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Network Service Chaining

using Segment Routing in Multi-Layer Networks
Francesco Paolucci

Abstract—Network Service Chaining, originally conceived
in the Network Function Virtualization (NFV) framework for
Software Defined Networks (SDN), is becoming an attractive
solution for enabling service differentiation enforcement to
microflows generated by data centers, 5G fronthaul and
Internet of Things (IoT) cloud/fog nodes and traversing a
metro-core network.

However, the current IP/MPLS-over optical multi-layer
network is practically unable to provide such service chain
enforcement. First, MPLS granularity prevent microflows to
be conveyed in dedicated paths. Second, service configura-
tion for huge number of selected flows with different require-
ments is prone to scalability concerns, even considering the
deployment of a SDN network.

In this paper, effective service chaining enforcement along
Traffic Engineered (TE) paths is proposed using Segment
Routing and extended traffic steering mechanisms for micro-
flows mapping. The proposed control architecture is based
on an extended SDN controller encompassing a Stateful Path
Computation Element (PCE) handling microflow computa-
tion and placement supporting service chain, whereas seg-
ment routing allows automatic service enforcement without
the need of continuous configuration of the service node. The
proposed solution is experimentally evaluated in a Segment
Routing over Elastic Optical Network (EON) network testbed
with a deep packet inspection service supporting dynamic
and automatic flow enforcement using Border Gateway Pro-
tocol with Flow Specification (BGP Flowspec) and OpenFlow
protocols as alternative traffic steering enablers. Scalability
of flow computation, placement and steering is also evalu-
ated showing the effectiveness of the proposed solution.

Index Terms—Network Service Chaining, Software Defined
Networking, Multi-Layer Networks, Open Database, Segment
Routing, LSP, Path Computation Element, Border Gateway
Protocol, OpenFlow Protocol, flow steering.

I. INTRODUCTION

In next-generation metro and core networks, operators will

be required to transport different application traffic, from/to

specific client networks (e.g., data centers, 5G Radio Access

Networks (RAN) [2], smart Internet of Things (IoT) cloud/fog

nodes processing data from/to massively distributed sen-

sors [3], [4], blockchain-based platforms [5], [6]) where each

application may generate an huge number of low or medium

bitrate flows (i.e., MicroFlows) subject to different end-to-

end Quality of Service (QoS) requirements [7]. Moreover,

specific MicroFlows, in order to satisfy the requested QoS

and additional requirements such as traffic isolation, secu-

rity and performance monitoring, may also be required to

traverse single or combined network functions (e.g., firewall,

deep packet inspection, policers, accelerators) before reach-

ing the destination. The dynamic enforcement of combined
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functions to selected flows, called Network Service Chaining

(NSC), is a hot topic in the context of Software Defined

Networking (SDN) [8], [9]. Service chaining concepts and

deployments have known a rapid success in the context of

Virtual Function Networking (NFV) framework, for which

the setup of cascaded services is typically deployed in virtual

environments (e.g. virtual machines, containers) and are

distributed and connected across a cloud infrastructure by

a dedicated hypervisor or NFV orchestrator.

In the case of network services made available in the metro

and core network directly (e.g., through dedicated hardware,

middleboxes or edge/fog computing platforms co-located with

core metro/core nodes), efficient NSC deployment is nowa-

days limited by the current multi-layer architecture sup-

porting IP/MPLS in the packet-switching capability network

layer. Indeed, the dynamic enforcement of service chaining is

limited by the Label Switched Paths (LSP) granularity thus

preventing specific per-flow service differentiation.

MicroFlows originated in the access/aggregation network

segment are not mapped onto core LSPs in a 1:1 match

for scalability reasons (i.e., per-MicroFlow signaling is not

considered a realistic and feasible solution). Moreover, the

pure SDN framework would require a parallel configuration

of all the nodes involved in the microflow path computation,

including those providing network services. If such approach

is considered effective in the access, in local area networks or

in intra-data center scenarios, this is completely unrealistic

in a metro-core network due to scalability issues. Therefore,

the selection of one or more existing LSPs at the edge

of the core network is required when a new MicroFlow

has to be served. Such selection (i.e., flow computation)

requires specific algorithms to address network utilization

performance, scalability and fast steering enforcement. This

steering operation is currently based on local and manual

policies (e.g., enforced by means of command line interface

at the edge network elements). Nonetheless, also consid-

ering standard MPLS transport, automatic service chain

enforcement without the need of continuous and potentially

unscalable SDN configuration of middleboxes or edge/fog

nodes remains an issue.

In this work, an integrated SDN control architecture en-

abling an effective computation, deployment and control of

service chained microflows is proposed in the framework

of the Stateful Path Computation Element PCE for metro-

core multi-layer networks architecture exploiting network

information databases. The proposed solution exploits Seg-

ment Routing (SR)-based multi-layer networks [10], [11].

