
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Using SensorThings API to enable a
multi-platform IoT environment

José Alexandre Barreira Santos Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Correia Lopes

Co-supervisor: Artur Rocha

13th July 2018

c© José Alexandre Barreira Santos Teixeira, 2018

Using SensorThings API to enable a multi-platform IoT
environment

José Alexandre Barreira Santos Teixeira

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Carla Teixeira Lopes

External Examiner: Prof. Alexandre Valente de Sousa
Supervisor: Prof. João Correia Lopes
13th July 2018

Resumo

Recentemente, existe um esforço por parte de investigadores numa nova utilização da Internet,
denominada por Internet of Things (IoT). Este conceito baseia-se na premissa que dispositivos
eletrónicos podem ser acedidos remotamente pela Internet.

IoT representa uma próxima evolução da Internet, dando um contributo significativo na sua
capacidade de colecionar, analizar e distribuir dados que poderão posteriormente ser transformados
em informação e conhecimento. Dadas as suas aplicações, a IoT torna-se muito importante.

Uma das aplicações mais comuns para a IoT são as smart cities cujo objetivo é fazer um
melhor uso de recursos públicos, aumentando a qualidade dos serviços oferecidos aos cidadãos,
ao mesmo tempo reduzindo os custos operacionais das administrações públicas. No entanto,
existem vários outros campos onde este paradigma se torna útil como em automação doméstica,
automação industrial, saúde, gestão inteligente de energia e smart grids, gestão de trânsito, entre
outras aplicações.

Devido à existência recente de IoT, os produtores de dispositivos conectados à Internet e
fornecedores de serviços IoT estão a definir os seus próprios protocolos baseados nas aplicações
a serem desenvolvidas. Isto por sua vez fará com que os ambientes IoT ganhem um grau de
heterogeneidade em termos de capacidades de hardware e protocolos de comunicação.

Uma forma de mitigar a heterogeneidade seria optar por escolher convenções nestes dispositivos
IoT de forma a permitir a interoperabilidade. Através da utilização de convenções para protocolos de
comunicação nestes dispositivos, não só estes dispotivos tornam-se auto-descritivos e interoperáveis,
como também dá origem a que novas aplicações possam ser desenvolvidas tendo por base uma
interface subjacente comum.

O objetivo do trabalho descrito nesta dissertação é o desenvolvimento de uma aplicação que
toma por base um standard — o SensorThings API — para permitir a criação de um ambiente IoT
multi-plataforma. O SensorThings API é um standard proposto pelo Open Geospatial Consortium
(OGC), desenhado especificamente para ambientes IoT tendo em consideração os recursos restritos
dos mesmos.

Este projeto envolve o desenvolvimento de uma aplicação que permite agregar informação,
dados dos dispositivos e interoperar com outras aplicações de catalogação via standards comuns.
Desta forma, esta aplicação terá que aceder aos dados que estão espalhados entre os seus nós IoT
constituintes. Os dados que são gerados são o resultado da actividade de sensores e que poderão ser
uma multitude de propriedades físicas, de acordo com as próprias capacidades do sensor.

O resultado final do projeto pode constituir uma prova de conceito importante em como a uti-
lização de standards comuns podem concretizar a possibilidade de diversas entidades participarem
em formas colaborativas de partilhar dados e de simultaneamente usar informação de outras fontes
para produzir análises mais complexas.

i

ii

Abstract

Recently, researchers are focusing on a new use of the Internet called the Internet of Things (IoT).
This concept is based on the premise that electronic devices can be remotely accessed over the
Internet.

IoT represents an evolution of the Internet, taking a huge leap in its ability to gather, analyze,
and distribute data that can in turn be transformed into information and knowledge. Due to its
applications, IoT becomes immensely important.

One of the most common applications for IoT are smart cities whose final aim is to make a
better use of the public resources, increasing the quality of the services offered to the citizens,
while reducing the operational costs of the public administrations. However, there are many other
fields where this concept is most useful such as home automation, industrial automation, healthcare,
intelligent energy management and smart grids, traffic management and many others.

As the IoT is in a very early stage, manufacturers of Internet-connected devices and IoT web
service providers are defining their own proprietary protocols based on their targeted applications.
This in turn will make the IoT environment heterogeneous in terms of hardware capabilities and
communication protocols.

To solve this heterogeneity one possible solution would be opting for open standards in these
IoT devices thus enabling the interoperability between each other. By hosting open standard
communication protocols on these devices, the devices become self-describable and interoperable
and new applications can be developed with a common underlying interface.

The main goal of the work presented in this dissertation is to develop an application that
leverages from an open standard — the SensorThings API — to allow the creation of a multi-
platform IoT environment. The SensorThings API is a standard proposed by the Open Geospatial
Consortium (OGC), designed specifically for an IoT environment taking into consideration the
constrained resources of the IoT devices.

This project encompasses the development of an application that is able to aggregate information,
device data and interoperate with other cataloging applications via common standards. Therefore,
this application has to seamlessly access the data that is scattered between the IoT constituent nodes.
The data that is generated is the result of the sensors activity and can be a multitude of physical
properties according to the sensors own capabilities.

This project’s success could be an important proof of concept on the usage of open standards to
enable for distinct organizations to participate in a collaborative way to share their data, and also by
using data from other sources in order to produce higher-value outputs.

iii

iv

Acknowledgments

Firstly, I would like to thank my supervisors, João Correia Lopes and Artur Rocha for all the
guidance and orientation during all the phases of this work.

To the colleagues and friends I had the chance to meet over these past five years, undoubtedly
they had an impact at some point and it is something I will hold dearly.

To my family, I express my solemn gratitude for the unfailing support through all the stages of
my life, this one included.

To all the aforementioned, my sincerest thanks.

José Alexandre Teixeira

v

vi

“Man’s real life is happy, chiefly because he is ever expecting that it soon will be so.”

Edgar Allan Poe

vii

viii

Contents

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation and Goals . 3
1.4 Structure . 4

2 State of the Art 5
2.1 Communication Protocols . 5

2.1.1 ZigBee . 6
2.1.2 Z-Wave . 6
2.1.3 6LoWPAN . 6
2.1.4 MQTT . 7
2.1.5 Constrained Application Protocol . 7

2.2 Communication Architectures and Platforms . 8
2.2.1 SensorThings API . 8
2.2.2 WebThings API . 13
2.2.3 Comparison between SensorThings API and Web Thing API 14
2.2.4 oneM2M . 15
2.2.5 AIOTI High-Level Architecture . 16
2.2.6 RIOT-OS . 17

2.3 Semantic Interoperability in the Internet of Things 17
2.4 SensorThings API Server Implementations . 19

2.4.1 FROST . 19
2.4.2 SensorUp SensorThings . 19
2.4.3 GOST . 19
2.4.4 Mozilla . 19
2.4.5 CGI Kinota Big Data . 20

2.5 Applications using SensorThings API . 20
2.5.1 SensorThings Admin Dashboard . 20
2.5.2 SensorThings Map . 21
2.5.3 Air quality monitoring after wildfires . 21

2.6 Conclusions . 22

3 Problem Statement and Solution Proposal 25
3.1 Current Issues . 25
3.2 User Stories . 26
3.3 Solution Proposal . 28

3.3.1 CoralTools Backend Application . 29

ix

x CONTENTS

3.3.2 SensorThings API endpoints . 31
3.3.3 Web Application . 32
3.3.4 OSGeoLive . 32

3.4 Conclusions . 33

4 Device Management 35
4.1 Introduction . 35
4.2 Endpoint collection . 35

4.2.1 Collecting Thing metadata . 36
4.2.2 Catalog . 36

4.3 Control Panel . 36
4.3.1 Management of SensorThing API entities 37
4.3.2 Management of Authorization tokens 39

4.4 Conclusions . 39

5 Metadata Cataloguing Implementation 41
5.1 Introduction . 41
5.2 Overview . 42
5.3 Structuring the metadata model . 42
5.4 Generating the Contents field . 43
5.5 Architecture . 45
5.6 Conclusions . 45

6 Dashboard Implementation 49
6.1 Datastream selection . 49
6.2 Heatmaps . 49
6.3 Clustered View . 52
6.4 Historical Locations . 53
6.5 Datastreams presented in charts . 56
6.6 Datastream availability . 57
6.7 Conclusions . 58

7 Evaluation 65
7.1 Management of the SensorThings API entities 65

7.1.1 Creating a new Thing entity . 65
7.2 Using pycsw and GeoNetwork for metadata publishing 68

7.2.1 Comparison of a Sensor Observation Service GetCapabilities 68
7.2.2 Harvesting a SensorThings API endpoint 70
7.2.3 Using GeoNetwork . 71

7.3 Interoperability of the SensorThings API . 71
7.4 Creating an IoT platform . 72

7.4.1 Setting up the IoT platform . 72
7.4.2 Querying the Observation Data . 73

7.5 Conclusions . 73

8 Conclusions and Future Work 77
8.1 Summary . 77
8.2 Future Work . 78

CONTENTS xi

References 81

xii CONTENTS

List of Figures

2.1 SensorThings API Data Model . 9
2.2 Web Things API Data Model . 14
2.3 oneM2M Functional Architecture . 16
2.4 Chain of requests for observation retrieval on a SOS platform 18
2.5 GOST Dashboard . 20
2.6 SensorThings Admin Dashboard . 21
2.7 SensorThings Map . 22
2.8 Animated map based on a timeseries evolution of Saint Albert air quality monitoring 23

3.1 Deployment diagram for a Raspberry Pi, the server application and the web application 30

4.1 Catalog view on the web application . 37

5.1 Thing entity table . 43
5.2 Application Deployment Diagram . 46

6.1 Interface for selecting datastreams . 50
6.2 Interface for the selected datastreams . 52
6.3 Heatmap . 59
6.4 Map representation of the clustered View for 4 different datastreams 60
6.5 Table containing the information of the result values for a point represented in the

map . 61
6.6 Table containing the information of the result values for a point represented in the

map . 61
6.7 Representation of the Historical Locations of two distinct Things 62
6.8 Representation of the Historical Locations of three Endpoints and multiple Things 62
6.9 Interface for the selection of Datastreams and time span 63
6.11 Interface for the selection of Datastreams and their corresponding gaps 64

7.1 Form with the properties field containing metadata about the service. 66
7.2 Table containing all the Thing entities of an endpoint address. 67
7.3 Form with the properties field containing metadata about the service 75
7.4 Values of the Datastream Wind Meters/second of the Mercury endpoint 76

xiii

xiv LIST OF FIGURES

List of Tables

3.1 User Stories for the CoralTools Application . 27

5.1 GetCapabilities fields . 43
5.2 JSON structure . 44
5.3 Minimum parts of a single Datastream in the Contents field 45

xv

xvi LIST OF TABLES

Acronyms

API Application Programming Interface
AUV Autonomous Underwater Vehicle
CoAP Constrained Application Protocol
CTD Conductivity-Temperature-Depth
CSW Cataloging Service for the Web
HTTP Hypertext Transfer Protocol
IoT Internet of Things
JSON JavaScript Object Notation
KML Keyhole Markup Language
MQTT Message Queue Telemetry Transport
REST Representational State Transfer
SDK Software Development Kit
SOAP Simple Object Access Protocol
OGC Open Geospatial Consortium
OWS OGC Web Services
ROV Remotely Operated Vehicle
SOS Sensor Observation Service
STA SensorThings API
UART Universal Asynchronous Receiver
USB Universal Serial Bus
Wi-Fi Wireless Internet
W3C World Wide Web Consortium
WMS Web Map Service
WSN Wireless Sensor Networks
WWW World Wide Web
XML Extensible Markup Language

xvii

Chapter 1

Introduction

From 2003 to 2010, in a population of approximately 6.3 billion people, the number of devices

connected to the Internet increased from 500 million to 12.5 billion mainly due to the explosive

growth of smartphones and tablet PCs. Following this trend, it is expected by the year 2020 there

will be even a larger number of devices connected to the Internet, estimated to be around the 25

billion [9].

