyses are provided elsewhere40. EPOR, GCSFR and TPOR mRNA levels extracted 

from the data were further normalized to their basal levels present in the uninduced 

FDCP-mix. The inherent heterogeneity in the differentiating populations at each time 

point was overcome by weighting the contribution of each cell population to the average 

expression of the gene of interest.  

Cell samples collected from FDCP-mix cells that were induced to differentiate 

along neutrophil, erythrocyte, and megakaryocyte lineages are inherently heterogeneous. 



To overcome the problem of analyzing aggregate microarray data from these samples, we 

performed a simple deconvolution by generating a weighting function to account for the 

non-uniform contribution from each sub-population to the average signal. This is possible 

since the population fractions at each time point for each sample were previously 

determined.  

Weighting function: 

 wBi×fB + wNi×fN + wEbi×fEb + wEri×fEr + wMi×fM 

B – blast (CMP) 

N – neutrophil 

Eb – erythroblast 

Er – erythrocyte 

M – megakaryocyte 

 

wBi – contribution of blasts to the expression of gene i 

fB – fraction of blasts in the population 

wNi – contribution of neutrophils to the expression of gene i 

fN – fraction of neutrophils in the population 

wEbi – contribution of erythroblasts to the expression of gene i 

fEb – fraction of erythroblasts in the population 

wEri – contribution of erythrocytes to the expression of gene i 

fEr – fraction of erythrocytes in the population 

wMi – contribution of megakaryocytes to the expression of gene i 

fM – fraction of megakaryocytes in the population 
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The weighted parameters (wXi) were obtained from a global fit to the microarray 

data for all time points across all experiments using a least squares approach and are 

listed in the Table 5.4. The kinetic expression profile of each gene for each lineage was 

then obtained by only considering blasts and the cells that are pertinent to the lineage of 

interest. 

For erythrocytes: blasts, erythroblasts and erythrocytes 

For megakaryocytes: blasts and megakaryocytes 

For neutrophils: blasts and neutrophils 

After removing the fractional contribution of cells from other lineages, the remaining 

populations were normalized to obtain a total fraction of 1. 

 

5.3. Results 

5.3.1. Model formulation 

Different cell states in our model are identified by the relative expression levels of 

lineage-specific receptors and transcription factors. An uncommitted (or 'off-state') cell, 

such as a common myeloid progenitor (CMP), is one that expresses lineage-specific 

receptors and transcription factors for multiple lineages at low levels. It is primed to 

differentiate into several lineages, but not yet committed to any specific lineage. A 

bipotent (or 'intermediate-state') cell, such as a megakaryocyte-erythrocyte progenitor 

(MEP), is one that is restricted to exactly two lineages, but not yet committed to either of 
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them. Lineage-specific receptors and transcription factors for the two lineages are 

expressed at intermediate levels. A committed (or 'on-state') cell, such as a 

proerythroblast, is one that expresses the receptor and transcription factor of a single 

lineage at a high level and will eventually terminally differentiate into the corresponding 

mature cell. 

The topology of our minimal model for multilineage commitment was informed 

by various experimental studies on lineage-specific receptors and transcription factors. 

The cytokines Epo, Tpo, GCSF, and MCSF have been shown to offer instructive cues to 

uncommitted and bipotent cells to differentiate into committed cells, which then 

terminally differentiate into erythrocytes, megakaryocytes, neutrophils, and macrophages, 

respectively. Lineage-specific transcription factors GATA-1, PU.1, T-bet, and GATA-3 

orchestrate the differentiation program of erythrocytes, neutrophils, Th1, and Th2 cells, 

respectively, by regulating the expression of their lineage-specific genes. Transcription 

factors GATA-1 and PU.1 have been shown to autoregulate their gene expression by 

binding to the promoter region of their own genes. Erythrocytic transcription factor 

GATA-1 has been shown to transactivate the Epo receptor (EPOR) gene and the 

neutrophilic transcription factor PU.1 has been observed to regulate the expression of the 

GCSF receptor (GCSFR). A transcription factor can prevent another transcription factor 

from binding to DNA either by competitively binding to response elements (as in the case 

of GATA-1 and GATA-2) or by binding to the DNA-binding domain of the transcription 

factor itself (for example, GATA-1 and PU.1). 

The topology shown in Figure 5.1 represents a generalized minimal network of 

these observed connections between the cytokine and lineage-specific transcription factor 
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during lineage commitment. The model assumes that the fate decision of an uncommitted 

cell to either lineage A or lineage B is determined solely by the concentrations of the 

active forms of the respective lineage-specific transcription factors, ATFA and ATFB. The 

components that drive the formation of each ATF are the inactive transcription factor 

(ITF), which serves as the substrate, and the ligand (L)-receptor (R) complex (C), which 

serves as the enzyme. The strong upregulation of ATF during lineage commitment is 

achieved through two positive feedback loops that upregulate ITF and R, respectively. 