Segment Routing is a Traffic Engineering (TE) technique

proposed by the Internet Engineering Task Force (IETF)

that significantly simplifies the control plane operation and

natively supports service chaining enforcement without the

need of dynamically configuring the service node. The ar-

chitectural solution includes a novel flow computation el-

ement and two microflow traffic steering mechanisms, the
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former compatible with legacy equipments exploiting Flow

specification extensions for Border Gateway Protocol (BGP

FlowSpec) [12], the latter suitable for pure SDN-capable

edge nodes exploiting OpenFlow protocol. The proposed ar-

chitecture has been evaluated in an experimental multi-

layer testbed. In particular, a deep packet inspection (DPI)

service node has been implemented and validated in the

testbed, along with steering procedures at the edge node

without requiring further control configurations at interme-

diate nodes and service nodes. Extensive measurements of

flow computation and steering enforcement procedures have

been carried out to validate the feasibility and the scalability

of the proposed approach.

With respect to our preliminary work [1], this work, be-

sides related work analysis, extends and refines the ar-

chitectural aspects, introduces alternative traffic steering

mechanisms and provides overall experimental results with

focus on microflow computation and placement scalability.

II. RELATED WORK

Historically conceived in parallel with the SDN/NFV

framework, most of the literature works in service chain-

ing focuses on intra-data center scenario and targets SDN-

controlled layer-2 networks.

Work in [13] targets the placement and the composition of

security-based VNFs for apps requiring security treatment

differentiation in intra-data center networks. In particular

the work in [14] targets the optimal placement of NSC

middleboxes encompassing function dependencies and chain

correlations considering the end-to-end delay and the band-

width consumption as performance metrics.

Work in [15] proposes and implements an SDN orches-

trator with service chaining composition capabilities and

adaptive provisioning of delivery paths. The implementation

includes a northbound interface based on Representational

State Transfer (REST) Application Programming Interface

(API) exposing service deployment functions to higher-level

service orchestrator/hypervisor or applications. Service chain

enforcement is realized by standard OpenFlow-based south-

bound interfaces.

Works in [16] and [17] aim at minimizing opti-

cal/electronic/optical conversions in a data center multi-layer

infrastructure in order to efficiently deploy and connect

virtualized network functions. Optimization is proposed by

properly grouping network functions within the same DC

packet-switched island, called performance optimized data

center (POD), such that inter-POD communications through

the optical layer are minimized. The proposed architecture

includes intra-DC traffic steering performed by means of

aggregated MPLS flows or OpenFlow-based packet rule en-

forcement.

With focus on integrated inter-data center and multi-layer

connectivity, the work in [18] provides an overall network

function virtualization and orchestration architecture, mov-

ing the SDN control of a virtual tenant network in the cloud

and assessing SDN/NFV orchestration with different inde-

pendent SDN control instantiations over a common multi-

layer infrastructure. In this context, control plane functions,

e.g., PCE have also proposed to be virtualized to guarantee

replication service, improved synchronization and reliabil-

ity [19]. The recent work in [20] extends the applicability

to the 5G architecture. Virtual backhaul tenants with both

virtual control and infrastructure are deployed connecting

RAN and their virtual Evolved Packet Core (vEPC) function

residing in the cloud.

The segment routing forwarding mechanism has been

investigated and assessed in multi-layer networks, drasti-

cally simplifying control plane operation. SR enables TE

by enforcing label-stack routing only at source node, thus

avoiding complex and time-consuming signalling procedures,

either distributed, e.g., by the Reservation Protocol with TE

extensions (RSVP-TE), or triggered by a central controller,

e.g., in SDN networks using OpenFlow or NETCONF. Al-

gorithms have been proposed to effectively minimize the

network path segment list depth while addressing equal cost

multi-path selection [21] [22], thus allowing SR for service

chain utilization, which implies an increase of the average

segment list depth. The work in [10] showed an experimental

assessment in a multi-layer network including the PCE.

The work in [11] validates SR reliability mechanisms and

extends the applicability of SR to multi-domain network sce-

narios. Furthermore, the SR technology has been exploited

to provide real-time Service Level Agreement information

feedback to orchestrators deploying network services with

strict latency constraints [23].

The state-of-the-art of traffic steering solutions including

the service chaining support, have been proposed mainly

in the context of intra-DC scenarios and targeting layer-2

networks. A detailed proposal allowing service chaining in a

layer-2 network was presented in the context of the stEER-

ING framework [24], in which an enhanced SDN controller

performs both OpenFlow-based traffic steering towards pre-

programmed service chains. Furthermore, segmented service

chain configurations of middleboxes have been proposed for

a layer-2 network [25].