1.1 Context

The Internet of Things (IoT) is a recent paradigm based on the principle of daily life objects to be

equipped with sensors and networking capabilities. Thus enabling these objects to communicate

under a specific protocol resulting in becoming part of the Internet. This concept leads to the

evolution of the Internet into a more intricate and complex network [1].

By enabling many different devices to partake in this globalist network, the IoT will inevitably

lead to the need of the development of applications. These applications in turn will make use of the

enormous amount of data generated by these devices to provide better and innovative ways to share

such information to citizens, companies, educational institutions or scientific institutions [19]. The

scope of the IoT is immense and can be applied to many areas such as home [39] and industrial

automation, healthcare systems [5], energy management and smart grids, environmental monitoring

and many others. Therefore the Internet of Things can connect devices and facilities in different

networks to provide efficient and secure services.

However, for this vision to materialize, the Internet of Things requires one important feature. We

need to assume that various networks should coexist, and the interoperability among these networks

is important for the sharing of information and their supported applications, thus interconnection is

a critical architecture issue in IoT [17]. Based on the features of IoT, interconnection is a critical

architecture issue, strictly speaking, these systems or applications are not “Internet of Things”, but

the “Net of Things”, or can even be considered as “Net of Devices”. Thus, this paradigm should

1

2 Introduction

englobe all things in large-scale networks, where various networks ought to coexist and interact

with each other via middleware interfaces [38] [21].

To support this solution it needs to exist a generalized network infrastructure that integrates

various networks. And by taking advantage of such structure all IoT-based systems and applications

can interact and expose their services through the efficient sharing of their resources, namely

information resources or network resources.

Applying to a broad context such as smart cities, if a generalized network infrastructure is

implemented and is able to cover all regions in a city, applications of different scopes — smart

grid, smart transportation, smart healthcare — can share their individual network infrastructures

to enable data collection and information delivery [21]. According to this perspective everything

that is inter-connected in the network can be used in any way possible because all the different

applications can interact with each other and makes the task of sharing the resources more effective.

The project CoralTools aims to implement tools allowing scientific researchers to create, manage

and interact with independent platforms of sensors, for instance, autonomous underwater vehicles

(AUV) or remotely operated vehicles (ROV) related with oceanic research and exploration. These

platforms can be composed by a set of devices with networking and processing capabilities thus

allowing for the storage of the data that was gathered by the sensors communicating with them.

Specifically for the context of oceanic exploration, it is expected for data to be mostly generated

by AUVs. The data can be generated through several sensors, namely a conductivity-temperature-

depth sensor (CTD), a pH sensor or a fluorometer. Although the CoralTools project aims towards

oceanic research, it is possible to explore further possible use cases. Due to the broad scope of this

project it may be applied to other fields such as in citizenship science initiatives.

1.2 Problem Definition

One of the main requirements for this project is to build an interface for researchers associated to

this project to access the information collected by sensors that are physically scattered and also, to

provide a way to seamlessly share this data into a common point of access, taking into consideration

other problems that may arise in the context of information systems, such as availability of network

and quality of data.

However, by analyzing the possibility of having a wide plethora of different fields, it will

become clear that there will be challenges that will arise, one of them being the identification of

feasible solutions that are capable of satisfying the requirements of several possible application

scenarios. This challenge inevitably led to the proliferation of different proposals for the same goal,

which in turn make these very same proposals incompatible with each other. In the perspective

of a IoT system this is inconceivable simply because it breaks down the possibility to create an

environment where all the devices are able to intercommunicate, despite the underlying complexity

of the system beneath each device. The adoption of the IoT paradigm is hindered by the lack of a

clear and widely accepted model that can fulfill the needs of interoperability.

1.3 Motivation and Goals 3

The SensorThings API is able to store the collected data from sensor activity and make it

accessible through a RESTful API however, there is not a mechanism that can further allow a

more in-depth analysis of such data. For most users it is important to add more significant ways to

organize and present the information. If the purpose of the system is to measure the temperature

in multiple locations it is not good enough to present the data as they are directly collected by the

sensors. It is important to take into consideration that it is possible to rearrange the information in

other way to produce higher-level outputs such as the creation of heatmaps.

For the fact of the SensorThings API being a newly proposed standard, it lacks some of the

core functionalities that were previously implemented in the Sensor Observation Service [4]. The

SOS has several core operations that must be provided by each implementation. One of the core

operations is the GetCapabilities that allows to query a service for a description of the service

interface and the available sensor data. This is one really important feature that enables for metadata

content to be available. The lack of such information will most likely translate to further difficulties

to interpret the source of the various devices.

1.3 Motivation and Goals

From the analysis of the problems described, it becomes clear that there is the need to build a

system to support the gathering and storage of the devices that belong to it. This work intends to be

a proof of concept, therefore it is expected to have a scaled down IoT structure at the start which

progressively will evolve in size.

One of the main goals is to build a system that is generic enough so it is possible to apply it to

other applications that relate to other scopes. As such it can be either applied for Health applications

such as health monitoring in the context of a network of hospitals or even to other subject such as

environmental applications. Considering the fact that there is an increasing interest in the topic of

environment and climate perception, citizens may partake in collective initiatives on environmental

monitoring and are interested in getting more information and data.

Having all of the data stored in these devices in itself does not fulfill all the requirements neither

it does solve all the problems presented. In order to create a system where seamlessly all the devices

seem to be connected, there is the need to build a common structure that contains information

about all the other IoT devices. Ideally this application is supposed to work as a bridge between

the devices that expose the SensorThings API and the end users. For a more complete approach

on the solution, the application needs to have some functionalities that can be used by Catalog

Services implementations, such as GeoNetwork [20].The catalog is mainly used to manage spatially

referenced resources, providing powerful metadata editing and search functions. Thus meeting the

requirement of having such common structure responsible for organizing the different devices that

compose the whole ecosystem.

4 Introduction

1.4 Structure

The remainder of this document has the following chapters:

• Chapter 2, “State of the Art” (p. 5), provides a literature review covering topics relevant to

the dissertation such as communication protocols, mechanisms and fields of application.

• Chapter 3, “Problem Statement and Solution Proposal” (p. 25), includes the solution as well

as the introduction to the architecture of the solution.

• Chapter 4 “Device Management” (p. 35), contains the implementation details of the first

component of the solution, the Device Management.

• Chapter 5, “Metadata Cataloguing Implementation” (p. 41), refers to the implementation de-

tails of the proposed solution to incorporate metadata within the SensorThings API resource-

based model.

• Chapter 6, “Dashboard Implementation” (p. 49), describes the development of the Visualiza-

tion Tools component.

• Chapter 7, “Evaluation” (p. 65), discusses the results obtained with the use of the application,

as well as the end-result of the proposed metadata model referred in Chapter 5.

• Chapter 8, “Conclusions and Future Work” (p. 77), intends to provide an overview over the

entire work as well as refer to the future of the project.

Chapter 2

State of the Art

This chapter details the context of this dissertation in the form of its state of the art. The first

section, does an overall overview of the most recent technologies that are used in the context of the

Internet of Things. The second section, refers to the analysis of the open standards for the Internet

of Things, namely the SensorThings API — that is the adopted specification for this solution

and is thoroughly analyzed by its key components and features. The other standard is the Web

Things API. Afterwards a comparison is made between both specifications and the analysis of

the advantages and disadvantages that each specification yields. Moreover several other solutions

are briefly referenced. The third section, is an overview of the Sensor Observation Service and

its similarities with the SensorThings API. This section evaluates the advantages that the Sensor

Observation Service has in terms of the way it exposes the metadata of the services and devices and

its impact in terms of what it can enhance this project’s solution. The last two sections, addresses

some use cases of the SensorThings API that are applied and what can be further explored in terms

of application development.

2.1 Communication Protocols

Communication is one of the main elements of IoT because there is the need to exchange information

between devices [28]. With the increased use of Sensor Networks and applications applied to the

most diverse environments, the need for different protocols is ever growing. Protocols that rely on

wired communications are still used to connect devices since they are more reliable, secure and

have higher data transfer rates [34].

For wired technologies the most common are the Universal Asynchronous Receiver and

Transmitter (UART). A UART is usually an individual integrated circuit (IC) used for serial

communications over a computer or peripheral device serial port [24]. They appear more commonly

in the form of USB or other serial ports such as the RS232, RS485.

5

6 State of the Art

Wireless communication protocols in other hand are lacking in reliability over its wired

counterparts. The most commonly known technologies are WiFi, Bluetooth, ZigBee but also

as well as new technologies such as 6LoWPAN [7]

Taking into consideration the different applicable communication technologies for the context

of the proposed solutions, it is recommended to choose a wireless communication protocol as it

enables for a more flexible deployment of the IoT devices.

2.1.1 ZigBee

Introduced in 2002, ZigBee uses the IEEE 802.15.4 protocol as a base. Created for low-rate wireless

private areas networks (LR-WPAN) it is one of the most used communication protocols for IoT due

to its low consumption, low data rate, low cost and high message throughput. It can also provide

high reliability, security, with both encryption and authentication services, works with different

platforms and can handle up to 65000 nodes [7].

Advantages of ZigBee [13]:

• Low power consumption, allowing battery-powered devices to use it

• One coordinator can control a numerous amount of slaves.

• Self-organizing network capabilities

• Secure, with 128-bit AES encryption.

Disadvantages of ZigBee [13]:

• 127 bytes per message, resulting in a low data transmission varying from 20kbit/s in 868

MHz bands to 250 kbit/s in 2.4 GHZ bands

• Does not interoperate with other network protocols and lacks Internet Protocol support

2.1.2 Z-Wave

Z-wave is a short-term wireless communication technology with the advantages of low cost, low

energy consumption and at the same time having great reliability [29]. The main purpose of Z-wave

is providing reliable transmission between control units and one or more end-devices. However, no

more than 232 nodes can be included in a Z-wave network, moreover all nodes would be controlled

by the controller and have routing capability [29] [33].

2.1.3 6LoWPAN

Low-power wireless personal area networks (LoWPAN) are composed by a large number of low-

cost devices connected via wireless communications [33]. In comparison with other types of

networks, LoWPAN has a number of advantages (small packet sizes, low power, low bandwidth).

As an enhancement, 6LoWPAN protocol was designed by combining IPv6 and LoWPAN. In

6LoWPAN, IPv6 packets can be transmitted over IEEE 802.15.4 networks. Because of the low

cost and low energy consumption, 6LoWPAN is suitable to IoT, in which a large number of low

2.1 Communication Protocols 7

cost devices are included. 6LoWPAN have several advantages, including a great connectivity and

compatibility with legacy architectures, low-energy consumption and ad-hoc self-organization.

6LoWPAN would have many advantages compared to using non-standard protocols such as

ZigBee or Z-Wire. First, gateways are not necessary to translate messages between different

non-standard protocols if all Wireless Sensor Networks (WSN) use the standard Internet Protocol.

Flexibility is improved as new applications would not require modifications for specialized protocols

within the WSN. Other advantages include rapid connectivity and compatibility with pre-existing

architectures, plug-and-play installation of WSNs, and the rapid development of applications, as

well as the possibility of integrating things with existing Web services that use IP [6].

To make 6LoWPAN a reality though, it would require having every node have to agree on

the same protocol. Many of the current WSN protocols have limited support for being able to

operate through standard interfaces [36]. Thus, complications arise for forming a WSN of different

protocols that communicate to the wider Internet.

2.1.4 MQTT

Message Queue Telemetry Transport (MQTT) is a simple and lightweight protocol, and supports

the network with low bandwidth and high latency. This technology can be implemented in various

platforms to connect things in IoT into the Internet, therefore using MQTT as a messaging protocol

between the sensing devices and the servers [21].

There exists three kind of actors in publish subscribe architecture publisher, subscriber and

broker. The publisher is responsible to send the message identified by a specific subject to the

broker which in turn will forward the message to everyone that is subscribed to that particular topic.

The subscriber does not need to know from whom the message was originated and the publisher

does not need to know to whom the message is sent [3].