Transcription factor feedback is a cell-intrinsic autofeedback loop and receptor feedback 

is an externally (ligand) regulated positive feedback loop. F1A and F2A (expressed in 

molecules/min) denote the strengths of the transcription factor and receptor feedback 

loop for lineage A, respectively; F1B and F2B represent the corresponding feedback 

strengths for lineage B. During commitment, a lineage-specific transcription factor gets 

upregulated and other lineage transcription factors get downregulated due to cross-

antagonism. The mechanism of cross-antagonism between the transcription factors is 

modeled to be competitive inhibition in binding to response elements present upstream of 

the transcription factor and receptor genes, thereby affecting the strengths of the two 

positive feedback loops. While cell fates are likely to represent high dimensional 

attractors and this higher level of complexity is not considered here, our minimal model 

framework may be useful in elucidating the interplay among extrinsic and intrinsic 

factors in lineage commitment and differentiation. The deterministic (ordinary 

differential equations) and the stochastic (probability functions) versions of the model 

along with the kinetic parameters and initial conditions are provided in Tables 5.1-5.3. 
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5.3.2. Double positive feedback loops, coupled with moderate transcriptional cross-

antagonism, can lead to multistability 

To explore the role of the two positive feedback loops in lineage commitment, we first 

considered the case with no competitive inhibition between the transcription factors. The 

inhibitor dissociation constants KIA (inhibitory effect of A on B) and KIB (inhibitory 

effect of B on A) are kept infinite. Figure 5.2A shows the steady-state values of ATFA as 

the strength of two autofeedback loops, F1A and F1B, are changed. The strengths of the 

receptor-mediated feedback loops and the ligand levels are kept constant (F2A = F2B = 3 

molecules/min, LA = LB = 100 molecules). We can see that the system rests in the 

uncommitted state when F1A = 0 for the chosen F2 and L values. As we increase F1A, the 

system switches to the on-state (committed state) for lineage A. Since, F1 constitutes the 

strength of the autofeedback loop in A, increasing F1A over the threshold value will 

increase the set point of ATFA in the on-state, provided F2A is not limiting. To consider 

the effect of receptor-mediated feedback on the steady-state values of ATFA, the strength 

of the autofeedback loops and ligand are kept constant (F1A = F1B = 3 molecules/min, LA 

= LB = 100 molecules). Similar to F1A, there seems to be a critical value for F2A at which 

the system switches to the on-state (Figure 5.2B). As F2 controls the activation loop, 

increasing F2A beyond the critical level will not change the on-state set point value of 

ATFA, provided F2A is not limiting. As expected, F1B and F2B have no effect on ATFA 

since we have assumed no crosstalk between the two pathways. 

 The above analysis was repeated with moderate inhibition (KIA = KIB = 400 

molecules). Similar to the no inhibition case, there appear to be critical values for F1A and 

F2A at which the system switches to the on-state (Figures 5.2C and 5.2D). However, 
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increasing F1B and F2B increases the switching values of F1A and F2A, due to the negative 

feedback from ATFB on ATFA. It is interesting to note that for high values of F1B and F2B, 

the system reaches a stable, intermediate state at which the concentration of ATFA is 

higher than that in the uncommitted state, but less than that in the committed state (by 

symmetry, the same effect is observed for ATFB; see  Figure 5.3). As in the committed 

state, the set point in this intermediate state increases with F1, but not with F2. To better 

visualize the intermediate state, cross-sections of F1B and F2B from Figures 5.2C and 5.2D 

for various values of F1A and F2A are given in Figures 5.2E and 5.2F, respectively. For 

strong inhibition (KIA = KIB = 50 molecules), the system achieves commitment to lineage 

A for F1A and F2A values above the threshold levels. When F1B and F2B are increased over 

the critical value, the system requires concomitantly larger increases in F1A and F2A 

values to switch from the uncommitted state compared to the moderate inhibition 

condition (Figures 5.2G and 5.2H). Also, strong mutual inhibition between the 

transcription factors destroys the stable intermediate state, so the cells can rest only in the 

uncommitted or committed state. Since the model is symmetric with respect to lineages A 

and B, the steady-state responses of ATFB with respect to changes in F1 and F2 are 

analogous to the results shown for ATFA (see Figure 5.3). It should be noted that the 

system is capable of achieving multistability for a given F1 and F2 (results not shown); 

however, only the stable solution attained without the memory of strong feedback (i.e., 

the simulations were always started from the off-state) is plotted in Figure 5.2. 

5.3.3. “Bilayer” memory in a tristable system 

External regulation provides a practical way to control the dynamics of the network 

without the need to alter the internal control elements of the system. We analyzed how 
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cell commitment might be influenced in the presence of conflicting ligands with the 

strength of the positive feedback loops held constant (F1 = F2 = 3 molecules/min) for the 

moderate inhibition case. As seen from the phase plots in Figure 5.4, increasing LA for 

low LB cases commits the uncommitted cell to lineage A (red region in Figure 5.4A), 

increasing LB for low LA commits the cell to lineage B (red region in Figure 5.4B), and 

for high values of both LA and LB the system rests at a third, bipotent state that is primed 

but not committed to either of the lineages (overlapping yellow regions in Figures 5.4A 

and 3B). For low LA and LB (both less than ~40 molecules), the system remains in the 

uncommitted state (overlapping blue regions in Figures 5.4A and 5.4B). 