All these works do not consider a coordinated architecture

and an enabling technology suitable for multi-layer metro-

core network. Moreover, they do not address the scalability

issues of SDN-oriented network configuration, especially re-

lated to middleboxes enforcement due to each microflow com-

putation and steering. This work goes beyond the existing

state-of-the-art by proposing a complete control architecture

enabling efficient service chain exploiting SR over EON. In

particular, the work proposes an extended controller with a

novel flow computation element, providing full computation

and steering workflow. Moreover, it proposes two steering

techniques extending BGP Flowspec and OpenFlow enforc-

ing flow service chain without the need to directly configure

service nodes. Finally, this work provide extensive experi-

mental scalability evaluation demonstrating the feasibility

of the proposed approach.

III. SERVICE CHAINING WITH SEGMENT ROUTING:

ARCHITECTURE

The proposed architecture enabling effective NSC and

microflow computation and mapping enforcement exploiting

the SR-based multi-layer network is shown in Fig. 1. A

core/transport network connects different client networks,

hosting heterogeneous traffic flow originators, such as data

centers or fog nodes. A number of network functions are

available directly in the metro-core network as middlebox

devices, offering different or combined service treatment to

specific traffic injected in the core. For example, a deep

packet inspection function (service S1) is implemented by
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node E in Fig. 1. Several applications run in the attached

client networks generating traffic (microflow) requests. In

particular, microflow requests may be referred either to end-

to-end tunnelled traffic (e.g., deployed from network-sliced

orchestration based on NFV-enabled infrastructure, thus

identified with a MPLS label or Pseudowire/Virtual Routing

and Forwarding tags) or to general application-specific traffic

(e.g., video-on-demand).

A. Segment Routing and Stateful PCE

The core/transport multi-layer network is assumed to run

control plane based on the SDN framework. In this sce-

nario, a NSC network controller is in charge of orchestrating

connection setup/release/modification events by storing and

updating the network topology, the TE database and the

state of the established connections. For such reason, an

active Stateful PCE [26] is assumed to run inside the multi-

layer network controller.

In the use-case of Fig. 1, the metro-core network domain

is based on Segment Routing (SR) and the Stateful SR-

PCE inside the NSC Controller computes, establishes and

releases SR Label Switched Paths (SR-LSPs). Indeed, in the

SR case, TE does not require the utilization of signaling mes-

sages [10]. Specifically, a stack of MPLS labels (i.e., the SR

segment list) is enforced at the edge node of the multi-layer

network domain to each packet belonging to a given Flow to

enforce explicit routing. Moreover, SR enables effective NSC

by associating each available network service to a special

MPLS label (i.e., service label) to be included in the segment

list in the case the network service activation is desired for

the traffic conveyed in the SR-LSP. This way, intermediate

nodes and middleboxes (e.g., node E in Fig. 1) do not require

specific configurations for NSC. Service chain including more

service functions inside the network is exploited by assigning

a segment list including all the service labels associated to

the required functions with the desired order. This way, the

computed segment list represents the joint network-service

route.

In this scenario, the LSP-DB at the SR-PCE stores the

set of the segment lists (i.e., the SR-LSPs) currently used

in the network. Stateful condition of the PCE is a stringent

requirement, since bandwidth requests are not signalled in

the data plane, but only reserved in the TED and LSP-DB

databases of the PCE. Each SR-LSP LSPi entry is stored

in the LSP-DB (of size L) with a pre-planned reserved

bandwidth value Bi (where 0 ≤ i < L is the LSP-DB

entry index). The same bandwidth value is reserved for each

traversed link in the PCE TED. The service-chained flow fk
(where 0 ≤ k < K and K is the number of installed flows

in the network) requiring to traverse the core network will

be associated to an existing SR-LSP (entry i in the LSP-DB)

and its required bandwidth bik will consume part of the Bi

SR-LSP bandwidth. In the case new flow requests cannot

identify an existing SR-LSP due to bandwidth bottleneck,

the stateful PCE will instantiate a new SR-LSP in the

control plane or it will trigger lightpath activation (or EON

existing lightpath elastic operation [27]) in the optical layer

to export new links and reservable bandwidths in the TED,

by means of southbound SDN-based interfaces. For example,

OpenFlow [28] or NETCONF/YANG [29] interfaces may be

utilized to trigger parallel configuration of all the optical

nodes identified by the lightpath route without the need

of a signaling protocol. In particular, in transparent EON,

flow entries enable signal cross-connection and spectrum

filtering enforcement (in EON, flexible grid with frequency

slots multiple of 12.5GHz is employed), whereas additional

flow entries at edge nodes configure the signal tx/rx physical

parameters (e.g., transceiver type, modulation, code) [30],

including sliceable transponders and super-channels [31].