This kind of architecture is suitable for the IoT since it can provide a more data oriented protocol

which can reduce the burden of a constrained device for exchanging messages. However, since both

publisher and subscriber do not know each other, an authentication method is required to validate

the sender and receiver nodes [3].

2.1.5 Constrained Application Protocol

Constrained Application Protocol (CoAP) is a messaging protocol based on REST. Most IoT

devices are resource constrained, be it in terms of storage, processing or networking. The HTTP

sometimes may not be used due to its overheads. To overcome the issue, CoAP was proposed to

modify some HTTP functions thus being more lightweight, therefore suitable for IoT environments.

CoAP is the application layer protocol in the 6LoWPAN protocol stack, and aims to enable resource

constrained devices to achieve RESTful interactions [10].

8 State of the Art

2.2 Communication Architectures and Platforms

For IoT, there are many proposed architectures all with the premise of them being essential for the

whole system to work. Physical IoT devices can communicate using messaging queue systems like

MQTT or through the HTTP protocol [8].

However, without having a common structure or protocol defined for these structures, each

individual IoT system would be using a solution that could fit its purpose but it would lead to a

constraint in terms of interoperability between different implementations. Therefore, having a

common communication platform among these systems makes the development of applications

simpler.

2.2.1 SensorThings API

In an attempt to solve the problem of interoperability, the Open Geospatial Consortium (OGC)

developed a specification for an Internet of Things protocol. The OGC SensorThings API provides

an open, geospatial-enabled and unified way to interconnect the IoT devices, data and applications

over the Web [26]. At a higher level the API provides two core functionalities. The first core

functionality is the Sensing part. The Sensing profile provides a standard way to manage and

retrieve observations and metadata from heterogeneous IoT sensor systems.

The SensorThings API simplifies and accelerates the development of IoT applications [22].

Developers can use this open standard to connect to various IoT devices and build applications

without worrying about the daunting heterogeneous protocols of the different IoT devices, gateways

and services. Moreover the device manufacturers can also use this API to be embedded within

various IoT hardware and software platforms, so that the various IoT devices can connect to other

OGC standard-compliant servers around the world [26].

2.2.1.1 SensorThings API Data Model

As previously stated, the Sensing part allows IoT devices and applications to perform the basic

CRUD operations (Create, Read, Update and Delete) in IoT data and metadata in a SensorThings

service. The data model is designed based on the ISO/OGC Observation and Measurement (O&M)

model [26]. The model is centered around observations and their results whose value is an estimate

of a property of the observation target (see Figure 2.1). An observation instance is classified by the

time it has occurred, the resultTime and the phenomenonTime, its corresponding FeatureOfInterest,

and the Datastream is has been associated to. Additionally the concept of Things are also modeled

in the SensorThings API following the ITU-T definition: “an object of the physical world (physical

things) or the information world (virtual things) that is capable of being identified and integrated

into communication networks” [14].

To provide geospatial information, there is also the Locations that contain geographical data

about the Things. Additionally a Thing may change locations from time to time, therefore old

locations will generate HistoricalLocations entities. A Datastream is a collection of Observations.

2.2 Communication Architectures and Platforms 9

Figure 2.1: SensorThings API Data Model [26]

The Datastreams are also grouped by their corresponding ObservedProperty and Sensor. An

Observation is an event performed by a Sensor that produces a result whose value is an estimate of

an ObservedProperty of the FeatureOfInterest [26].

2.2.1.2 SensorThings API Sensing Entities

In this section it will be thoroughly explained the properties in each entity type and the direct

relation to the other of the entity types.

Thing A Thing is an object of the physical world or the information world that is capable of

being identified and integrated into communication networks[14].

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/Things(1)",

4 "Locations@iot.navigationLink": "Things(1)/Locations",

5 "Datastreams@iot.navigationLink": "Things(1)/Datastreams",

6 "HistoricalLocations@iot.navigationLink": "Things(1)/HistoricalLocations",

7 "name": "Oven",

8 "description": "This thing is an oven.",

9 "properties": { "owner": "Noah Liang", "color": "Black"}

10 State of the Art

10 }

Listing 2.1: Example of a Thing Entity

Location The Location entity describes the physical location of the Thing. Usually the Location

entity is defined as being always the last known location of the Thing.

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/Locations(1)",

4 "Things@iot.navigationLink": "Locations(1)/Things",

5 "HistoricalLocations@iot.navigationLink": "Locations(1)/HistoricalLocations",

6 "encodingType": "application/vnd.geo+json",

7 "name": "CCIT",

8 "description": "Calgary Center for Innvative Technologies",

9 "location": {

10 "type": "Feature",

11 "geometry":{

12 "type": "Point",

13 "coordinates": [-114.06,51.05]

14 }

15 }

Listing 2.2: Example of a Location Entity

HistoricalLocation The HistoricalLocation refers to the times of the current and previous loca-

tions of the Thing.

1 { "value":

2 [{

3 "@iot.id": 1,

4 "@iot.selfLink":"http://example.org/v1.0/HistoricalLocations(1)",

5 "Locations@iot.navigationLink": "HistoricalLocations(1)/Locations",

6 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",

7 "time": "2015-01-25T12:00:00-07:00"

8 }, {

9 "@iot.id": 2,

10 "@iot.selfLink": "http://example.org/v1.0/HistoricalLocations(2)",

11 "Locations@iot.navigationLink": "HistoricalLocations(2)/Locations",

12 "Thing@iot.navigationLink": "HistoricalLocations(2)/Thing",

13 "time": "2015-01-25T13:00:00-07:00"

14 }],

15 "@iot.nextLink":"http://example.org/v1.0/Things(1)/HistoricalLocations?$skip=2&

$top =2"

16 }

2.2 Communication Architectures and Platforms 11

Listing 2.3: Example of a HistoricalLocation Entity

Datastream A Datastream groups a collection of Observations measuring the same Observed-

Property.

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/Datastreams(1)",

4 "Thing@iot.navigationLink": "HistoricalLocations(1)/Thing",

5 "Sensor@iot.navigationLink": "Datastreams(1)/Sensor",

6 "ObservedProperty@iot.navigationLink": "Datastreams(1)/ObservedProperty",

7 "Observations@iot.navigationLink": "Datastreams(1)/Observations",

8 "name": "oven temperature",

9 "description": "This is a datastream measuring the air temperature in an oven."

,

10 "unitOfMeasurement": { "name": "degree Celsius", "symbol": "C",

11 "definition": "http://unitsofmeasure.org/ucum.html#para-30" },

12 "observationType": "http://www.opengis.net/def/observationType/OGC- OM/2.0/

OM_Measurement",

13 "observedArea": { "type": "Polygon",

14 "coordinates": [[[100,0],[101,0],[101,1],[100,1],[100,0]]]

15 },

16 "phenomenonTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z",

17 "resultTime": "2014-03-01T13:00:00Z/2015-05-11T15:30:00Z"

18 }

Listing 2.4: Example of a Datastream Entity

Sensor A Sensor is an instrument that observes a property or phenomenon with the goal of

producing an estimate of the value of the property measured. However, in some cases the Sensor in

this data model can also be seen as the Procedure[15].

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/Sensors(1)",

4 "Datastreams@iot.navigationLink": "Sensors(1)/Datastreams",

5 "name": "TMP36",

6 "description": "TMP36 - Analog Temperature sensor",

7 "encodingType": "application/pdf",

8 "metadata": "http://example.org/TMP35_36_37.pdf"

9 }

Listing 2.5: Example of a Sensor Entity

12 State of the Art

ObservedProperty An ObservedProperty specifies the phenomenon of an Observation.

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/ObservedProperties(1)",

4 "Datastreams@iot.navigationLink": "ObservedProperties(1)/Datastreams",

5 "description": "The dewpoint temperature is the temperature to which the air must

be cooled, at constant pressure, for dew to form. As the grass and other

objects near the ground cool to the dewpoint, some of the water vapor in the

atmosphere condenses into liquid water on the objects.",

6 "name": "DewPoint Temperature",

7 "definition": "http://dbpedia.org/page/Dew_point"

8 }

Listing 2.6: Example of a ObservedProperty Entity

Observation An Observation is the act of measuring or otherwise determining the value of a

property [15].

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/Observations(1)",

4 "FeatureOfInterest@iot.navigationLink": "Observations(1)/FeatureOfInterest",

5 "Datastream@iot.navigationLink":"Observations(1)/Datastream",

6 "phenomenonTime":"2014-12-31T11:59:59.00+08:00",

7 "resultTime": "2014-12-31T11:59:59.00+08:00",

8 "result": 70.4

9 }

Listing 2.7: Example of a Observation Entity

FeatureOfInterest An Observation results in a value being assigned to a phenomenon. The

phenomenon is a property of a feature — the FeatureOfInterest of the Observation [15].

1 {

2 "@iot.id": 1,

3 "@iot.selfLink": "http://example.org/v1.0/FeaturesOfInterest(1)",

4 "Observations@iot.navigationLink": "FeaturesOfInterest(1)/Observations",

5 "name": "Weather Station YYC.",

6 "description": "This is a weather station located at the Calgary Airport.",

7 "encodingType": "application/vnd.geo+json",

8 "feature": {

9 "type": "Feature", "geometry": {

10 "type": "Point", "coordinates": [-114.06,51.05]

2.2 Communication Architectures and Platforms 13

11 }

12 }

13 }

Listing 2.8: Example of a FeatureOfInterest Entity

2.2.2 WebThings API

The Web Thing API1 is expected to be submitted for approval to the World Wide Web Consortium2.

The goal of Web Thing API is to also develop a data model and API that can be used in the context

of IoT to describe physical devices in a JSON format. Similarly to SensorThings, this API can

also be used with the communication platforms like MQTT to create a more standardized way of

establishing communication structures and protocols for IoT systems.

2.2.2.1 WebThings API Data Model

The WebThings data model as depicted in Figure 2.2 has four main entities.

Things —- A web Thing can be a gateway to other devices that don’t have an internet connec-

tion. This resource contains all the web Things that are proxied by this web Thing. This is mainly

used by clouds or gateways because they can proxy other devices.

Model —- A web Thing always has a set of metadata that defines various aspects about it, such

as its name, description, or configurations.

Properties —- A property is a variable of a web Thing. Properties represent the internal state

of a web Thing. Clients can subscribe to properties to receive a notification message when specific

conditions are met; for example, the value of one or more properties changed.

Actions —- An action is a function offered by a web Thing. Clients can invoke a function on a

web Thing by sending an action to the web Thing. The actions may refer to opening or closing a

garage door, or enabling or disabling a smoke alarm. The direction of an action usually starts from

the client to the Web Thing. Actions are the public interface of a Web Thing whereas the properties

represent their private fields. In the sense that being private means that only privileged parties are

the ones who have access to it. But limiting access to actions – that is, the public interface – also

allowing to implement various control mechanisms for external requests such as access control,

data validation and updating several properties atomically.

With the analysis of the data model, it becomes clear that the main goal with the use of this

specification is to be able to interface with IoT devices, thus providing a real-time mechanism to

allow the creation of multiple requests and to enable the creation of events for notifications.

1https://iot.mozilla.org/wot/
2https://www.w3.org/

https://iot.mozilla.org/wot/
https://www.w3.org/

14 State of the Art

Figure 2.2: Web Things API Data Model

2.2.3 Comparison between SensorThings API and Web Thing API

While being undeniably that these specifications are creating a standard to address the problem

of interoperability between IoT systems, it is not true to say that these specifications are meant to

address the same purpose.

In the previous sections, it was mentioned that the SensorThings API is derived from the

Observations & Measurements (O&M) model. Therefore, its logical structure is different from the

Web Things API, as it provides a more complete representation of how the values are organized as

it uses several entities such as Datastreams, Locations and the Observations. In comparison, the

Web Thing API it is not as detailed. For example, the following snippet is the response of a Thing

from the Web Thing API.