 To explore the robustness of the bipotent and committed states, we tested the 

system for memory to external stimulus. From the phase plots, we chose LB = 300 to 

analyze the robustness of the bipotent state. The steady-state response plots of ATFA and 

ATFB for LB = 300 are given in Figures 5.4C and 5.4D. In Figure 5.4C, increasing LA 

switches the system from the committed B state to the bipotent state (solid red line). After 

reaching the bipotent state, the ligand concentration can be decreased far below the initial 

switching concentration while still maintaining the system in the bipotent state (dotted 

red line). However, complete removal of LA switches the system back to the committed B 

state. For the ligand concentrations spanned by the dotted red line, the system is bistable. 

Considering the steady-state response of ATFB in the same simulation, we see that for 

low LA values, the system is already committed to lineage B (Figure 5.4D). However, 

increasing LA can decommit the cell to a bipotent state (solid blue line). Decreasing LA 

after reaching the bipotent state maintains the cell in that state for values of LA much 

lower than the decommitment concentration (dotted blue line). So, the system is also 
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bistable for ATFB expression (inversely correlated to ATFA expression) and can exist 

either in the committed state for lineage B or in the bipotent state based on the memory of 

LA. 

 To analyze the switching of the system across three states, we chose LB = 100 

based again upon the phase plots in Figures 5.4A, B. In Figure 5.4E, a modest increase in 

LA switches the system to the bipotent state and a further increase in LA, switches the 

system to the committed A state (solid red line). If the ligand concentration is lowered 

after the system reaches either the bipotent state or the committed state, the system 

remains in the current state (dotted and dot-dash red lines). This hysteresis is greater for 

the committed state than for the bipotent state, suggesting that the committed state is 

more robust to changes in the ligand concentration. For LB = 100 and for 10 < LA < 75, 

the system exhibits tristability (i.e., it can exist in committed state A, committed state B, 

or the bipotent state). The steady-state response plot of ATFB for LB = 100 (Figure 5.4F) 

shows that a committed B cell decommits to the bipotent state and then further to lineage 

A with an increase in LA (solid blue line). As in Figure 5.4E, the bipotent and lineage A 

states are robust with respect to decreases in LA (dotted and dot-dash blue lines) and the 

system exhibits tristability for the same concentration range of LA as in Figure 5.4E. It 

should also be noted that the ligand-dependent multistability seen for a lineage-specific 

transcription factor is the same for the corresponding lineage-specific receptor, thus 

simultaneously generating memory in cell-extrinsic and cell-intrinsic signals. 

5.3.4. Extrinsic cues can regulate stochastic switching 

We developed a stochastic version of the ordinary differential equation (ODE)-based 

deterministic model to analyze how noise in the network might affect the fate decision of 
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an uncommitted cell (i.e., one that initially contains no ATFA or ATFB) and how external 

signals might regulate these stochastic transitions. The stochastic model was initialized 

with several LA|LB combinations (0|350; 100|250; 175|175; 250|100; 350|0) for the no 

inhibition, moderate inhibition, and strong inhibition conditions. In each of 10,000 

simulations, the system was allowed to reach steady-state and steady-state ATFA and 

ATFB levels for the first three ligand combinations listed above are shown as 3D 

histograms in Figure 5.5 (since the model is symmetric, the 250|100 and 350|0 plots are 

virtual mirror images of the 100|250 and 0|350 plots, respectively, in Figure 5.5). Unlike 

the deterministic model, which only provided a population average of the four attainable 

steady states (uncommitted, bipotent, lineage A, lineage B) for any LA|LB, the stochastic 

simulations elucidated the relative populations of these multiple steady states for a given 

LA|LB. For the no inhibition condition, an uncommitted cell can reach any of four distinct 

stable states given the appropriate extracellular cues: uncommitted, A, B, and a 

committed AB state with high ATFA and ATFB values (though this last state is simply a 

consequence of having no inhibition and likely has little relevance in biological 

mechanisms specific to cell commitment decisions). When ATFA and ATFB can 

moderately inhibit each other, the uncommitted, A, B, and bipotent states can all be 

populated, even for a single LA|LB combination (e.g., middle plot in Figure 5.5). 

However, when the transcription factors exhibit strong cross-antagonism, this bipotent 

state is no longer realizable and cells only commit fully to one lineage or the other or 

stayed uncommitted. The stochastic simulations with various combinations of conflicting 

ligand concentrations and for different levels of competitive inhibition show that all of 

the populations obtained from the deterministic model are stable and distinct even with 
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the introduction of noise. For conditions in which only one ligand was present (e.g., 

0|350), the cells committed only to the induced lineage for all levels of inhibition. A 

small fraction of the initial population remained uncommitted for all conditions for the 

chosen steady-state time point. When external cues of equal strength were provided 

(175|175), cells in the absence of inhibition primarily reached the committed AB state; 

with strong inhibition, they attained nearly equal levels of the committed A and B states; 

and with moderate inhibition, the cells were roughly evenly distributed across the 

bipotent, A, and B states. When high but unequal ligand levels were used (e.g., 100|250), 

cells in the no inhibition model commit almost exclusively to the AB state since the 

effects of LA and LB are entirely uncoupled. However for the strong and moderate 

inhibition conditions, the initial population committed predominantly to the lineage 

corresponding to the higher ligand value. This shows that, while the noise in the system is 

capable of distributing the initial population to all available steady states for any ligand 

concentration above a minimum threshold, a dominant external signal can still strongly 

bias the system to its specific lineage. 