B. Flow Computation Element and Flow Steering API

In the NSC Controller, besides the SR-PCE, two novel

modules are introduced in charge of receiving, computing

and enforcing service chained microflow. The former, namely

the Flow Computation Element (FCE) module, is in charge

of receiving and computing microflow requests. The latter,

namely the Flow Steering API, communicates with the

source edge node providing the segment list or the ID of

the segment list to be enforced to the requested Flow, thus

performing traffic steering. The flow request is identified

by a flow match, a requested bandwidth value b and the

type/chain of services needed for that flow. When a new flow

request is submitted, the FCE module performs flow compu-

tation, i.e., it identifies one or more SR-LSPs established in

the control plane over which to steer the Flow. If the new

Flow cannot be served using active LSPs, one or more SR-

LSPs are properly initiated by SR-PCE at the considered

edge node using either the PCE Protocol with instantiation

capabilities [32] or the OpenFlow protocol. The FCE module

resorts to four databases to perform the Flows mapping:

1) the PCE Routing Information Base (RIB), queried to

identify the edge nodes associated to traffic source and

destination;

2) the SR-LSP database (LSP-DB), queried to retrieve the

active SR-LSPs that match the Flow constraints, edge

points and required network service chain;

3) the Traffic Engineering Database (TED), to compute

the path for possible new SR-LSPs;

4) the Flow database, storing all the installed flows with

reserved bandwidth and the related hosting LSPs.

Since the number K of installed Flows in the metro-

core network may be huge, a Flow database is proposed

to be stored in an external Open Network Database [33]

suitable for application-based control and service plane. Such

databases have been conceived in order to store TE (i.e.,

topology and per-link reserved bandwidth) and stateful ob-

jects (i.e., active connections) of different layers (i.e., light-

paths, TE links, SR-LSPs) and the correlation among them,

exploiting the scalability performances of the latest genera-

tion of databases technologies. The flow database stores the

flows currently installed in the network. Each flow entry

includes the flow attributes, the bandwidth reserved for the

flow and the hosting SR-LSP.

Fig. 2 shows the flow computation and steering workflow.

First, the new flow request (identified by source/destination

nodes, required bandwidth, requested service chain) is pro-

cessed in order to retrieve the source and destination edge

nodes (i.e., the data center gateways) by querying the RIB

database. Then, candidate SR-LSPs are selected in the LSP-

DB satisfying the requested service chain. In the case of no

candidates, a request will be issued to the Stateful SR-PCE

in order to setup a new SR-LSP with a reserved overall ca-

pacity Bi. Among the set Scand of candidates (of size W ≤ L,

and index 0 ≤ w < W ), if W > 1, specific policies are applied
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Fig. 1. Segment Routing based Network architecture enabling service chaining.

to find the most suitable LSP. For example, least congested

policy may be run by computing the current LSPw amount of

bandwidth Bcur
w =

∑
k∈Sw bwk (where Sw denotes the subset

of flows fk carried out by the only LSP LSPw) consumed

by all the flows carried out by the candidate SR-LSP and

thus, obtaining the available bandwidth Bav
w = Bw − Bcur

w .

Finally, the least congested candidate LSP is identified for

which maxScand
Bav

w − b is verified. To perform that, the Flow

database and the LSP-DB need to be queried in order to

retrieve, for each candidate SR-LSP LSPw the bwk and the

Bw values, respectively.

The described control scheme also enables TE solutions.

In Fig. 1, two segment lists (i.e., SR-LSPs) are used between

edge nodes A and H , each one allowing 1000 bandwidth

units. The segment list B-E-S1-H has ID=1 and specifies

the red SR-LSP including the execution of the DPI service

(service label S1) at node E. The segment list H has ID=2

and is composed only by the destination node identifier (i.e.,

the A-H shortest path), thus identifying the yellow SR-LSP.

Moreover, three Flows generated by two applications (i.e.,

app X and Y ) are already established, as shown in the

Flow DB table, and associated with one of the SR-LSPs.

When a new Flow arrives requiring DPI treatment, FCE

selects SR-LSP with ID=1. However, if requested bandwidth

exceeds 500 bandwidth units, the FCE should compute a new

segment list, for instance C-E-S1-H with ID=3 enforcing

path A-C-D-E-F -H , e.g. to avoid the bottleneck link B-

D, and assuring the DPI service at node E. In the case

DPI service is not required, the segment list with ID=2 is

selected.