1 [

2 {

3 "name":"WoT Pi",

4 "type": "thing",

5 "description": "A WoT-connected Raspberry Pi",

6 "properties": {

7 "temperature": {

8 "type": "number",

9 "unit": "celsius",

10 "description": "An ambient temperature sensor",

2.2 Communication Architectures and Platforms 15

11 "href": "/things/pi/properties/temperature"

12 },

13 "humidity": {

14 "type": "number",

15 "unit": "percent",

16 "href": "/things/pi/properties/humidity"

17 },

18 "led": {

19 "type": "boolean",

20 "description": "A red LED",

21 "href": "/things/pi/properties/led"

22 }

23 },

24 "actions": {

25 "reboot": {

26 "description": "Reboot the device"

27 }

28 },

29 "events": {

30 "reboot": {

31 "description": "Going down for reboot"

32 }

33 }

34 }

35]

Listing 2.9: Example of a Web Thing API GET response to a Thing Entity

It is possible to state that inside the whole structure of a Thing it is possible to obtain information

about the properties, and these properties are equivalent to the Datastreams in the sense that in

SensorThings API they contain information about the Observations to a given physical property

such as the air temperature.

After the comparison between these specifications, it is clear that for this work it is not feasible

to use Web Thing API because a paramount feature is a data model that contains data of the

Measurements in a given geographical location recorded by the sensors.

For the context of a Smart Home application-based solution, Web Thing API would be a better

choice because its data model is modeled in a way that there is not need to store all the data gathered

by the sensors, on the other hand as it already features a tasking capability it might prove to be

more useful rather than SensorThings API for the specific use case.

2.2.4 oneM2M

The oneM2M is the global standards initiative for Machine to Machine Communications (M2M)

and the Internet of Things. It was established in July 2012 by Europe, the United States, China,

Japan and South Korea telecommunication standard organizations and attracted over 200 members.

Its architecture, depicted in Figure 2.3 comprises three entities: Application Entity (AE), Common

16 State of the Art

Figure 2.3: oneM2M Functional Architecture [37]

Services Entity (CSE) and Network Services Entity (NSE), and three interface points: Mca, Mcc

and Mcn, spanning across a field domain and an infrastructure domain. The CSE supports many

common services to AEs and to other CSEs such as discovery, security, device management, etc.

The oneM2M adopts a resource-based information model. All entities in the oneM2M System,

such as AEs, CSEs and data, are represented as resources, and its resources form a hierarchical tree

called resource tree and can be manipulated by RESTful APIs [37] [27].

For this project, oneM2M might not be the best option because comparing with the SensorThings

API it does not provide a data model that is well suited to support storage of data generated through

sensor activity. Thus, being more guided towards machine-to-machine communication.

2.2.5 AIOTI High-Level Architecture

The AIOTI High-Level Architecture (HLA) [23] Functional Model describes functions and interfaces

within the domain. It also follows a layered approach composed by three distinct layers each of

them being a cohesive set of services:

• Application layer — responsible to establish process-to-process communications.

• The IoT layer — responsible for data storage and sharing, also exposes them to the applica-

tion layer via APIs while using the underlying Network layer’s services

• The Network layer — accounts for providing the connectivity and data forwarding between

entities thus allowing communication

However, the AIOTI HLA does not stipulate details on implementation or deployment therefore

not being a viable approach.

2.3 Semantic Interoperability in the Internet of Things 17

2.2.6 RIOT-OS

RIOT-OS3 is an open platform for devices with limited resources [2], it is maintained by the iNET

research group that co-founded and develops it. This lightweight operating system (OS) is intended

to support most embedded, low-power devices and other micro-controller architectures. This

project aims to implement all relevant open standards supporting an IoT environment that takes

into account security, connection and durability [18].

2.3 Semantic Interoperability in the Internet of Things

The Sensor Observation Service (SOS) standard is applicable to use cases in which sensor data

needs to be managed in an interoperable way. This standard defines a Web service interface which

allows querying observations, sensor metadata, as well as representations of observed features.

Furthermore, this standard defines means to register new sensors and to remove existing ones. Also,

it defines operations to insert new sensor observations. This standard defines this functionality in a

binding independent way; two bindings are specified in this document: a Key-Value Pair (KVP)

binding and a SOAP binding[4].

The functionality of the Sensor Observation Service is to provide standardized access to

measured sensor observations as well as sensor descriptions. Much like to SensorThings API it also

abides by the Observations & Measurements (O&M) standards. The main reason this specification

is not considered for this project is simply due to the fact that it was not developed with the

resource-constrained environment of the IoT and its data model is not best suited for resource

constrained devices. However, there are some benefits inherent to SOS that are non existent in the

SensorThings API specification.

Analyzing the SOS specification it is possible to denote that there are three main operations:

• GetCapabilities — provides access to metadata and detailed information about the opera-

tions available by an SOS server.

• DescribeSensor — enables querying of metadata about the sensors and sensor systems

available by an SOS server.

• GetObservation — provides access to observations by allowing spatial, temporal and

thematic filtering.

Taking into account that SensorThings API follows a Resource-Oriented Architecture (ROA)

because it exposes the API through Resource Path made accessible by URI it would not make

sense to implement the GetCapabilities as depicted in the SOS specification. In order to retrieve

observations using the SensorThings API, the user simply has to send a GET request to the desired

endpoint.

But to this work it is not merely enough to have access to the observations of the sensors.

Assuming that the objective is to have a multi-platform IoT environment it is necessary for all

the different platforms to communicate with each other and most importantly for each different

3https://riot-os.org

18 State of the Art

Figure 2.4: Chain of requests for observation retrieval on a SOS platform [4]

organization operating a platform to share more information regarding the metadata authors, the

point of contact, description of the service, the exposed operations that are available, the temporal

extent and geographical information as well as many other informations that are by default included

and expected to exist in a SOS implementation.

The typical workflow to a SOS server, seen in Figure 2.4, for observation retrieval for the case

of SOS would be firstly the user to request a listing of available data by sending the GetCapabilities

request to the server. Followed by an optional DescribeSensor or GetFeatureOfInterest to find fur-

ther details about particular procedures or features. Finally, the user would issue a GetObservation

request to retrieve the observations.

The expected result of this operations would be the same as the user simply issuing a GET

request to the available Datastreams to the SensorThings API endpoint and then simply following

with more GET requests to a specific Datastream for its respective Observations.

To conclude, the usage of a Resource Oriented Architecture is more favorable for an IoT environ-

ment since it simplifies the whole sequence (as depicted in Figure 2.4) making it more lightweight

and easier to post-process. According to Guinard et al [12] after conducting an experiment using

Web Things API described in Section 2.2.2, another Resource-Oriented Architecture framework,

2.4 SensorThings API Server Implementations 19

the results suggested that the verbosity of the HTTP protocol does not prevent highly efficient

applications to be implemented, even when low-power wireless nodes communicate using HTTP in

place of highly optimized and compressed messages. However, when devices are connected to a

power source and do not rely on batteries and the latency is not too high, the advantages of HTTP

outweigh the loss in performance and latency.

2.4 SensorThings API Server Implementations

The first part of the SensorThings API specification was released in 2015, and despite being a

recent specification it does not exclude the fact that there are several implementations of such

specification.

2.4.1 FROST

FROST-Server (FRaunhofer Opensource SensorThings Server) is an open-source4 implementation

of the standard, developed by the German research institute Fraunhofer IOSB [16], to cover their

need for a standards-based, easy to use sensor management and sensor-data storage platform, for

use in various research programs. For data persistence it uses a PostgreSQL database management

system (DBMS).

2.4.2 SensorUp SensorThings

SensorUp, based in Calgary, Canada developed the first compliant SensorThings implementation

and this implementation is considered as the SensorThings reference implementation. It is a

Java-based implementation and uses a PostgreSQL database. In addition to server development,

SensorUp also provides multiple clients to make SensorThings easier to use for client developers.

2.4.3 GOST

GOST is an open source implementation of the SensorThings API in the Go programming language

initiated by Geodan5. It contains an easily deployable server software and a JavaScript client. At

the time of writing it is still in development, although a first version can already be downloaded

and deployed. The software may be installed on any device supporting Go and, by default, stores

sensor data in a PostgreSQL database.

The Figure 2.5 represents a datastream in the GOST dashboard.

2.4.4 Mozilla

Mozilla has a Node implmentation of SensorThings. The implementation is open source and has

passed almost all the OGC test suite tests. This implementation uses PostgreSQL for the persistence

of data. However, the development is not active since February 2017.
4https://github.com/FraunhoferIOSB/FROST-Server
5https://www.geodan.nl/

https://www.geodan.nl/

20 State of the Art

Figure 2.5: GOST Dashboard [11]

2.4.5 CGI Kinota Big Data

CGI developed a modular implementation of SensorThings named Kinota Big Data. Kinota is

designed to support different persistence platforms to relational database management systems

and to NoSQL databases. The current implementation supports Apache Cassandra. However,

Kinota only implements a subset of the SensorThings requirements. It is also written in the Java

programming language.

2.5 Applications using SensorThings API

SensorUp6 premise is to aggregate the information from all different kinds of sensors in a single

platform, by using the SensorThings API. According to SensorUp they have the most complete IoT

Platform and compliant implementation of the SensorThing API [16]. Moreover they have also

developed an API and software development kits (SDK) to support developers to build IoT-based

applications.

2.5.1 SensorThings Admin Dashboard

SensorUp has developed a dashboard that provides an easy access to visualize the entities that

compose the SensorThings API. However this application fails short when it needs to assess the

6https://www.sensorup.com/

https://www.sensorup.com/

2.5 Applications using SensorThings API 21

Figure 2.6: SensorThings Admin Dashboard [32]

problems of metadata management and organize its composing Things similarly to a catalog service.

Moreover, this application only displays the observations in tables, shown in Figure 2.6.

2.5.2 SensorThings Map

Besides the administration dashboard, SensorUp has also developed an interactive map to represent

the locations of the Things by taking advantage of the geographic information supported by

the SensorThings API. By using this map it is easy to use and query data of a single Thing,

furthermore the observation data is presented in a timeseries chart and it is also possible to visualize

simultaneously in the same chart other datastreams that belong to the focused Thing. For the

solution that is later proposed in this document, this map fits as an appropriate inspiration as a

possible approach for the data visualization component as similar to Figure 2.7.

2.5.3 Air quality monitoring after wildfires

A distributed, shared, network of PM 2.5 sensors [31] were deployed in St. Albert7. The sensors

are small and lightweight, and connected to a regular WiFi network, facilitating its deployment.

The aim of this intervention was to further gather information about air quality and make it publicly

available over a website8. This project proved that the usage of the SensorThings is a great fit for, not

just the process of collecting air quality data, but also to manage the sensor data and environmental

data. Additionally the data that is presented to the end-user does not mean it had been validated

nor post-processed, as this was a crowdsourced data specifically aimed for citizenship science

initiatives.
7https://www.sensorup.com/blog/2017/07/12/alberta-residents-monitor-bc-wildfire-effects-with-sensors/
8https://smartstalbert.sensorup.com/

https://www.sensorup.com/blog/2017/07/12/alberta-residents-monitor-bc-wildfire-effects-with-sensors/
https://smartstalbert.sensorup.com/

22 State of the Art

Figure 2.7: SensorThings Map

An important aspect in the web application that is relevant to the project described in this

document is the use of heatmaps to take advantage of SensorThings API geographic functionalities

to organize the information and present it as a temporal evolution through a web application as

depicted in Figure 2.8.

2.6 Conclusions

By analyzing the SensorThings API, it is possible to conclude that it is in fact the most suited

specification for this project. It features a RESTful API that will make the communication between

the several components of the solution in an easier way. Furthermore, after reviewing the data

model it is possible to detect the functionalities supported and what may be missing and what needs

to be implemented to complement it.

Also, by studying the WebThings API it was possible to compare it with the SensorThings

API and evaluate them to determine which one was better to use for the solution. Naturally, as the

SensorThings API is more oriented for geospatial data, it is the best fit. Nonetheless, it was also

important to analyze the WebThings API for some of its important features such as its WebSocket

mechanism.