5.3.5. Time trajectories during lineage commitment 

From 100 individual stochastic trajectories, we calculated the average time for an 

uncommitted cell to reach lineage A, lineage B, or the bipotent state and, in separate 

simulations, the average time for a bipotent progenitor to reach lineage A or B. A phase 

plot of the total transcription factors (tTF = ITF + ATF) shows that it takes ~36 hours for 

the uncommitted cell to reach lineage A, lineage B, or the bipotent state; however, when 

ligand concentrations that destabilize the bipotent progenitor are applied, it only takes 

~24 hours for the bipotent progenitor to reach either of the committed states (Figure 
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5.6A). This effect is even more pronounced when we look at the phase plots for ATF 

(Figure 5.6B); the time to reach the high level of active transcription factor(s) from the 

uncommitted cell is still ~36 hours, however it takes much less time (~14 hours) for the 

bipotent progenitor to reach lineage A or B. The kinetics of reaching new steady-state 

levels for total receptor (tR = R + C) and complex (Figures 5.6D and 5.6E) are faster than 

those for tTF and ATF, respectively, but the trend of reaching commitment faster from 

the bipotent state compared to the uncommitted state is similar to the transcription factor 

plots. Figures 5.6C and 5.6F respectively show the mean CA and ATFA values with 

respect to time (in hours) for transitions from the uncommitted state to lineage A (blue 

line), uncommitted state to bipotent state (orange line), and bipotent state to lineage A 

(green line). The error bars represent the standard deviation of the trajectories from the 

mean values. The red lines show the decreases in CB and ATFB as the bipotent cell 

follows the trajectory to commit to lineage A. A primed bipotent cell reaches either 

committed state faster than an uncommitted cell does, primarily due to the fact that 

accumulation of new transcription factor molecules (protein synthesis) is a much slower 

process than deactivation of existing active transcription factor molecules. Furthermore, 

cytokine signaling has been shown to accelerate differentiation, so the dynamics of 

activated receptors and transcription factors are likely to influence the kinetics of 

differentiation. 

5.3.6. Comparison to experiments 

Figure 5.7A shows a widely accepted branching diagram for differentiation from the 

common myeloid progenitor (CMP). CMPs undergo lineage-restricted differentiation to 

form either granulocyte-macrophage progenitors (GMPs) or megakaryocyte-erythrocyte 
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progenitors (MEPs). GMPs give rise to neutrophils or macrophages, whereas MEPs 

differentiate into megakaryocytes or erythrocytes. It has been recently demonstrated that 

alternative routes of differentiation are possible in hematopoiesis: HSCs and multipotent 

progenitors can bypass canonical intermediate states in reaching mature states, suggesting 

that these lineage-restricting steps may be more complex than a series of simple binary 

decisions. We have shown alternative trajectories analogous to these in Figure 5.7A (gray 

arrows). In Figure 5.7B, the light green and light red lines represent 200 individual 

stochastic trajectories from the strong inhibition model that committed to lineage A and 

lineage B, respectively. The dark green and dark red lines show the average of these 

trajectories. As the strong inhibition model cannot generate a bipotent state, all of the 

trajectories are directed towards single-lineage populations (A or B). In Figure 5.7C, the 

light blue, gray, and light red lines denote 200 individual stochastic trajectories from the 

moderate inhibition model that committed to lineage A, the bipotent state, and lineage B, 

respectively. The dark blue line denotes the average of all trajectories committing to 

either lineage A or the bipotent state. The dark red line denotes the average of all 

trajectories committing to either lineage B or the bipotent state.  

 To qualitatively compare the receptor dynamics predicted by our model to those 

seen in experiments, we compared our simulations to lineage-specific receptor expression 

from microarray data40 (graciously provided by Tariq Enver, University of Oxford); the 

data were collected at multiple time points during differentiation of multipotent myeloid 

progenitors (FDCP-mix, which are CMP-like progenitors) across three lineages 

(neutrophil, erythrocyte, and megakaryocyte)40. The relative mRNA expression levels of 

the lineage-specific receptors – erythropoietin receptor (EPOR), granulocyte colony-
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stimulating factor receptor (GCSFR), and thrombopoietin receptor (TPOR) – were 

extracted from the processed microarray data. Since the phenotypic heterogeneity was 

also quantified at each time point in these microarray experiments, we were able to 

perform a simple deconvolution to estimate the contribution of each distinct cell type to 

the overall signal (see Table 5.4). Therefore, the receptor expression trajectory for a given 

lineage in Figures 5.7D-F represents the average of only those multipotent, bipotent, and 

committed cells that lie along that specific lineage path (as is also the case for the average 

computational trajectories shown in bold lines in Figures 5.7B-C) and excludes those 

cells that belong to other commitment paths (for example, the TPOR trajectory includes 

blasts and megakaryocytes, but excludes erythroblasts, erythrocytes, and neutrophils 

which were also present in the in vitro cultures used for microarray analysis). The level of 

receptor was normalized to the basal levels in the CMP state. The error bars show the 

standard error of the mean from three independent experiments. 