IV. EXTENDED TRAFFIC STEERING MECHANISMS

After flow computation, if a hosting SR-LSP is identified,

the flow request is stored in the Flow database. The flow en-

try in the database includes the hosting LSPi allowing flow

computation for future requests. Then, actual Flow steering

is enforced by means of Flow steering API, a southbound

interface which may be dedicated to flow instantiation or

shared by other control protocols (e.g., for tunnel configura-

tions). The selected API depends on the controlled network

technology. In the case of legacy MPLS networks existing

protocols such as BGP may be exploited using the Flowspec

extensions proposed in Sec. IV-A, while in case of pure SDN

networks, SDN-based protocols such as OpenFlow may be

exploited, as detailed in Sec. IV-B.

A. Extended BGP Flowspec steering

Flow specification extensions for Border Gateway Protocol

(BGP FlowSpec) have been proposed in order to match a flow

based on packet attributes and enforce it to specific actions,

mainly addressing security issues [12]. Recent extensions

enable the of a specific action to be enforced to the flow

identified by BGP FlowSpec match fields.

The proposed steering procedure conceives a BGP speaker

located at the NSC Controller as southbound interface that

collects the outputs of flow computation and sends one or

more UPDATE messages only to the ingress edge node of

the selected SR-LSPs. The UPDATE message encloses the

information required to univocally identify the Flow, i.e.,

the FlowSpec match attributes (e.g., source/destination IP

address, IP protocol, layer4 ports, Differentiated Service

Code Point - DSCP) and the related actions to be applied

to the specific Flow. The main advantage of this technique

is that BGP is already widely utilized and available in most

core network equipment, thus core edge router can perform

steering directly by processing BGP FlowSpec UPDATE mes-

sages sent by the NSC Controller.

In order to disaggregate the steering enforcement from the

mechanism utilized to instantiate the SR-LSP in the ingress

node (it is supposed that the SR-LSP has been previously

configured in the ingress node equipped with the computed

segment list) we propose to extend BGP FlowSpec with three

novel actions to create, remove and modify the Flow steering

into existing SR-LSPs. Each action is encoded with three

fields enclosing:

1) the action type (i.e., create, modify, remove)
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Fig. 2. Flow Computation Element and Flow Steering API: flow
computation and steering workflow.

2) the LSP identificator into which the Flow has to be

steered;

3) the indication of the protocol instantiating the SR-LSP

(e.g., PCEP, NETCONF, OpenFlow, MPLS, Segment

Routing), allowing the steering independently from the

protocol (and the technology) utilized to instantiate the

LSP.

B. OpenFlow-based steering

In the case the edge node is a SDN-capable node (e.g.,

edge OpenFlow switch) the traffic steering mechanism may

be enforced via OpenFlow protocol by configuring flow and

group tables of the switch. Similarly with respect to BGP

Flowspec, the SR-LSP is first installed in the ingress switch

by means of a GROUP_MOD message, specifying the computed

segment list, i.e. the MPLS stacked labels.

In this specific case, the INDIRECT group type is utilized

since it allows the aggregation of different flow matches onto

a single list of actions. The purpose of an INDIRECT group

is to consolidate common actions of a set of flows in order

to reduce flow table memory consumption. Then, for each

microflow steering, a FLOW_MOD message is generated by

the controller specifying the match and the default action

(i.e., application to the specified OpenFlow group). In the

case of multiple flows defining a single service, a bulk of

FLOW_MOD messages is enforced for each flow, followed by a

BARRIER_REQ message. This allows steering enforcement to

be applied in an atomic fashion. Moreover, this will trigger

the switch to reply with a BARRIER_REP message thus

acknowledging the overall traffic enforcement activation.

V. EXPERIMENTAL RESULTS: DEMONSTRATION AND

SCALABILITY

The proposed NSC-enabled control architecture have been

evaluated in a SR multi-layer network testbed in two dif-

ferent configurations, exploiting the two different steering

techniques and southbound APIs detailed in the previous

section.

In the first configuration, shown in Fig. 3, legacy IP/MPLS

over optical elastic optical network is employed and the

considered data plane is composed by Juniper routers (Rx

in Fig. 3) running OSPF-TE equipped with a set of agents

enabling the utilization of SR [10] and Ericsson SPO 1400

ROADMs, connected by means of Gigabit Ethernet interfaces

and muxponder optical card supporting 10G lightpaths.

In the second configuration, shown in Fig. 4, pure SDN

over optical is employed, utilizing the same optical devices,

whereas Juniper routers are replaced by OpenFlow switches

(Hx in Fig. 3), implemented either with Ubuntu 16.04

Linux boxes (CPU Intel QuadCore 2GHz equipped with 4GB

RAM) running Open vSwitch (OVS) 2.4 kernel mode [34]

or with OpenFlow-enabled HP ProCurve 2500/2800 switches

equipped with optical interfaces.

In both configurations, a Linux box server equipped with

two Intel Gigabit Ethernet interfaces is included (i.e., node F

in Fig. 3 and Fig. 4) implementing a simplified DPI with fire-

wall capabilities and SR functionalities by using OVS v2.4.