During the process of analysis of existing applications that use the SensorThings API, it was

possible to understand how it can be used as a way to provide access to information. Moreover,

some of the web applications were good representations on how the final solution would be in terms

of data representation, as it can be presented in many degrees and ways such as maps, or charts to

provide higher-level outputs.

2.6 Conclusions 23

Figure 2.8: Animated map based on a timeseries evolution of Saint Albert air quality monitoring

24 State of the Art

Chapter 3

Problem Statement and Solution
Proposal

The goal of this chapter is to describe the issues that have been detected and how they are planned

to be solved. The solution itself will be thoroughly described as well as its components.

3.1 Current Issues

With using such recent specification (SensorThings API) is that there is no actual Catalog Service

that implements a protocol to operate with this newly specification. The catalog service is made

up of records that describe geospatial data (e.g. Keyhole Markup Language (KML)), geospatial

services (e.g. Web Map Service (WMS)), and related resources. This in turn means that if the

actual goal is to use a Catalog Web Service it will inevitably lead to the implementation of a similar

one based out of GeoNetwork1.

After a throughout analysis of the GeoNetwork application, one of the most important features

is the capability to automatically gather information of the services that are exposed by the

devices. The harvester is responsible to automatically communicate with the endpoint running

the SensorThings API server implementation and retrieve the metadata inherent to the services

available from that device. In a typical OGC CSW interface such as the Sensor Observation Service,

this would simply mean that the harvester would invoke the service GetCapabilities and it would

be sufficient to collect all the information needed.

Hence, this is the desired behavior that the proposed solution should have. To support this, the

desired behaviour of the functionality to be developed should have the mechanism of gathering

service metadata from the IoT devices and output it into a machine-readable XML document and at

the same time to take advantage of the resource-oriented approach that the REST architure enables.

1https://geonetwork-opensource.org/

25

https://geonetwork-opensource.org/

26 Problem Statement and Solution Proposal

Previously the GetCapabilties request was based, but not only, on SOAP (Simple Object

Access Protocol). SOAP is a protocol specification for exchanging structured information in

the implementation of web services. Moreover, SOAP uses XML as the typical format of the

content that is exchanged between the different processes, in this strict case between a hypothetical

GeoNetwork harvester and a Sensor Observation Service implementation exchanging data.

SOAP is based on a service-oriented architecture (SOA). This architecture is a style of software

design where services are provided to the other components by application components, through a

communication protocol over a network, in this case, the HTTP protocol. However, the Sensor-

Things API does not follow the same principles as the ones followed by the specification of the

Sensor Observation Service. The most recent specification has a resource-oriented architecture

(ROA). The resource-oriented architecture is a style of software architecture and programming

paradigm for designing and developing software in the form of resources with “RESTful” interfaces.

These resources are software components which can be reused for different purposes.

One important guideline for this architecture is the avoidance of RPC-style APIs, favoring in

turn the Resources and Protocols. This means that for this specific architecture the use of Remote

Procedure Calls such as the GetCapabilities does not fully meet its architectural principles. One

possible solution is to understand how the data model is structured by the SensorThings API

specification and achieve the same results of a GetCapabilities request but in an architecture that

favors the request of the data stored that refers to the very same metadata of the service [26] [30].

Moreover, from the analysis of the current available applications of the SensorThings API

described in Chapter 2 there isn’t yet implementation that addresses an application that uses

more than one endpoint address (i.e. another SensorThings API instance). In order to enable

a multi-platform IoT environment it is expected to have a multitude of devices, each one being

denominated as a platform. The aspect of interoperability is crucial, because it allows for these

devices to communicate seamlessly. This is solved by assuming that all of the devices that compose

this IoT environment are running a SensorThings API instance. Furthermore, in order to produce

higher-level outputs of data there isn’t anything that will aggregate the information contained on

the different endpoints, and that is another issue that will be addressed in this work.

3.2 User Stories

As part of the development of the whole system composed by the CoralTools Web Application and

the CoralTools Backend Application there are some functionalities to be implemented in order to

provide the user with an interactive application as well as to support and prove the enablement of a

multi-platform IoT environment. The user stories are described in Table 3.1.

3.2 User Stories 27

User Story Name Description
US001 Login As a registered user I want to input my credentials to get an

authentication token so that I can perform more requests to
the backend application.

US002 Register As a non registered user I want to register myself so that I
will be able to login.

US003 Register Node As a user I want to add an endpoint address so that I can
interact with it later.

US004 Register Thing As a user I want to add a Thing entity so that I can retrieve
it and view its metadata in the Catalog.

US004 View Catalog As a user I want to view the metadata records so that I can
get more information about the service and operation the
service implements.

US005 View Heatmap As a user I want to view a heatmap representation of a
series of datastreams in a timeseries animation so that I can
understand the evolution of the Observation data presented
in colors representing a third dimensional variable.

US006 View Clustered
View

As a user I want to view a map with the observations pre-
sented in clusters so that I can understand the density of
Observation entities in a certain point of the map.

US007 View Historical Lo-
cations

As a user I want to view a map with the positions of the
Thing entity over time so that I can know which positions it
traveled through.

US008 View Datastream
By Timeline

As a user I want to view the datastream in the form of a
timeseries chart so that I can get a graphical representation
of a datastream for the time span that I specified.

US009 View Datastream
Availability

As user I want to view the periods of time the datastream has
Observations so that I can know when there were periods
of unavailability of Observation results.

US010 Associate an autho-
rization token to a
thing

As a user I want to be able to add an authentication token
to an endpoint address so that when I issue a request to an
endpoint address it will be accepted by the issued entity.

US011 Manage Users As a user I want to be able to manage users that are regis-
tered in the platform so that I can change their access and
permissions in the web application.

US012 CRUD operations
over
SensorThings API
entities

As a user I want to be able to create, delete, update and view
the entities of a given endpoint address.

Table 3.1: User Stories for the CoralTools Application

28 Problem Statement and Solution Proposal

3.3 Solution Proposal

From the analysis of the problem described previously in Section 3.1, it becomes clear that there

is the need to build a tooling mechanism to proceed to the storage of relevant information of

the devices, namely the endpoint address, that will be present in the system. Thus, the planned

approach, that intends to be a proof of concept to the solution of a larger problem, is to firstly scale

down the IoT structure in order to progressively test the system.

The structure that is being planned is composed by several distinct components that interact

seamlessly. At the sensing device level, there are devices that have sensing capabilities to gather

measurements of temperature, humidity, atmospheric pressure or air quality. These sensors ought

to be connected to a device running an instance of SensorThings API. For this solution, it was

used several Raspberry Pi 3 with the SenseHat module. The SenseHat is an add-on board with

sensing capabilites. Additionally, by using the Raspberry Pi 3, it is possible to take advantage of its

processing power and networking capabilities to abstract this particular device into an IoT platform.

The Raspberry Pi ought to have a connection to the Internet to be accessed by other external

entities. Moreover, the Raspberry Pi has to be serving a SensorThings API endpoint. This is done

by installing a SensorThings API server implementation. Though, in order to correctly set up the

server, there is the need to also have a relational database responsible to support the data model and

the data being stored, such as Datastreams and Observations. For data acquisition by the sensors,

there is a Python script running in these devices that is responsible to retrieve the measurement

results and send an HTTP request to the server endpoint running the SensorThings API, that is

usually running in the same device. One of the advantages of this approach is that despite the device

may be disconnected from the Internet, the results and measurements are still able to be registered

and recorded into the database without compromising the process of collecting observations.

In order to create a system where seamlessly all the devices are accessible, there is the need to

build a common structure that contains information about all the other IoT devices. This application

is going to fulfill the role of a bridge for the devices that expose the SensorThings API and the end

users.

Through the analysis of the SensorThings API data model it is possible to infer that there are

some fields that can be used properly with the intent to store metadata information. It is the case of

the field Properties in the Thing, that is of type JSON_Object, giving the entity that is responsible for

managing the device the freedom to store any type of object that refers to the Thing. This will grant

enough flexibility to contain metadata information about the service. Regardless, the problem is not

solved as there is also another important aspect of the harvester, that is the interoperability between

different applications. These applications such as GeoNode or GeoNetwork use common OGC

standards such as the Cataloguing Service for the Web (CSW). Therefore the proposed solution

consists on storing relevant metadata in the SensorThings devices, and additionally develop a

mechanism that is responsible to retrieve it and generate a response that is compliant with such

specifications in order to be recognized by these platforms (GeoNode, GeoNetwork).

After the step of having the IoT devices correctly labeled under the catalog service, there is

3.3 Solution Proposal 29

also the need for the platform to serve as a management tool for the device properties. Taking

advantage of the RESTful API it is possible to remotely update the IoT devices simply using the

HTTP protocol whenever the device has Internet connection. This takes into consideration the

inevitable need of having to update the information of the device and can be achieved without

having to directly interact with the device.

Finally, the solution should also take into consideration the visualization of the observation

data. There is the precondition that this data is scattered between all the sensing devices and may

not be entirely present in a single database. Therefore, to present the data to the end users it was

developed an web application that provides different visualization options for the data, in graphical

form such as maps and charts but also in tabular representation. For different endpoints to be

queried at the same time, the web applications knows a set of endpoints on which it can query

and seamlessly retrieve the observation data. These set of operations is supported by a backend

application responsible for the storage of the endpoint data and to work as a bridge between the

devices running the SensorThings API and the web application that presents the data and also

allows for the management of the devices, such as the SensorThings API entities configuration.

The proposed solution architecture is depicted in Figure 3.1.

3.3.1 CoralTools Backend Application

The CoralTools Backend Application is one of the three components that composes the solution.

This component is independent from all the other components as its main function is to be the link

between the SensorThings API endpoints and the web application. It is a RESTful API responsible

to handle requests performed by the web application. The list below enumerates the different

modules of the CoralTools Backend Application.

• Manage Users

• Websocket Communication

• Generate GetCapabilities document

• Proxy requests with authentication token

• Aggregate results from different endpoints

3.3.1.1 Manage Users

The management of users by the backend application is used to give access to the web application.

The web application allows for the user to register and to be recognized within the platform and

most importantly to get a token that will allow him to authenticate in the backend application and

perform requests. Moreover there are two distinct types of Users.

3.3.1.2 Websocket Communication

When the user has some interaction in the web application, sometimes there might be the need

to communicate with other users that are using the application in other machine to be notified of

30 Problem Statement and Solution Proposal

Figure 3.1: Deployment diagram for a Raspberry Pi, the server application and the web application

some message. This message is dynamic and is generated through the websocket mechanism. One

example of when a message is generated is after the user adds a new public node, this will issue a

notification that will reach all the users that have a open connection at a given time. Furthermore

throughout the development of the application the websocket will see more use as the increase of

interaction of the user with the web application evolves.

3.3 Solution Proposal 31

3.3.1.3 Generate GetCapabilities document

This feature is particularly important to interact with the cataloguing service pycsw. Upon receiving

a request of harvesting, the backend application is responsible for generating the GetCapabilities

document, much like other implementations, such as the 52North for the Sensor Observation

Service.

3.3.1.4 Proxy requests with authentication token

Some of the SensorThings API endpoints might have an authentication token mechanism. Therefore,

to allow for a seemingless interaction, the user when queries the SensorThings endpoint does not

need to concern about the availability of the token at the time he issues a request. The proxy request

is also relevant for coupling the values received from a SensorThings API entity when not all the

entities are shown because of the pagination, therefore as long as there will be an @iot.NextLink

not null it will go through all the entities.

3.3.1.5 Aggregation of results from different endpoints

Mostly used for the aggregation of the different results from different endpoints, this functionality

refers to the web application when it issues a request to visualize the Datastreams from different

endpoint addresses. Therefore, there is not the need of having the web application to aggregate

and parse the results for each one of the visualization tools. By moving this logic to the backend

application it will be possible to pre-process the data with any operations that may need to exist, such

as calculating the monthly averages of a group of Observations. This also takes into consideration

the abstraction of the authentication token for some of the endpoint addresses.