 We constructed phase plots of EPOR and GCSFR showing the receptor 

trajectories (t = 0 to 7 days) as CMPs differentiate into either erythrocytes or neutrophils 

(Figure 5.7D). Induction of CMPs with EPO or GCSF drives cell commitment to the 

erythrocytic (red line) or the neutrophilic (green line) lineage, respectively. During 

neutrophil commitment, GCSFR expression is significantly upregulated, but EPOR 

expression stays at or below basal levels; conversely, during erythrocyte commitment, 

EPOR expression is increased and GCSFR expression is unchanged or slightly reduced. 

Figure 5.7E shows the experimental phase plot of TPOR and GCSFR expression when 

CMPs are induced to differentiate into megakaryocyte or neutrophil lineages by 

stimulating with TPO (blue line) and GCSF (green line), respectively. As in Figure 5.7D, 
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receptor expression corresponding to the induced lineage is upregulated and the receptor 

expression corresponding to the other lineage is unchanged or even slightly 

downregulated. Figure 5.7F shows the phase plot from the differentiation experiments to 

erythrocytic and megakaryocytic lineages. Induction of CMPs with Epo or Tpo drives 

CMPs to either the erythrocytic (red line) or the megakaryocytic (blue line) lineage. 

Interestingly, during erythrocyte and megakaryocyte commitment, EPOR and TPOR are 

co-upregulated; however, the observed increase was higher for the receptor 

corresponding to the specific lineage that was predominantly generated. Statistical 

analysis was performed to deduce positive receptor correlation for the receptor pairs in 

Figures 5.7D, 5.7E, and 5.7F by comparing the overall slope of each trajectory (inverted 

to lie along the x-axis, if appropriate) at both the 3-day and 7-day time points to a value 

of zero (no correlation) by a one-sample, one-tailed t-test. The correlation in receptor 

expression for EPOR-GCSFR and TPOR-GCSFR was either negative or not statistically 

significant. However, the EPOR-TPOR receptor pair showed a positive correlation with 

statistical significance. The symbols in Figure 5.7F denote the 3-day (†, *) and 7-day (‡, 

#) time points during erythrocyte and megakaryocyte differentiation from the CMP (p-

values: † (0.027), * (0.009), ‡ (0.060), # (0.008)). 

 Comparing experimental results to the model simulations, we note that the 

trajectories in the erythrocyte-neutrophil (Figure 5.7D) and neutrophil-megakaryocyte 

(Figure 5.7E) plots compare well with the strong inhibition model (Figure 5.7B) and the 

trajectories from the erythrocyte-megakaryocyte plot (Figure 5.7F) show agreement with 

the moderate inhibition model (Figure 5.7C). This inference is validated by the widely 

accepted observation that the transcription factors for the erythrocytic and 
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megakaryocytic lineages are strongly cross-antagonistic to the transcription factor for the 

neutrophil lineage. Other than evolutionary constraints, the model suggests that the 

strength of the transcriptional cross-antagonism can dictate whether two distinct lineage-

specific receptors (and the corresponding lineage-specific transcription factors) can be 

co-upregulated, which in turn can influence the nature of the instructive, possibly 

conflicting, cues that the cell receives. This paradigm may highlight different modes of 

receptor regulation, and corresponding transcriptional activity, in various stages and 

branches of hematopoiesis (e.g., Figure 5.7A). 

 

5.4. Discussion 

Mathematical models of lineage commitment during hematopoiesis have generally 

analyzed cell-fate decisions from an intrinsic standpoint. Here, we show how extrinsic 

regulation can play a role in instructing lineage choice and, furthermore, how a cell might 

process and respond to conflicting extracellular cues. It has been extensively debated 

whether cytokines play an instructive or permissive role during lineage commitment. In 

this work, we have assumed that cell-fate decisions can be stochastic but that external 

cues can strongly bias this stochasticity and instruct cells to specific lineages. A recent 

publication definitively demonstrated an instructive role for cytokines in hematopoiesis20. 

This strongly underscores our need to understand how extracellular cues, either in 

isolation or in combination, influence hematopoiesis. Our model also suggests a possible 

alternative mode of commitment, whereby an uncommitted multipotent progenitor may 
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commit directly to a mature lineage without transitioning through a bipotent state. This 

potential plasticity has been seen experimentally in HSCs4 and multipotent progenitors2. 

The initial cell state that is modeled here is a common multipotent progenitor that 

expresses multiple lineage-specific receptors and transcription factors at low levels and is 

capable of differentiating along several lineages. In particular, two lineages that may 

exhibit different levels of transcriptional cross-antagonism are analyzed. The lineage 

commitment decision is modeled to be driven by the accumulation of the functionally 

active form of the lineage-specific transcription factor. This event is driven through two 

positive feedback loops, a synthesis loop that produces the transcription factor and a 

regulatory loop that aids in the activation of the transcription factor. This two-step 

positive feedback mechanism provides a means to externally regulate the classical 

autofeedback loop and can be of general significance in cell-fate decision models. In our 

lineage commitment model, the regulatory loop targets the cell-surface receptor, but 

analogous topologies may be seen in systems where the regulation is achieved 

extracellularly (upregulating the ligand) or intracellularly (upregulating a rate-limiting 

enzyme in the signaling pathway). Also, it should be noted that even though we have 

considered the external stimuli to be cytokines, they may also be cell-cell interactions, 

cell-matrix interactions, mechanical cues, or other diffusible factors.  