The DPI participates to the OSPF-TE instance announcing

node F with DPI service (service label S1). The overall

network is controlled by a NSC Controller including a SR-

PCE [10] and the Flow Computation module, as described in

Sec. III-B, developed in C++. The NSC Controller runs over

a Linux Ubuntu 16.04 machine equipped with an Intel Xeon

Quad-core CPU (3.40GHz) and 4GB RAM. Two different

southbound API are employed in the two configurations. In

the legacy configuration, a BGP FlowSpec Speaker module

is included, developed in C++. Edge node R1 is equipped

with an agent running PCEP and extended BGP FlowSpec.

Node agent elaborates BGP FlowSpec update messages

and enforce flow steering by sending interactive CLI-based

scripts to edge routers. In the pure SDN configuration, the

implementation has been embedded in the open source SDN

Ryu controller, and the OpenFlow protocol is employed for

control communication directly with the OpenFlow switches

control interface. OpenFlow version 1.3 is employed. Traffic

flows are injected by a Spirent SPTN4U traffic generator

and analyzer connected to edge nodes R1 (S1) and R5 (S5),

respectively.

For both configurations, two 10G lightpaths lp1 and lp2

are installed in the optical network, providing optical bypass

and 2 TE links at routers OSPF-TE instance interconnecting

R1(H1)-R3(H3) and R1(H1)-R5(H5), respectively. Therefore,

flows requiring DPI will be sent to lp1 through the F -S1-

R5(H5) segment list without the need of configuring neither

intermediate nodes nor the DPI server. In fact, R1(H1)-

F shortest path is the two-hops R1(H1)-R3(H3)-F route

through lp1 bypass). Flows not requiring DPI service will

be sent to lp2 through the R1(H1) segment list, which is the

shortest path between edge nodes R1(H1) and R5(H5).
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Flowspec as Flow Southbound API.

Flow generator Flow analyzer

SR-PCE

SDN Controller

H1 H2 H3 H4 H5

O1

uFlow

S: 10.19.120.2

D: 10.19.122.20

Protocol: UDP

Port: [4550, 4551] 

F-S1-H5 

(group 2)
F

OvS

DPI

O3

lp1
lp2

O5

OpenFlow

OpenFlow switches

H5 

(group 3)

10.30.2.73

10.30.2.34

Linux box

Fig. 4. Experimental testbed with SDN switches using OpenFlow
as Flow Southbound API.

With reference to the the first configuration of Fig. 3, Fig. 5

shows a Wireshark capture collected at the BGP Speaker

of the stateful PCE (IP address 172.17.18.3). The capture

shows the UPDATE messages sent to the agent (IP address

172.17.18.1). In particular, one message referred to a flow

requesting DPI service is expanded showing the FlowSpec

NLRI field describing the Flow match filter (i.e., source ad-

dress 10.19.123.1, destination address 10.19.146.1, protocol

TCP, TCP port 4044). Moreover, the novel Extended Commu-

nities Path Attribute is shown, enforcing flow steering action

to a generic path. In this case the ACTION field is set to New

Flow Steer. The PROTOCOL field is set to Local SR-SC list,

i.e., the hosting path id is identified within the set of segment

lists including special SC labels installed locally. Finally, the

installed path identifier (i.e., INSTALLED PATH ID = 1) is

enclosed, targeting the F -S1-R5 segment list. This way, the

router identifies the target path besides the origin and the

protocol used to instantiate it. In the testbed case, the BGP

agent generates a Command Line Interface-based script and

sends it to the router management interface, triggering the

filter match configuration and the steering policy action onto

the selected path. The full flow computation and steering

ACTION = 

0x00AA

NewFlowSteer

PROTOCOL = 1 

Local SR-SC 

list

INSTALLED PATH ID = 1

Traffic Steering to Generic Path

Extended Community 

Fig. 5. Wireshark capture of extended BGP Flowspec messages
enabling flow steering enforcement.

operation is performed in 2.4s. Further details are reported

in Tab. I.

With reference to the configuration of Fig. 4, Fig. 6 shows a

Wireshark capture collected at the controller (IP 10.30.2.73)

of the OpenFlow message triggering the creation of the

SR-LSP segment list at H1 edge node (IP 10.30.2.34). In

particular, the segment list, as explained in Sec. IV-B, is

created as indirect group through a GROUP_MOD message.

The capture shows the message fields related to the creation

of an indirect group, enclosing as action an array of MPLS

Label Push commands (OFPAT_PUSH_MPLS) including the la-

bel value indication (OFPAT_SET_FIELD). The figure shows

the details of group id 2 targeting segment list F -S1-H5 and

in particular the push action details of label H5 (label value

1001005).