3.3.1.6 Managing the CoralHarvester database

To allow access to the platform and recognize the users it is important to have a database with their

respective login details in it. Also, the database stores many other crucial information of the whole

system, such as the storage of the endpoint addresses, and their respective authentication token, if

it exists. Also, the database is also responsible to hold some of the metadata that is saved after a

Thing is saved into the CoralTools dashboard catalog.

3.3.2 SensorThings API endpoints

The SensorThings API endpoints are the loosely coupled addresses of the servers that are exposing

a SensorThings API implementation. This module of the system is directly accessed by the backend

application as described in Section 3.3.1. Each one of the endpoints may constitute a single IoT

platform.

32 Problem Statement and Solution Proposal

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Harvest xmlns="http://www.opengis.net/cat/csw/2.0.2" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/cat/csw
/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-publication.xsd" service="CSW"
version="2.0.2">

3 <Source>https://seabiotix.inesctec.pt/52n-sos-webapp/service</Source>
4 <ResourceType>http://schemas.opengis.net/sos/2.0/sosGetCapabilities.xsd</

ResourceType>
5 <ResourceFormat>application/xml</ResourceFormat>
6 </Harvest>

Listing 3.1: XML file to harvest an endpoint

3.3.3 Web Application

The Web Application module is the component that is used directly by the end users. It serves as

both an interface to manage the SensorThings API endpoints, as to visualize datastreams in diferent

ways. The Web Application interacts with the backend application through the RESTful API it

exposes and takes advantage of its websocket, mechanism so that the Web Application has a way to

receive notifications dynamically.

3.3.4 OSGeoLive

The OSGeoLive is running on a separate virtual machine. The reason for using this distribution was

due to it already containing several applications pre-installed and ready to use, such as pyCSW and

GeoNetwork that will be covered in the following Sections 3.3.4.1 and 3.3.4.2. This component

was crucial in order to test the proposed solution to describe a service-based model such as the

GetCapabilities request since it already contains existing implementations for the OGC ecosystem.

3.3.4.1 pycsw

pycsw is one of the applications that comes with the OSGeoLive distribution. It is used to harvest a

given SensorThings API endpoint address. In this particular case the pycsw is responsible to send

a request to the backend application specifying the address of the endpoint it wants to harvest as

well as other options passed as parameters on the GET request. To do so, pyCSW already contains

a few methods that can be called that will allow for the harvesting of an endpoint. To harvest a

Sensor Observation Service 2.0 we would have to give the following XML that contains input on

the endpoint address, the service type that the endpoint is running. As an example, the Listing 3.1

refers to the harvesting of a SOS2.0 instance on the address defined in the Source tag.

3.3.4.2 GeoNetwork

GeoNetwork is another of the applications that is already installed in the OSGeoLive distribution.

After the harvesting is done by the pycsw the GeoNetwork will harvest the pycsw. As pycsw is a

3.4 Conclusions 33

headless metadata harvesting catalogue, it does not provide any interaction with the user. Therefore

it is important to take advantage of some of the features that GeoNetwork provides, such as the

scheduling of the harvesting tasks and more importantly the search functionalities it has granted by

ElasticSearch2 that comes with it.

3.4 Conclusions

The first step on the development ought to be the development of the Web Application in parallel

with the Backend Application as the latter has an important role on managing the users of the Web

Application as well as the endpoint addresses, bridging the issuing of the requests from the Web

Application to the devices running a SensorThings API server, communicating with the pycsw

interface and by producing a GetCapabilities document.

These modules can be split into three distinct categories. Chapter 4, refers to the implementation

of the functionalities that enable the addition of endpoint addresses to the platform, among other

expected actions there is also the management of the devices that expose a SensorThings API server.

The Chapter 5 describes the conceptual implementation that aims at bridging the gap between

the SensorThings API and other OGC specifications, such as Catalogue Services for the Web

implementations namely GeoNetwork by leveraging on inserting JSON-encoded metadata in the

description fields belonging to the entities in the STA data model. The last Chapter 6, describes the

implementation process of the tools which main function is to produce higher-level outputs for data

visualization by aggregating Observation data collected from various endpoints.

2https://www.elastic.co/

34 Problem Statement and Solution Proposal

Chapter 4

Device Management

This Chapter will describe thoroughly the implementation details of the Device Management

Module. Firstly, it will be described the development of the functionality that refers to the process

of adding these endpoints to the web application. The last section refers to the development of

the interfacing functionality with the remote SensorThings API endpoints, in order to manage its

entities.

4.1 Introduction

The importance of managing the entities without having to know the underlying structure for each

request is an advantage for the sake of simplicity and overall usability for all users that interact

with any of the platforms. With this purpose in mind one of the core modules of development

encompassed the development of an interface built in the web application that is responsible to

manage the platforms. This module is composed by the management of the entities such as the

Thing, Datastreams as well as the management of the endpoints within the domain of the whole

application.

4.2 Endpoint collection

Through this application, most of the interaction made by the user is dependent on this function-

ality, as it allows for the inspection of an endpoint that is running a SensorThings API server

implementation and to add it to the backend application. The user needs to know the endpoint

address of the server running the SensorThing API in order to add it, as there is no mechanism

to search for SensorThing API. After entering the endpoint address there will be issued a query

through the backend application in which it will retrieve all the data referring to all the entities of

the SensorThing API with the exception of the discrete results of the Observations, as this aspect is

later addressed in the Dashboard chapter.

35

36 Device Management

The user also has the option to either specify the visibility of the endpoint address, making it

globally visible to all the other users of the application, to make it only visible for him or to a group

of users that are inserted in an organization. After submitting the endpoint address it will be named

a node.

4.2.1 Collecting Thing metadata

After adding an endpoint address it is possible to access the data contained on a Thing entity in

order to store its metadata on the backend application. This is particularly useful because there

are no guarantees that the sensor platform will always be available if the user is not the person

in charge of such device. With this functionality, it is possible to know the identification of the

entity that controls a given endpoint address such as the point of contact of the person in charge. In

the context of a decentralized architecture it becomes easier to retrieve relevant information that

otherwise would not even be available.

In order to add a new entry referring to a known Thing the user must choose the endpoint and

the Thing. Then the backend application upon receiving the request of the web application will

interact with the given node to retrieve the properties field. It is in the properties field that the

metadata is stored. With the response, the web application will fill in the form automatically and

allow the user to simply add that to the catalog.

4.2.2 Catalog

The catalog displays metadata information about the Things that were harvested. The information

that is presented to the user in the web application is stored in the database. Moreover, this

information is mostly tied to the service identification, service provider and operations metadata.

Since that in a multi-platform IoT environment we assume that the user may not know every

endpoint. Therefore, this information is presented through the web application as depicted in

Figures 4.1a and 4.1b.

4.3 Control Panel

Control panel is the name given to the feature responsible for taking advantage of the RESTful API

of the SensorThings API to allow for CRUD operations through the web application. However, the

control panel is not supposed to interact with any of the Observation entities. For the visualization

of Observation data there is a specifically built module described in a following chapter. The user,

after adding an endpoint to his personal area on the application , be it a public or a private endpoint,

will then be able to interact with all the six distinct entities that compose the SensorThings API data

model (see Section 2.2.1.1. Despite each one of these entities have different fields, the behavior

of the application is similar to all the different endpoints as the exposed REST API follows the

SensorThings API standard.

4.3 Control Panel 37

(a) Service Provider and Service Identification

(b) Operations Metadata

Figure 4.1: Catalog view on the web application

4.3.1 Management of SensorThing API entities

To create, update and delete the user, is presented firstly with a list of each one of the available

entities and must choose one. Afterwards the form is automatically filled with preset values and the

user can alter the values on the fields. Finally the user can create a new entity or update the selected

one. It is also possible to delete an entity.

38 Device Management

4.3.1.1 Datastream entity

According to the SensorThings API, the Datastream is composed by three other entities, the

Observable Property, the Sensor and the Thing. Therefore, when a new Datastream is created

beforehand there should exist at least one of the aforementioned entities. The Datastream entity

will also be described by the Unit Of Measurement and used to describe the units on the results

of the Observations for that Datastream. The Unit Of Measurement is a JSON_object composed

by the following fields Name, Description and Symbol. Moreover, there are other important fields

on the Datastream entity that are internally managed by the FROST application, namely the

ObservedArea which can be described as being a BoundingBox that defines the area on where all

the Observations are situated from a geographic perspective. Besides the ObservedArea there are

also the PhenomenonTime and ResultTime fields that are equally updated with any new Observation.

They describe the duration of the whole Datastream taking the dates of the first and last registered

Observation of that Datastream.

4.3.1.2 Geographical Entites

The entities Location and Feature of Interest both describe geographic locations. Location is

associated with the Thing and the Feature of Interest to the Observation. When a new Observation

is created and there is not a reference to a Feature of Interest, a new one will be created based on

the Location. However, the most important aspect to consider is the GeoJSON object that should

be present. By default the web application already assumes that the Geometry Object is a Point.

The user simply needs to enter the geographic coordinates that spatially refer to a given Point.

4.3.1.3 Observable Property and Sensor entities

These two entities describe the Datastream entity. However they might be different in terms of

semantic value but in terms of application and usability by the user are similar. Both these entities

are described by a Name a Description and a Definition. The Sensor entity has a field of Metadata

instead of Definition and the user can use this field to provide information related to the sample rate

of the sensor.

4.3.1.4 Management of Thing entity

Different from all the other entities where the user can simply change the fields, the Things entity

follows a different logic most importantly on the Properties field. This field as stated before is a

JSON_Object, therefore it is possible to allow for anything the user wants. However to enable for

a Thing to be harvested by third-party applications, such as the pycsw it needs to contain some

pre-determined fields. The backend application has a method that will extract the information

contained in the aforementioned properties field and build a GetCapabilities document as it is later

described in the following chapter.

4.4 Conclusions 39

4.3.2 Management of Authorization tokens

Some of the endpoints that can be added will be protected by an authentication mechanism to

protect the integrity of the data. For that reason, the backend application needs to know which of

the endpoints need an authorization token in order to allow for CRUD operations and furthermore

retrieve the Observation data. Therefore, it was implemented an interface for the user to manage

the authorization tokens and associate them with the desired endpoint. This token will be used by

the backend application at the time there is any request done and the target endpoint has a token

associated to it.

4.4 Conclusions

The functionalities described in this chapter focuses primarily on making the web application more

complete by enabling an interaction from the user to the devices, by presenting forms to operate

with the SensorThings API. Thus, without having to create the requests by hand it facilitates the

process of managing the devices’ entities. Additionally, it is also important to store the endpoint

addresses in the database so they easily become accessible throughout the application when the

user needs, for instance, to retrieve the results of a Datastream.

40 Device Management

Chapter 5

Metadata Cataloguing Implementation

This chapter refers to the implementation of an operation that is intended to aggregate the varied

fields of metadata that are inherent to the device. The goal of this concept is to serve as a proof of

concept for the enablement of service metadata description on devices running the SensorThings

API specification without having to redesign the proposed specification. Through this chapter the

proposed data model will be thoroughly explained and the architecture of the solution.

5.1 Introduction

All services in the OGC common service framework, including the Sensor Observation Service

(SOS) [4] have several operations that must be provided by each implementation. One of the core

operations is the GetCapabilities request that allows to query a service for a description of the

service interface and the available sensor data. This is always the first request in a service chain and

encompases important information that facilitates machine to machine service discovery, binding

and interoperation.

The lack of inclusion of this request introduces a non-linearity in the implementation of service

chains. Furthermore, including a GetCapabilities would decrease the level of implicit knowledge

that other services in the ecosystem need to have in order to interpret and bind to service end-points.

Providing standard metadata descriptions (ISO 19115/ISO 19119) also facilitates the work, for

example, to catalogue service harvesters.

