188 research outputs found

    Research Directions in Network Service Chaining

    Get PDF
    Network Service Chaining (NSC) is a service deployment concept that promises increased flexibility and cost efficiency for future carrier networks. NSC has received considerable attention in the standardization and research communities lately. However, NSC is largely undefined in the peer-reviewed literature. In fact, a literature review reveals that the role of NSC enabling technologies is up for discussion, and so are the key research challenges lying ahead. This paper addresses these topics by motivating our research interest towards advanced dynamic NSC and detailing the main aspects to be considered in the context of carrier-grade telecommunication networks. We present design considerations and system requirements alongside use cases that illustrate the advantages of adopting NSC. We detail prominent research challenges during the typical lifecycle of a network service chain in an operational telecommunications network, including service chain description, programming, deployment, and debugging, and summarize our security considerations. We conclude this paper with an outlook on future work in this are

    Network service chaining with efficient network function mapping based on service decompositions

    Get PDF
    Network Service Chaining (NSC) is a service concept which promises increased flexibility and cost-efficiency for future carrier networks. The two recent developments, Network Function Virtualization (NFV) and Software-Defined Networking (SDN), are opportunities for service providers to simplify the service chaining and provisioning process and reduce the cost (in CAPEX and OPEX) while introducing new services as well. One of the challenging tasks regarding NFV-based services is to efficiently map them to the components of a physical network based on the services specifications/constraints. In this paper, we propose an efficient cost-effective algorithm to map NSCs composed of Network Functions (NF) to the network infrastructure while taking possible decompositions of NFs into account. NF decomposition refers to converting an abstract NF to more refined NFs interconnected in form of a graph with the same external interfaces as the higher-level NF. The proposed algorithm tries to minimize the cost of the mapping based on the NSCs requirements and infrastructure capabilities by making a reasonable selection of the NFs decompositions. Our experimental evaluations show that the proposed scheme increases the acceptance ratio significantly while decreasing the mapping cost in the long run, compared to schemes in which NF decompositions are selected randomly

    Network service chaining using segment routing in multi-layer networks

    Get PDF
    Network service chaining, originally conceived in the network function virtualization (NFV) framework for software defined networks (SDN), is becoming an attractive solution for enabling service differentiation enforcement to microflows generated by data centers, 5G fronthaul and Internet of Things (IoT) cloud/fog nodes, and traversing a metro-core network. However, the current IP/MPLS-over optical multi-layer network is practically unable to provide such service chain enforcement. First, MPLS granularity prevents microflows from being conveyed in dedicated paths. Second, service configuration for a huge number of selected flows with different requirements is prone to scalability concerns, even considering the deployment of a SDN network. In this paper, effective service chaining enforcement along traffic engineered (TE) paths is proposed using segment routing and extended traffic steering mechanisms for mapping micro-flows. The proposed control architecture is based on an extended SDN controller encompassing a stateful path computation element (PCE) handling microflow computation and placement supporting service chains, whereas segment routing allows automatic service enforcement without the need for continuous configuration of the service node. The proposed solution is experimentally evaluated in segment routing over an elastic optical network (EON) network testbed with a deep packet inspection service supporting dynamic and automatic flow enforcement using Border Gateway Protocol with Flow Specification (BGP Flowspec) and OpenFlow protocols as alternative traffic steering enablers. Scalability of flow computation, placement, and steering are also evaluated showing the effectiveness of the proposed solution

    Some Controversial Opinions on Software-Defined Data Plane Services

    Get PDF
    Several recent proposals, namely Software Defined Networks (SDN), Network Functions Virtualization (NFV) and Network Service Chaining (NSC), aim to transform the network into a programmable platform, focusing respectively on the control plane (SDN) and on the data plane (NFV/NSC). This paper sits on the same line of the NFV/NSC proposals but with a more long-term horizon, and it presents its considerations on some controversial aspects that arise when considering the programmability of the data plane. Particularly, this paper discusses the relevance of data plane vs control plane services, the importance of the hardware platform, and the necessity to standardize northbound and southbound interfaces in future software-defined data plane service

    Multi-domain service orchestration over networks and clouds: a unified approach

    Get PDF
    End-to-end service delivery often includes transparently inserted Network Functions (NFs) in the path. Flexible service chaining will require dynamic instantiation of both NFs and traffic forwarding overlays. Virtualization techniques in compute and networking, like cloud and Software Defined Networking (SDN), promise such flexibility for service providers. However, patching together existing cloud and network control mechanisms necessarily puts one over the above, e.g., OpenDaylight under an OpenStack controller. We designed and implemented a joint cloud and network resource virtualization and programming API. In this demonstration, we show that our abstraction is capable for flexible service chaining control over any technology domain

    Virtual-Mobile-Core Placement for Metro Network

    Full text link
    Traditional highly-centralized mobile core networks (e.g., Evolved Packet Core (EPC)) need to be constantly upgraded both in their network functions and backhaul links, to meet increasing traffic demands. Network Function Virtualization (NFV) is being investigated as a potential cost-effective solution for this upgrade. A virtual mobile core (here, virtual EPC, vEPC) provides deployment flexibility and scalability while reducing costs, network-resource consumption and application delay. Moreover, a distributed deployment of vEPC is essential for emerging paradigms like Multi-Access Edge Computing (MEC). In this work, we show that significant reduction in networkresource consumption can be achieved as a result of optimal placement of vEPC functions in metro area. Further, we show that not all vEPC functions need to be distributed. In our study, for the first time, we account for vEPC interactions in both data and control planes (Non-Access Stratum (NAS) signaling procedure Service Chains (SCs) with application latency requirements) using a detailed mathematical model

    DFCV: A Novel Approach for Message Dissemination in Connected Vehicles using Dynamic Fog

    Full text link
    Vehicular Ad-hoc Network (VANET) has emerged as a promising solution for enhancing road safety. Routing of messages in VANET is challenging due to packet delays arising from high mobility of vehicles, frequently changing topology, and high density of vehicles, leading to frequent route breakages and packet losses. Previous researchers have used either mobility in vehicular fog computing or cloud computing to solve the routing issue, but they suffer from large packet delays and frequent packet losses. We propose Dynamic Fog for Connected Vehicles (DFCV), a fog computing based scheme which dynamically creates, increments and destroys fog nodes depending on the communication needs. The novelty of DFCV lies in providing lower delays and guaranteed message delivery at high vehicular densities. Simulations were conducted using hybrid simulation consisting of ns-2, SUMO, and Cloudsim. Results show that DFCV ensures efficient resource utilization, lower packet delays and losses at high vehicle densities
    • …
    corecore