11 research outputs found

    Self-Synchronization in Duty-cycled Internet of Things (IoT) Applications

    Full text link
    In recent years, the networks of low-power devices have gained popularity. Typically these devices are wireless and interact to form large networks such as the Machine to Machine (M2M) networks, Internet of Things (IoT), Wearable Computing, and Wireless Sensor Networks. The collaboration among these devices is a key to achieving the full potential of these networks. A major problem in this field is to guarantee robust communication between elements while keeping the whole network energy efficient. In this paper, we introduce an extended and improved emergent broadcast slot (EBS) scheme, which facilitates collaboration for robust communication and is energy efficient. In the EBS, nodes communication unit remains in sleeping mode and are awake just to communicate. The EBS scheme is fully decentralized, that is, nodes coordinate their wake-up window in partially overlapped manner within each duty-cycle to avoid message collisions. We show the theoretical convergence behavior of the scheme, which is confirmed through real test-bed experimentation.Comment: 12 Pages, 11 Figures, Journa

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Cognitive Hierarchy Theory for Distributed Resource Allocation in the Internet of Things

    Full text link
    In this paper, the problem of distributed resource allocation is studied for an Internet of Things (IoT) system, composed of a heterogeneous group of nodes compromising both machine-type devices (MTDs) and human-type devices (HTDs). The problem is formulated as a noncooperative game between the heterogeneous IoT devices that seek to find the optimal time allocation so as to meet their quality-of-service (QoS) requirements in terms of energy, rate and latency. Since the strategy space of each device is dependent on the actions of the other devices, the generalized Nash equilibrium (GNE) solution is first characterized, and the conditions for uniqueness of the GNE are derived. Then, to explicitly capture the heterogeneity of the devices, in terms of resource constraints and QoS needs, a novel and more realistic game-theoretic approach, based on the behavioral framework of cognitive hierarchy (CH) theory, is proposed. This approach is then shown to enable the IoT devices to reach a CH equilibrium (CHE) concept that takes into account the various levels of rationality corresponding to the heterogeneous computational capabilities and the information accessible for each one of the MTDs and HTDs. Simulation results show that the proposed CHE solution keeps the percentage of devices with satisfied QoS constraints above 96% for IoT networks containing up to 10,000 devices without considerably degrading the overall system performance.Comment: To appear in IEEE Transactions on Wireless Communications, 201

    Internet of Things for Mental Health: Open Issues in Data Acquisition, Self-Organization, Service Level Agreement, and Identity Management

    Get PDF
    The increase of mental illness cases around the world can be described as an urgent and serious global health threat. Around 500 million people suffer from mental disorders, among which depression, schizophrenia, and dementia are the most prevalent. Revolutionary technological paradigms such as the Internet of Things (IoT) provide us with new capabilities to detect, assess, and care for patients early. This paper comprehensively survey works done at the intersection between IoT and mental health disorders. We evaluate multiple computational platforms, methods and devices, as well as study results and potential open issues for the effective use of IoT systems in mental health. We particularly elaborate on relevant open challenges in the use of existing IoT solutions for mental health care, which can be relevant given the potential impairments in some mental health patients such as data acquisition issues, lack of self-organization of devices and service level agreement, and security, privacy and consent issues, among others. We aim at opening the conversation for future research in this rather emerging area by outlining possible new paths based on the results and conclusions of this work.Consejo Nacional de Ciencia y Tecnologia (CONACyT)Sonora Institute of Technology (ITSON) via the PROFAPI program PROFAPI_2020_0055Spanish Ministry of Science, Innovation and Universities (MICINN) project "Advanced Computing Architectures and Machine Learning-Based Solutions for Complex Problems in Bioinformatics, Biotechnology and Biomedicine" RTI2018-101674-B-I0

    An information-theoretic approach to self-organisation: Emergence of complex interdependencies in coupled dynamical systems

    Get PDF
    Self-organisation lies at the core of fundamental but still unresolved scientific questions, and holds the promise of de-centralised paradigms crucial for future technological developments. While self-organising processes have been traditionally explained by the tendency of dynamical systems to evolve towards specific configurations, or attractors, we see self-organisation as a consequence of the interdependencies that those attractors induce. Building on this intuition, in this work we develop a theoretical framework for understanding and quantifying self-organisation based on coupled dynamical systems and multivariate information theory. We propose a metric of global structural strength that identifies when self-organisation appears, and a multi-layered decomposition that explains the emergent structure in terms of redundant and synergistic interdependencies. We illustrate our framework on elementary cellular automata, showing how it can detect and characterise the emergence of complex structures

    Planeamento da produção na TRIDEC : visualização & paperless

    Get PDF
    Nesta era de tecnologia digital e comunicações em rede, a gestão de dados baseada em papel pode ser um obstáculo em qualquer empresa, diminuindo a transferência de informações. O objetivo deste projeto é a substituição das ordens de trabalho no formato de papel para formato digital no chão de fábrica da empresa TRIDEC intitulado por Visualização & Paperless. O primeiro passo na sua implementação foi garantir a existência de um bom planeamento diário da produção, tendo este como base a reorganização das ordens de trabalho no sistema Entreprise Resource Planning da empresa. Uma das variáveis mais influentes à sua realização é a parametrização da capacidade dos recursos no sistema. Para a existência de um controlo rigoroso e consequente transposição desses dados para o sistema, foi adotado um conjunto de procedimentos. Com o planeamento diário pormenorizado e fiável devido às medidas implementadas será possível saber quando uma tarefa deve ser realizada e por quem, permitindo que exista a possibilidade de implementar o projeto Visualização & Paperless na sua totalidade. Foi iniciado o estudo para a implementação do projeto, fazendo o levantamento dos investimentos necessários e estimando as poupanças potenciais. O projeto ficou pela fase de implementação de um método eficaz que permitisse ao funcionário no chão de fábrica a visualização do escalonamento de produção, no seu posto de trabalho. Quando estiver concluído, o projeto Visualização & Paperless poderá trazer uma redução no consumo de papel, uma diminuição do risco de perda de informação inerente ao suporte físico, bem como uma redução da distância percorrida e do tempo gasto pelos funcionários do chão de fábrica para efetuar os registos operacionais. Pode vir a proporcionar melhorias substanciais na eficiência produtiva, bem como nos restantes departamentos. Concluiu-se que a questão da diminuição do uso de papel no chão de fábrica somente proporcionará todos os benefícios disponíveis se existir uma ampla abordagem, incluindo a alteração da gestão atual
    corecore