While the need for a GetCapabilities is debatable if an API is common, this is often not the

case in the scope of a service ecosystem, where different services coexist across a distributed

computing environment and need to interoperate in order to deal with different resources towards

the same goal. Therefore: 1) the à priori knowledge for a system integrator about each service

details can be considerable, rendering service automation nearly impossible and reuse very low. For

instance, which web service would be invoked first and what parser should be used for each type of

service?; 2) Different implementations may also offer different “optional” features; 3) Additonal

41

42 Metadata Cataloguing Implementation

information about complementary services in the service ecosystem could also be included, for

example, authentication service URI and available methods.

Even across distributed systems, users need common entry points to find resources, such as

services and/or data. This is usually the role played by catalogue services, such as GeoNetwork [20].

Catalogues are mainly used to manage spatially referenced resources, providing powerful metadata

harvesting, editing and search functionalities.

For this work, we consider that each user maintains a collection of resources of his own interest.

As such, he will have his personalized entry point which contains information about his own devices,

but also other IoT devices that are either publicly available, or that he has been granted access to.

In the geo-spatial application domain, GeoNetwork is a reference implementation for the OGC

CSW 2.0 ISO profile and currently supports other sources such as the OAI-PMH, OpenSearch and

Z39.50.

One of the most interesting features of GeoNetwork is the ability to automatically harvest

information of the resources that are exposed by services end-points. The harvester is responsible to

automatically communicate with the endpoint running the SensorThings API server implementation

and retrieve the metadata inherent to the services available from that device. In a typical OGC CSW

interaction, this would simply mean that the harvester would invoke the operation GetCapabilities

from that service and the response would contain all the required metadata for the resources it

contains.

5.2 Overview

The proposed solution takes advantage of the flexibility the data model of SensorThings API

provides to store the required metadata. Additionally there are some fields that will need to

be generated dynamically during the request. In order to be the most compliant with the OGC

specifications, the expected response of the operation GetCapabilities should contain the following

fields described in Table 5.1.

As stated previously in Section 5.1 it is possible to take advantage of the SensorThings API

data model to support the storage of relevant metadata concerning the Service Identifaction field,

the Service Provider field and the Operations Metadata field.

5.3 Structuring the metadata model

Firstly, to store the metadata for a single device it is necessary to understand where and how it

should be structured and organized within the SensorThings API data model.

After a thorough analysis we came to the conclusion that the best approach would be to add most

of the information under the properties field in the Things table, as seen in Figure 5.1. Because

this field is of type JSON_Object it means that we can store a string having a specific meaning in

the form of a key-value pair.

5.4 Generating the Contents field 43

Table 5.1: GetCapabilities fields [25]

Section name Meaning

Service Identification Metadata about this specific server. The contents and organization
of this section should be the same for all OWSs.

Service Provider Metadata about the organization operating this server. The con-
tents and organization of this section should be the same for all
OWSs.

Operations Metadata Metadata about the operations specified by this service and imple-
mented by this server, including the URLs for operation requests.
The basic contents and organization of this section shall be the
same for all OWSs, but individual services may add elements
and/or change the optionality of optional elements.

Contents Metadata about the data served by this server. The contents and
organization of this section are specific to each OWS type, as
defined by that Implementation Specification.

Figure 5.1: Thing entity table

Despite the proposed structure, the properties field can contain more customized information

depending on the user needs. The application that produces the metadata document is flexible

enough to only look for the set of reserved keywords and ignoring the rest of the JSON key-value

pairs.

To help index the different datasets and services in a regular harvester, there is also a field of

keywords that should contain information that best describe the servers. These keywords ideally

should belong to a controlled vocabulary.

The Table 5.2 describes the main fields that compose the JSON_Object.

5.4 Generating the Contents field

Due to the nature of the devices, they need to be able to constantly change the information about

the datastreams and not be encumbered by updating the properties field continuously after a small

change. Therefore the Contents field is generated at the moment of the request. To meet this

requirement the application that generates the GetCapabilities document will have to retrieve all

the information associated with the Datastreams under the targeted Thing. According to the OWS

44 Metadata Cataloguing Implementation

Table 5.2: JSON structure

Key name Meaning

Version The Version refers to the Version of the specification chosen, it is
defaulted to 2.0.0

Service Type Version Version of the service type implemented by the server.

Profile Identifier of OGC Web Service (OWS) Application Profile.

Title Title of the server, usually refers to the name of the device.

Abstract Brief description of the server, usually is a summary of the device.

Keywords Group of one or more words belonging to a controlled set of words
that are used to describe the device.

Fees Fees and terms for using the server.

Access Constraints Information of any possible restriction from using data from the
server.

Provider Name Unique identifier that refers to the organization that is providing
the service.

Provider Site Reference to the most relevant web site of the entity that provides
the service.

Service Contact Information for contacting the service provider. Usually contains
an address, phone, electronic mail address, the name of the indi-
vidual and other relevant informations.

Contains Operations Information about the operations provided by the service and
implemented by the server, containing the HTTP verb and the re-
quired URL for the operation request. It also contains information
about additional fields.

specification the Contents field should always have a minimum of necessary parts, defined in

Table 5.3.

To achieve this, the application has the target SensorThings API endpoint to retrieve the

Datastreams entity and additionally, their associated Observed Property and Sensor entities, to

provide additional information that will further integrate the Contents content. The expected output

is an array with each element of the array referring to a distinct Datastream. The result time and

phenomenon time values are internally managed by the SensorThings API and they are updated

according to the oldest and newest Observation that are present in the database. Moreover, the

metadata model for the Contents field according to the specification can be extended as needed.

Thus, as most of the Observable Properties are physical quantities an extra field was added named

Unit of Measurement. This field is important to provide a semantic meaning to the result value of

an Observation, as for Measurements it is necessary to provide the unit of the property that is being

subject to measurement. Finally, the Contents field also takes into account the spatial location of

the whole dataset. All of the observations are confined to a physical space, therefore the application

should also be able to provide the values of the coordinates that define a bounding box where all

5.5 Architecture 45

Table 5.3: Minimum parts of a single Datastream in the Contents field [25]

Name Meaning

Title Title of the dataset.

Abstract Brief description of the dataset.

Keywords Group of one or more words belonging to a controlled set of words
that are used to describe the dataset.

Identifier Unique identifier of the dataset

WGS84 Bounding Box Minimum bounding rectangle surrounding the dataset, using WGS
84 CRS with decimal degrees and longitude before latitude

Bounding Box Minimum bounding rectangle surrounding dataset, in available
CRS

the observations where taken.

5.5 Architecture

To allow for cataloging of the several devices it is necessary to understand the underlying archi-

tecture of the system under development. The main principle is to have a decentralization of the

data generated from sensor activity; meaning that the data collected from the various sensors is not

pushed to a single database. However, all of the sensors that compose the whole network must be

cataloged in a single database.

Since the SensorThings API specification does not specify a GetCapabilities request it is

necessary to implement a web service following a Resource-Oriented Architecture that bridges the

interaction with the target device to retrieve its stored metadata and to generate the GetCapabilities

request. To meet this end we developed an application in Golang (Go) whose main function is to

generate the metadata document as stated before. The architecture is depicted in Figure 5.2.

To accomplish this, the application will take advantage of the exposed REST API to query

for the resources contained in the device that is running the SensorThings API. After obtaining

information regarding the Thing entity, it will look for the properties field and extract the data

contained there. As stated previously, the application will search for the known keywords that have

a specific meaning and aggregate them to compose the structure of the document. Once all the

requested fields are filled in the application will respond back to the GET request with the metadata

document.

The architecture is depicted in Figure 5.2.

5.6 Conclusions

The need for a GetCapabilities request is debatable if the API is common, but the à priori knowledge

for a system integrator about each service details can be considerable, for instance, which web

46 Metadata Cataloguing Implementation

Figure 5.2: Application Deployment Diagram

service shall be invoked first. Different implementations may offer different “optional” features.

Additonal information about the service ecosystem can be included, for example, authentication.

In order to create a system where seamlessly all the devices seem to be connected, there is the

need to build a centralized structure that supports and contains information about all the other IoT

devices. Ideally this application is supposed to work as a bridge between the devices that expose the

SensorThings API and the end users. For a more correct approach on the solution for this problem,

the application needs to have some functionalities that are usually applied in Catalog Services,

such as GeoNetwork [20].The catalog is mainly used to manage spatially referenced resources,

providing powerful metadata editing and search functions. Thus meeting the requirement of having

such centralized structure responsible for organizing all their inherent devices.

By combining the flexibility of the data model of the SensorThings API and an efficient

resource-oriented architecture the final result demonstrates that it is possible to reach the same

outcome as other metadata retrieval methods on for instance, a Sensor Observation Service (SOS).

And since the application that outputs the GetCapabilities document is independent from the

SensorThings API server-side implementation it has a higher level of flexibility only relying on the

conformance of the device that runs the SensorThings API to follow the specified data model.

In addition, by integrating this proposed solution with the OGC SensorThings API standard it

is possible to achieve a more uniform and standardized way to manage the devices’ metadata. This

will have a positive impact in several IoT-based applications that rely on having multiple clusters of

data where it is possible for the users that interact with these platforms to retrieve a more detailed

report of what a specific device can provide, the organization that operates it and the operations that

it provides as well as the datasets that are exposed and able to be queried.

5.6 Conclusions 47

Finally, to validate the interoperability of our solution we tested it using other third-party

applications such as pycsw and GeoNetwork [35]. By successfully harvesting the metadata

contained in the SensorThing API as we proposed and being able to display it in the GeoNetwork

application we could verify that our solution was interoperable and therefore a possible solution for

metadata representation of the SensorThings API.

48 Metadata Cataloguing Implementation

Chapter 6

Dashboard Implementation

This chapter describes the development of the web application that concerns about the visualization

of the observation data. With the multitude of ways to present the observation data for visualization,

the most important aspect of the development focuses mainly in presenting the data in different

ways and from more than one source.

6.1 Datastream selection

The interface for the users to select the datastreams is shown in Figure 6.1. Common to all the

visualization tools it is important for the user to be able to retrieve the most updated information

related with the datastreams therefore during the whole process of selecting the desired datastream

firstly it is needed to perform a request to the endpoint address to retrieve the available Thing

entities. Then it is possible to expand and retrieve the associated Datastream to each Thing

available. Furthermore, the selected Datastreams are displayed in the form of a table separated by

each endpoint as shown in Figure 6.2.

For each user, there are some rules of the endpoints that are able to be selected. The user can

only select the endpoints that are directly associated to him and this is managed by the backend

application.

6.2 Heatmaps

The heatmaps visualization that was implemented refers specifically to a 2D visualization with

colors that represent a third variable. This third variable that is being displayed in the map is a

function of other 2 variables, the latitude and the longitude, that refer to the Feature of Interest of

its corresponding Observation. This functionality relies on the user to select several Datastreams

and the application is responsible to represent the observation data in a map. Furthermore, as the

observation data represents a timeseries it was also taken into consideration to create an animation

that spans from the start date until the last recorded date of a single Observation. This was

accomplished by redrawing the points representing the data at every cycle. To perform a request

49

50 Dashboard Implementation

Figure 6.1: Interface for selecting datastreams

the user follows the same steps to select the datastreams as described previously in Subsection 6.1

and then issue the request. The following request depicted in Listing 6.1 will produce the following

output shown in Figure 6.3.

The backend application is responsible to query the different endpoints and retrieve all the

Observations that the selected Datastreams contain. After retrieving all the Observations, the

backend application aggregates all of them and responds back to the web application with all the

needed information to properly display it. The web application, after receiving the response, will

determine the first and the last date an Observation was recorded in order to limit the time frame.

An example of the response is shown in Listing 6.2.