 Through steady-state response plots, we have shown that the system exhibits 

ultrasensitivity to ligand and can achieve multistability in active transcription factor 

levels (Figure 5.4). Here, ultrasensitivity to ligand confers switch-like behavior in cell-

fate specification. Multistability provides memory to both the intermediate (bipotent) and 

committed cell states, enabling the system to robustly sustain its current state even when 
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external stimuli to sub-threshold levels after switching. Although the system modeled 

here represents a reversible switch, irreversibility during differentiation can be achieved 

by epigenetic means such as chromatin remodeling. 

 Hematopoiesis is traditionally viewed as a process in which a HSC undergoes 

several lineage-restricted binary decisions to reach the mature state. However, 

hematopoiesis may be more fluid than the classical paradigm suggests, as recent 

experiments have shown that hematopoietic stem cells can completely bypass canonical 

progenitor states during lineage commitment. While we acknowledge that the classical 

view of lineage specification invokes binary decisions, it is possible that binary cell fate-

choices are a special case of a more general decision-making strategy. For example, in 

hematopoiesis, the common lymphoid progenitor appears to be oligopotent in producing 

T cells, B cells, and NK cells without any observed bipotent intermediate. Our network 

topology is capable of generating both binary and ternary cell-fate decisions, depending 

on the strength of transcriptional cross-antagonism. For example, in Figure 5.5, strong 

inhibition enables only a binary cell-fate choice; however, simply relaxing the strength of 

the inhibition to moderate levels (without changing the topology) enables three possible 

fates from the uncommitted state.  

 In support of the stochastic theory of commitment, our model suggests that, 

irrespective of the strength of external factors, intrinsic noise in transcriptional networks 

can switch a significant percentage of cells to a committed state or the bipotent state; 

however, in support of the instructive theory, extrinsic cues can still strongly bias the 

majority of the uncommitted cell population to the final state induced by the higher 

ligand signal (e.g., see Figure 5.5). Our model suggests a new paradigm that integrates 
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classical and alternative modes of lineage commitment and also accommodates both 

stochastic and instructive roles in hematopoiesis (Figure 5.8). It is generally appreciated 

that upstream commitment events are more stochastic in nature while downstream events 

are more instructive. Stochastic events in HSCs and multipotent progenitors can 

potentially lead to the generation of all mature cell types, explaining ‘normal’ 

hematopoiesis even when a lineage-specific receptor is knocked out (although other non-

canonical extrinsic cues may also play compensatory roles). In parallel, instructive 

cytokine signaling in multipotent progenitors and bipotent progenitors, which can 

strongly bias and accelerate lineage commitment, may drive stress responses and restore 

homeostasis. Furthermore, emerging alternative commitment paths suggest that decision-

making in hematopoietic progenitors need not be purely binary. HSCs have been shown 

to bypass multipotent progenitors and directly produce bipotent MEPs and common 

lymphoid progenitors appear to directly generate T cells, B cells, and NK cells. The 

model presented in this work suggests a framework in which both binary and ternary 

decisions may be possible in multipotent CMPs. Such bypass mechanisms in 

commitment may also provide important redundancies that ensure mature cell production 

if a specific intermediate state becomes dysregulated. 

 Many of the predictions from our minimal, multipotent commitment model can be 

experimentally verified. Multipotent and bipotent progenitors can be identified and sorted 

with multi-color flow cytometry, using specific cell-surface markers for the lineages of 

interest. Cytokine-induced time course experiments conducted on these bipotent cells can 

corroborate whether they reach mature states faster than the corresponding multipotent 

progenitors. Experiments with conflicting extracellular ligand cues can be useful in 
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determining the strength of the instructive cues, the degree of transcriptional cross-

antagonism between lineages, and the existence of a bipotent progenitor. For example, to 

analyze the differentiation paths of erythrocytes and neutrophils from a common 

progenitor, FDCP-mix cells can be induced with both Epo and GCSF and the trajectories 

of the expression of the lineage-specific transcription factors (GATA1, PU.1) and 

receptors (EPOR, GCSFR) can be determined by sensitive flow cytometry measurements. 

Furthermore, groundbreaking new bioimaging techniques which enable observation of 

single cells over an extended period should mitigate technical difficulties that have 

hampered such analyses and should help to further elucidate the roles of extrinsic and 

intrinsic regulation on cell commitment decisions. 