Then, Fig. 7 shows the OpenFlow steering messages gen-

erated by service chain requests computation. In particular

the FLOW_MOD message encloses the flow match (i.e., source

IP 10.19.120.2, destination IP 10.19.122.20, protocol UDP,

source port 1024, destination port 1025) and the action,

associating the match to the group ID 2, corresponding

to the F -S1-H5 segment list. The capture shows also the

BARRIER_REQ and BARRIER_REP messages at the end of

the enforcement of different flows. Full computation and

enforcement times, depending on the different edge node

device, are reported in Tab. II.

After enforcement, flow packets sent by the traffic gen-

erator are directed to the requested service chained using

the selected SR-LSPs. Fig. 8 reports the capture of packets

entering (Fig. 8a) and exiting (Fig. 8b) the DPI service

provided by node F running OVS. Two SC Flows are steered

in the network and arrive at the service with the same MPLS

stack composed of two labels (i.e., S1 service label 1002511,

and H5 label 1001005). The first flow is directed to UDP port

1024, the second to UDP port 1025. After DPI inspection of

the submitted packets content, the service decides to drop

the second Flow. Thus, only packets belonging to the first

flow are forwarded after popping the MPLS label 1002511

(label S1) used to require the application of the DPI service.

This demonstrates the effective service chain application to

such flows, without the need of any steering configuration of

the service node.
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PUSH MPLS LABEL 

(OFPAT_PUSH_MPLS)

LABEL VALUE 

(OFPAT_SET_FIELD)

Fig. 6. Wireshark capture of OpenFlow messages setting up SR-
LSP segment lists.

Flow Match

(IP src, IP dst, IP proto, port src, port dst) 

Enforce to Group ID 2

Fig. 7. Wireshark capture of OpenFlow messages enabling SDN
steering.

A. Flow computation and steering scalability evaluation

In order to assess the extended NSC Controller architec-

ture, a scalability test evaluation has been carried out in

order to analyze the performance of the flow computation

algorithm described in Sec. III-B. To this end, a bulk of uni-

formly distributed flow requests (source, destination, band-

width in the range 1-100 Mb/s, requested service chain) has

been submitted to the Controller. The computation module

has been evaluated against different network configurations.

In particular, the number of installed SR-LSPs in the multi-

layer network (i.e., the LSP-DB size L) supposed to reserve

10 Gb/s bandwidth each, the number of installed flows (i.e.,

the Flow DB size), the network dimension (expressed as the

number of edge nodes e connected to a different data center)

and the number of the available service chains c offered

by the network are varied in order to measure the flow

computation time. The reported results have been averaged

on a variable number of repetitions in order to achieve the

90% of confidence interval at 10% of confidence level.

Fig. 9 reports the flow computation time as a function

of the two databases, evaluated in a network with e = 6

edge data centers and c = 20 different available service

a)

b)

Fig. 8. Wireshark capture of flow packets enforced in SR-LSPs and
steered to the DPI service: input interface (a), output interface (b)
filtering packets with port 1025.

chains. The behaviour is practically linear with respect to

both databases size. A slight deviation occurs in the central

region of each curve, e.g., in the ranges (105,106) for L = 10

and (104, 105) for L = 10000, where the slope increases. This

is due to the fact that the number of candidate LSP paths in

such ranges requires the computation of residual available

bandwidth due to an increased number of flows, thus rela-

tively delaying the flow computation. For higher values, the

slope returns to initial values since the number of candidate

LSPs is reduced to the increased number of installed flows

fulfilling alternative paths. It has to be noted that the flow

computation contribution is in the order of 1s for the extreme

scaling case of 107 installed flows and 10
4 LSPs, whereas for

reference scenarios referred to regional metro-core networks

(i.e., around 10
3 LSPs and 10

5 flows) [35] the computation is

below 1ms.

Fig. 10 reports the flow computation time dependence on

the number of different available service chains. Reported

results show that the time needed in the case of increased

number of available service chain decreases, with a behavior

similar to the one observed in Fig. 9 concerning the number

of installed flows. The decreased time depends on the fact

that the flow requests are generated with a uniform traffic

matrix. Therefore, at a given size of the flow database, if the

number of offered chains is higher a reduced number of flows

and of LSPs offering a given service chain. As a consequence,

flow computation processing operates on a reduced number

of entries and decreases as shown in Fig. 9. Moreover, the

service chain information is already stored in the LSP-DB,

thus the selection of suitable candidates is performed with

a single round of queries to the LSP-DB, not depending on

the number of different available chains. This means that

the offered service chain size has no practical scaling impact

on flow computation. Similar considerations are applicable

to the number of available edge nodes, i.e., number of client

data centers attached to the SR metro-core network. In this

case, the preliminary RIB query allows to identify source

and destination edge nodes, and subsequent candidate LSP

selection is performed with a single round of queries to the

LSP-DB, being source and destination nodes specific fields of

the LSP-DB entries. As a consequence, both service chains
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Fig. 9. Flow computation algorithm: computation time as a function
of the size of active flows and active LSP in the network (e=6, c=20).
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Fig. 10. Flow computation algorithm: computation time as a
function of the size of active flows and number of available service
chains in the network (e=6, L=1000).

and edge nodes variables have a constant impact in terms

of flow computation, requiring a single query round to the

LSP-DB and, most important, no direct interaction with the

Flow Database.