Figure 5.1 

 

Figure 5-1 A minimal model of multilineage commitment 

A multipotent progenitor expresses lineage-specific receptors (RA and RB) and inactive 
transcription factors (ITFA and ITFB) at low levels with the potential to differentiate into lineage 
A or B. Addition of ligand (LA, LB) leads to complex formation (CA, CB), which activates the 
corresponding lineage-specific transcription factor. Active TF (ATFA, ATFB) binds to the 
response elements present upstream of the transcription factor and receptor genes and induces 
two positive feedback loops (dashed green arrows). To account for cross-antagonism between the 
lineages, the active transcription factors are modeled to competitively inhibit the activation of the 
positive feedback loops in the other lineage (dashed red lines). F1A and F2A denote the respective 
strengths of the transcription factor and receptor feedback loops for lineage A; similarly, F1B and 
F2B represent the corresponding feedback strengths for lineage B. Inhibitor dissociation constants 
KIA and KIB denote the inhibitory effect of A on B and B on A, respectively. 
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Figure 5.2 

 

Figure 5-2 Effect of the positive feedback loops on the on-state ATFA levels 
 156
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A. Strengths of the autofeedback loops (F1A and F1B) are varied for both lineages and the steady-
state values of ATFA are plotted for the no inhibition condition (KIA = KIB = ∞), keeping the 
strength of the receptor feedbacks (F2) constant. B. Strengths of the receptor feedback loops (F2A 
and F2B) are varied and the values of ATFA are plotted for the no inhibition condition, keeping the 
strength of the auto feedbacks (F1) constant. C. Same as part A except with moderate inhibition 
(KIA = KIB = 400 molecules). D. Same as part B except with moderate inhibition. E. Cross-
sectional plot from C for various values of F1A. F. Cross-sectional plot from D for various values 
of F2A. G. Same as part A except with strong inhibition (KIA = KIB = 50 molecules). H. Same as 
part B except with strong inhibition. No inhibition and strong inhibition give rise to only on or off 
populations, whereas moderate inhibition can generate a third intermediate population. 



Figure 5.3 

 

 

 

Figure 5-3 Effect of the positive feedback loops on the on-state ATFB levels 

Strengths of the autofeedback loops (F1A and F1B) are varied for both lineages and the steady-state 
values of ATFB are plotted for no (A), moderate (C) and strong (E) inhibition, keeping the 
strength of receptor feedback (F2A and F2B) constant. Strengths of the receptor feedback loops 
(F2A and F2B) are varied and the values of ATFB are plotted for no (B), moderate (D) and strong 
(F) inhibition, keeping the strength of autofeedback (F1A and F1B) constant. 
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Figure 5.4 

 

 

 

Figure 5-4 Effect of ligand on the on-state ATF levels 
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A. Phase plot showing the steady-state ATFA levels (blue – low, yellow – medium, red – high) 
when LA and LB values are varied. B. Phase plot showing the steady-state ATFB levels when LA 
and LB values are varied. Low LA and low LB do not commit the uncommitted cell to either 
lineage (overlapping blue region in A and B). Low LA and high LB values commit the cell to 
lineage B (blue region in A and red region in B). High LA and low LB values commit the cell to 
lineage A (red region in A and blue region in B). High LA and high LB commit the cell to the 
bipotent state (overlapping yellow region in A and B). Steady-state response plots: C. Increasing 
LA from 0, with LB constant at 300, abruptly switches the cell from the committed B state to the 
bipotent state (increase in ATFA to intermediate level) after reaching a threshold concentration 
(solid red line). After achieving the bipotent state, decreasing LA to sub-threshold values does not 
immediately switch the cell state, suggesting significant memory in the system (dotted red line). 
D. Increasing LA from 0, with LB constant at 300, decommits the cell to the bipotent state 
(decrease in ATFB to intermediate level) after reaching the threshold concentration (solid blue 
line). After achieving the bipotent state, decreasing LA to sub-threshold values does not 
immediately switch the cell state, again suggesting significant memory (dotted blue line). E. 
Increasing LA from 0, with LB constant at 100, abruptly switches the committed B cell to the 
bipotent state (increase in ATFA to intermediate level) and then again to the committed A state 
(increase in ATFA to high level) after reaching the corresponding threshold concentrations (solid 
red line). After achieving the bipotent state or the committed state, decreasing LA to sub-threshold 
values does not immediately switch the cell response, suggesting significant memory in both 
states (dotted and dot-dash red line). F. Increasing LA from 0, with LB constant at 100, decommits 
the cell to the bipotent state (decrease in ATFB to intermediate level) and then again to the 
committed lineage A state (decrease in ATFB to low level) after reaching the corresponding 
threshold concentrations (solid blue line). After achieving the bipotent state or the committed 
lineage A state, decreasing LA to sub-threshold values does not immediately switch the cell 
response, suggesting significant memory in both states (dotted and dot-dash blue line). Plots C 
and D show bistable expression of ATFA and ATFB; plots E and F exhibit both bistable and 
tristable expression of the transcription factors. 



Figure 5.5 

LA = 0, LB = 350 

 

LA = 100, LB = 250 

 

LA = 175, LB = 175 

 

Figure 5-5 External regulation of stochastic transitions 
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Three different LA|LB combinations (0|350, 100|250, and 175|175) were run using the stochastic 
version of the model with no, moderate, or strong inhibition conditions and the system was 
allowed to reach steady state. ATFA and ATFB values from 10,000 runs for each condition are 
plotted here as three-dimensional histograms. With strong inhibition, the system cannot achieve 
the intermediate, bipotent state that is seen with moderate inhibition. When induced with only one 
ligand (e.g., 0|350), the initial population, for all inhibition conditions, commits predominantly to 
the lineage corresponding to that ligand. When the uncommitted state is stimulated with equal 
values of ligand (175|175), the no inhibition condition primarily results in a state that corresponds 
to high activation of both transcription factors (unlikely to be a biologically relevant state for cell-
commitment decisions); the strong and the moderate inhibition conditions result in significant 
population of all of the available states except the uncommitted state. When one ligand value is 
higher (e.g., 100|250), in the presence of inhibition, the majority of the cells committed to the 
lineage corresponding to the higher ligand concentration. The number next to each individual 
population denotes the percentage of the total population when treated with the given 
combination of LA and LB. 



Figure 5.6 

 

Figure 5-6 Time trajectories during lineage commitment 

A. Phase plot of total transcription factor (ITF+ATF) for the four steady-state populations 
(uncommitted, A, B, and bipotent). B. Phase plot of active transcription factor (ATF). C. Time 
trajectories for ATFA in panel B for the transition from the uncommitted cell to committed A state 
(blue line) and bipotent state (orange line) and from the bipotent state to committed A state (green 
line) is shown as a time course plot. The error bars represent the standard deviation of the mean. 
The red line shows the level of ATFB as the bipotent cell transitions to the committed A state. D. 
Phase plot of total receptor (R+C). E. Phase plot of active complex (C). F. Time trajectories for 
CA in panel E for the transition from the uncommitted cell to committed A state (blue line) and 
bipotent state (orange line) and from the bipotent state to committed A state (green line) is shown 
as a time course plot. The error bars represent the standard deviation of the mean. The red line 
shows the level of CB as the bipotent cell transitions to the committed A state. In the phase plots, 
the arrows indicate the direction of commitment (averaged over 200 stochastic runs each): from 
the uncommitted state, the three possible commitment trajectories lead to pure lineage A, pure 
lineage B, and the bipotent state. In separate simulations starting with the bipotent state and with 
initial ligand concentrations sufficient to destabilize this state, the two possible commitment 
trajectories lead to pure lineage A and pure lineage B. Each trajectory has several nodes and the 
number at each node denotes the average time (in hours) it takes to reach the node from the initial 
state. Each black dot in A, B, D and E represents the endpoint (100,000 min) of an individual 
stochastic trajectory. 
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Figure 5.7 

 

Figure 5-7 Comparison of multilineage commitment model to experimental data 
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A. The classical model of hematopoiesis is given here as a branching diagram showing the 
differentiation paths from the common myeloid progenitor (CMP) to four distinct myeloid 
lineages (megakaryocyte, erythrocyte, neutrophil, and macrophage) via bipotent progenitors 
(GMP – granulocyte/macrophage progenitor and MEP – megakaryocyte/erythrocyte progenitor). 
Other possible alternate routes of commitment, bypassing the bipotent state, are shown as gray 
lines. B. Stochastic simulations of total receptor levels under strong competitive inhibition. Light 
green and red lines indicate the individual trajectories from the uncommitted cell to lineages A 
and B, respectively. The dark red and green lines denote the averaged trajectories of all stochastic 
runs. C. Stochastic simulation for total receptor levels under moderate competitive inhibition 
condition. Light blue, light red, and gray lines indicate the individual trajectories from the 
uncommitted cell to A, B, and the bipotent state, respectively. The dark blue line denotes the 
average value of all stochastic runs that commit to either lineage A or the bipotent state; the dark 
red line denotes the average value of all stochastic runs that commit to either lineage B or the 
bipotent state. D. Trajectories from microarray data showing upregulation of EPOR and GCSFR 
during erythrocyte (red) and neutrophil (green) commitment from the CMP, respectively. E. 
Trajectories from microarray data showing upregulation of TPOR and GCSFR during 
megakaryocyte (blue) and neutrophil (green) commitment from the CMP, respectively. F. 
Trajectories from microarray data showing upregulation of EPOR and TPOR during erythrocyte 
(red) and megakaryocyte (blue) commitment from the CMP. The data in D-F represent the 
average of the multipotent, bipotent, and mature cells for any single lineage (see Table S4), thus 
enabling a direct comparison to the model simulations. The error bars in D-F show the standard 
error of the mean. The symbols in F denote the 3-day (†, *) and 7-day (‡, #) time points during 
erythrocyte and megakaryocyte differentiation from the CMP, respectively. Statistical analysis 
was performed to deduce positive correlation in receptor pair upregulation by comparing the 
overall slope of each trajectory (inverted to lie along the x-axis, if appropriate) at both the 3-day 
and 7-day time points to a value of zero (no correlation) by a one-sample, one-tailed t-test (p-
values: † (0.027), * (0.009), ‡ (0.060), # (0.008)). 

 



Figure 5.8 

 

Figure 5-8 Proposed paradigm for hematopoiesis 

Extrinsic (instructive) and intrinsic (stochastic) cues can both play roles in commitment of 
progenitor cells. In addition to classical pathways of commitment (solid arrows), bypass 
mechanisms have been reported for HSCs (dashed green arrow) and our model suggests that this 
may be possible for multipotent progenitors as well (dashed purple arrow). 
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Table 5.1 

Table 5-1 Ordinary differential equations for the deterministic model 
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Table 5.2 

Table 5-2 Rate constants and initial conditions for the deterministic and stochastic models 
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Table 5.3 

Table 5-3 Probability functions and reactions for the stochastic model 
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Table 5.4 

Table 5-4 Parameter fitting of microarray data 
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