In conclusion, the flow computation time strictly depends

on the size of the stateful databases (i.e., LSP-DB and

Flow DB) and it is practically independent from the number

of offered service chains and the number of edge nodes.

However, for database sizes comparable to those in operating

metro-core networks, the flow computation time is in the

order of few milliseconds, with significant scaling margins.

Besides flow computation at FCE, also flow steering scala-

bility has been evaluated in both the aforementioned exper-

imental testbeds. Scalability tests against the implemented

BGP Flowspec API have been performed by sending bulks

of different size of Flow steering messages. Results are

collected by measuring at the BGP Agent (see Fig. 3) the

time required to process the BGP FlowSpec messages and

TABLE I
BGP-FLOWSPEC STEERING TIME SCALABILITY

Number of Flows BGP processing time Overall steering time

1 144us 2.43s
10 4.1ms 2.71s
100 45ms 5.37s

TABLE II
OPENFLOW-BASED STEERING TIME SCALABILITY

Number of Flows OVS Kernel Mode HP 3800 HP 3500

1 0.48ms 1.48ms 3.1ms
10 0.61ms 59ms 73ms
100 20.9ms 255ms 295ms

enforce flow steering in the data plane. Results are reported

in Tab. I. The second column shows the time needed to

process the BGP Flowspec updates, including extensions.

The third column shows the global steering time including

flow source router configuration. Results show that the BGP

Flowspec processing time is almost linearly increasing with

the number of updates (1 update requires less than 150us,

100 Flows are processed in 45ms). The total configuration

requires up to 5.4s for 100 Flows, mainly due to the router

commit time. Considering that the only commit requires

around 3 seconds, we can conclude that the overall BGP

Flowspec steering enforcement requires around 25ms per

flow in the case BGP Flowspec agent is directly embedded

as router daemon service.

Scalability tests against the OpenFlow API have been

performed by sending bulks of different size of flow steer-

ing messages. Results are collected by measuring at the

southbound API of the controller the time between the first

OpenFlow FLOW_MOD message of the bulk and the reception

of the BARRIER_REP message notifying the overall steering

activation. Thus, the measured time includes: the time to

send the OpenFlow messages bulk, process and enforce flow

steering in the specific SDN data plane edge node. Results,

reported in Tab. II, show that an almost linear slope is

achieved by the HP switches, targeting a 100 flows bulk in

less than 300ms. In these cases, flow processing is performed

by a dual-core embedded network processor inside the HP

devices, with stable scaling behavior. Different behavior is

observed for the OVS switch in kernel mode, achieving faster

enforcement times due to the availability of increased CPU

processing capabilities (i.e., dedicated QuadCore CPU in the

Linux box) with respect to HP devices (100 flows are enforced

more rapidly in around 20ms). In this case the steering is

very fast with 1 and 10 flows while it considerably slows

down with 100 flows. This behavior is quite typical in the

multi-thread approach used by OVS, where the processing of

few flows is totally parallelized but increasing the number

of flows greatly above the number of CPUs re-introduce

significant queuing time that may imply scalability issues

in the case of bulks of more than 1000 flows.

VI. CONCLUSION

A Network Service Chaining control architecture con-

ceived for microflow computation, placement and steering in

a metro-core multi-layer network exploiting Segment Rout-

ing was proposed and discussed. The architecture allows the

deployment of network function middleboxes in the metro-

core network and service chain enforcement and steering for
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microflows requiring specific QoS or security treatment. The

architecture included the proposal of novel flow computa-

tion element and two alternative steering southbound API

exploiting extended BGP Flowspec and OpenFlow, suitable

for legacy MPLS networks and pure SDN environment, re-

spectively. Experimental results on a SR-over elastic optical

network demonstrated the effectiveness of the proposal by

evaluating the scalability of flow computation in the range

of few milliseconds for reference metro-core networks, the

scalability of the APIs implementing the proposed exten-

sions capable to enforce bulks of hundred microflow entries

instancies within few hundreds milliseconds range. With

respect to techniques currently proposed in the literature,

both proposed solutions improve service chain enforcement

since they do not require any control plane configuration in

intermediate and destination nodes for service activation,

including NSC middleboxes nodes.
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