In order to determine the value of intensity, it is necessary to normalize the values. Due to the

nature of the measurements it is hard to predict a reasonable scale for the values to be represented

without a pre-determined ontology that can recognize a given Observable Property to set a scale

for the result values of the Observations. Therefore, the scale is based on a relative analysis of all

the results retrieved. It is important to know the maximum and minimum values and then set the

value of each intensity according to the following expression:

Intensity =
result −min
max−min

(6.1)

1 {
2 "connectEndpoints": [
3 {
4 "address": "http://localhost:8080/sensorthings/v1.0/",
5 "datastreamID": [12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28]
6 },
7]
8 }

Listing 6.1: Heatmap request

6.2 Heatmaps 51

1 {
2 "data": [
3 {
4 "endpointaddress": "http://localhost:8080/sensorthings/v1.0/",
5 "datastreamid": 12,
6 "observations": [
7 {
8 "int": 20984,
9 "resultTime": "2018-06-20T07:10:00.000Z",

10 "phenomenonTime": "2018-06-20T07:10:00.000Z",
11 "result": 9.142027989982468,
12 "latitude": 41.1671572,
13 "longitude": -8.6087762,
14 "name": "INESCTEC",
15 "description": "INESCTEC"
16 },
17 {
18 "int": 21778,
19 "resultTime": "2018-06-20T07:20:00.000Z",
20 "phenomenonTime": "2018-06-20T07:20:00.000Z",
21 "result": 17.24926971381685,
22 "latitude": 41.1671572,
23 "longitude": -8.6087762,
24 "name": "INESCTEC",
25 "description": "INESCTEC"
26 },
27 ...
28]
29 }
30]
31 }

Listing 6.2: Heatmap Response

52 Dashboard Implementation

Figure 6.2: Interface for the selected datastreams

The value of the above Equation 6.1 is a value always set between 0 and 1. This value is

important to determine the predominant color that will represent the given point on the map,

whereas an higher numerical value will represent a color closer to red.

6.3 Clustered View

Related with Datastream visualization, all of the Observations are geographically represented by

its Feature of Interest, as the Feature of Interest is spatially located, the user can also be presented

with the Observation data in a map. Due to the nature of some Datastreams that can hold thousands

of records it is important to optimize the representation in the map and aggregate them in clusters

rather than inserting a marker in the map. The process of issuing a request encompasses the

selection of the wanted Datastreams. The backend application then receives the request and will

query for the Observations over all the chosen endpoints. As the SensorThings API has no direct

way to aggregate the Observations of a given Datastream by its corresponding Feature of Interest,

the handler for that request in the backend application will group all Observations in a key-value

pair whereas the key is the unique ID for the Feature of Interest (the @iot.id) and the value is an

array with all the Observations with the same Feature of Interest. When the backend application

is done with the request the web application is then responsible with the response to represent in

the map the result. The output given is as seen in Figure 6.4. To further inspect the values of the

given Feature Of Interest each one of the points represented in the map need to be clicked. This

will expand a table with the values as seen in Figure 6.5.

This functionality supports the query for different endpoints and represent them seamlessly.

The Figure 6.6 is the result of the request that contains two different endpoints, represented by the

Listing 6.3.

6.4 Historical Locations 53

1 {
2 "connectEndpoints": [
3 {
4 "address": "https://toronto-bike-snapshot.sensorup.com/v1.0/",
5 "datastreamID": [1569,97,17,9]
6 },
7 {
8 "address": "http://localhost:8080/sensorthings/v1.0/",
9 "datastreamID": [12,13,14,15,16,17,7,8]

10 }
11]
12 }

Listing 6.3: Clustered View Request

6.4 Historical Locations

Due to the nature of some sensors and their platforms, they can have their positions to be altered

during their course of action. Taking the example of a buoy whose position can be altered almost

in every new Observation or maybe even the reallocation of a device with sensors, it is important

to constantly update the coordinates of its respective Location. Due to this, the SensorThings

API already supports a way to represent the successive Locations over the time the sensors were

in activity. Whenever a new Location entity is created the old Location will be addressed as a

Historical Location. The Historical Location contains crucial information, namely the time span

and the geographical coordinates of the Location. To support the visualization, one of the tools that

were implemented to address this issue was the Historical Locations map. This feature allows the

user to visualize all the locations the Thing had over the course of time.

The web application will request the backend application with the example payload in the

Listing 6.4 the expected response for this request will be an array of objects that contain the

endpoint address of the target SensorThings API server, the unique ID of the Thing and an Array of

objects that contain the time the Location was first inserted, descriptive information of the Location

such as its name, and most importantly the geographical location as depicted in Listing 6.6. With

this response the web application will determine the time span of the map animation based on

the latest and most recent dates and represent these locations on the map. For the cases where a

Thing contains more than one Historical Location a line will be drawn that describes the route over

time. Moreover, the marker that represents the active Location for a given time will be drawn as

red, whereas all the other Locations are represented by green markers, such as it is depicted in

Figure 6.7.

Equally to the other tools it is also possible the user to obtain in the same map the historical

locations of more than one Thing and through various endpoints, to achieve this the user needs to

select other endpoints and select the Things. The request is described in Listing 6.5 and produces

the map according to Figure 6.8.

54 Dashboard Implementation

1 {
2 "connectEndpoints": [
3 {
4 "address": "http://localhost:8080/sensorthings/v1.0/",
5 "thingid": [2,3]
6 }
7]
8 }

Listing 6.4: Historical Location Request

1 {
2 "connectEndpoints": [
3 {
4 "address": "https://toronto-bike-snapshot.sensorup.com/v1.0/",
5 "thingid": [861,853,845,837,5]
6 },
7 {
8 "address": "https://stalbert-aq-sta.sensorup.com/v1.0/",
9 "thingid": [144,138,132]

10 },
11 {
12 "address": "http://localhost:8080/sensorthings/v1.0/",
13 "thingid": [2,3]
14 }
15]
16 }

Listing 6.5: Historical Location Request for multiple endpoints

6.4 Historical Locations 55

1 {
2 "data":{
3 "connectEndpoints":[
4 {
5 "endpointAddress":"http://localhost:8080/sensorthings/v1.0/",
6 "thingid":2,
7 "locations":[
8 {
9 "time":"2018-06-04T07:01:05.926Z",

10 "name":"Aliados",
11 "description":"Aliados",
12 "encodingType":"application/vnd.geo+json",
13 "location":{
14 "type":"Point",
15 "coordinates":[
16 -8.609993,
17 41.1561414
18]
19 },
20 "@iot.id":1
21 },
22 {
23 "time":"2018-06-04T07:32:33.092Z",
24 "name":"Lapa",
25 "description":"Lapa",
26 "encodingType":"application/vnd.geo+json",
27 "location":{
28 "type":"Point",
29 "coordinates":[
30 -8.6421185,
31 41.1579809
32]
33 },
34 "@iot.id":2
35 }
36 ...
37]
38 },
39]
40 },
41 "status":"Success",
42 "code":"0000"
43 }

Listing 6.6: Historical Location Request

56 Dashboard Implementation

6.5 Datastreams presented in charts

Another way of viewing the Observation data for each Datastream is by using line charts for

date-based data. As every Observation has a specific date it is possible to create a timeseries. To

perform the query on the different endpoints, the user needs to select the desired endpoints and

select the Datastreams. It is also possible to define the time period of the Observations that the

user wants to retrieve as depicted in Figure 6.9. Afterwards the request is issued to the backend

application, containing the Endpoint Addresses on which the queries should be issued and also the

unique identifiers of the Datastreams, as well as the start and end dates. An example request for two

distinct endpoints, each containing three Datastreams is depicted in Listing 6.7. According to the

SensorThings API implementation it is important to note that a single request may not contain all the

Observations that fit into the timespan that was provided in the query, this is due to the pagination in-

herent to each SensorThings endpoint. This means that the backend application must verify if there

is a field @iot.NextLink in each response of the endpoints to a request issued by the server such as:

https://stalbert-aq-sta.sensorup.com/v1.0/Datastreams(9)/Observations?$filter=phenomenonTime ge

2018-05-30T00:00:00.000Z and phenomenonTime le 2018-06-04T15:22:33.000Z&$skip=700.

Different SensorThings endpoints may contain Datastreams that can hold Observations by

the order of dozens of thousand. Due to this, it was important to allow the user to retrieve only a

specific time interval in order to limit its need and shorten the query times. Moreover the backend

application also has the functionality of grouping the Observations per month and calculate the

monthly average of the results and find the maximum and minimum values, this will allow for the

creation of a second chart which will display these values.

An example of the charts that are produced are depicted in Figures 6.10a and 6.10b.

1 {

2 "connectEndpoints": [

3 {

4 "address": "http://localhost:8080/sensorthings/v1.0/",

5 "datastreamID": [

6 {

7 "id": 5,

8 "endTime": "2015-08-25T12:15:38.000Z",

9 "startTime": "2015-08-23T13:54:33.000Z",

10 "name": "Air Temperature"

11 },

12 ...

13 {

14 "id": 7,

15 "endTime": "2015-08-25T12:20:40.000Z",

16 "startTime": "2015-08-23T13:54:33.000Z",

17 "name": "Wind Direction"

18 }

19]

20 },

6.6 Datastream availability 57

21 {

22 "address": "https://stalbert-aq-sta.sensorup.com/v1.0/",

23 "datastreamID": [

24 {

25 "id": 23,

26 "endTime": "2018-06-04T15:20:04.000Z",

27 "startTime": "2018-05-30T00:00:00.000Z",

28 "name": "AirQ:24EB52 :Humidity"

29 },

30 ...

31 {

32 "id": 21,

33 "endTime": "2018-06-04T15:20:05.000Z",

34 "startTime": "2018-05-30T00:00:00.000Z",

35 "name": "AirQ:24EB52 :PM2.5"

36 }

37]

38 }

39]

40 }

Listing 6.7: Request for Charts

6.6 Datastream availability

The last tool developed intended to primarily give the user the understanding on how a specific

Datastream performed along the time. Assuming that there inevitably may be some downtimes,

there is the need to know when they happened and how long they affected the whole Datas-

tream. It can also be a solid indicator on how the quality of the Observation data can be trustful.

To interact with this feature the user needs to select all the Datastreams he wants to visualize

equally to all the other tooling mechanisms. After selecting the desired Datastreams, the user

can either set the sample rate on which it will be used later on to determine the interval time

between successive Observations or issue the request with the sample rate value that is provided

in the field Metadata under the Sensor table that is associated to the Datastream. Afterwards a

GET HTTP request is issued with the following: http://localhost:8081/datastream/

observation?endpointaddress=https://stalbert-aq-sta.sensorup.com/v1.0/

&datastreamid=16&samplerate=360. The GET parameters are the Endpoint Address, the

Datastream ID and the sample rate in seconds. After receiving this request the backend application

will search for all the Observation records for the selected Datastream. However, there is also

the issue of a Datastream containing a great amount of Observations in which it will lead to very

long response times for the requests. So, to mitigate the problem there is the option to specify

a time span thus allowing for the user to retrieve the results during that period. The criteria the

backend application uses to determine whether there occurs a gap in observation is by calculating

http://localhost:8081/datastream/observation?endpointaddress=https://stalbert-aq-sta.sensorup.com/v1.0/&datastreamid=16&samplerate=360
http://localhost:8081/datastream/observation?endpointaddress=https://stalbert-aq-sta.sensorup.com/v1.0/&datastreamid=16&samplerate=360
http://localhost:8081/datastream/observation?endpointaddress=https://stalbert-aq-sta.sensorup.com/v1.0/&datastreamid=16&samplerate=360

58 Dashboard Implementation

the difference between two Observations and the difference should be approximately equal to

the sample rate provided. The array of Observations that is iterated through has previously been

ordered by the Phenomenon Time so there is no problem in assuming that the comparison that

is being made indeed happens between adjacent Observations. If the difference between the two

Observations is not equal to the provided sample rate then there we assume the existence of a gap.

The gap is composed by a start and end date. The start date is the date of the first Observation

whose difference is not equal to the sample rate and will extend until an Observation that correctly

does fit into the sample rate. Finally, the web application will display in the form of a Gantt Chart

the segments that will indicate the Gaps in the Datastreams, signaling the period of time on which

the sample rate was correct as green and the incorrect as orange as shown if Figure 6.11.

6.7 Conclusions

The tools described in this chapter contribute to this work by providing better ways to present the

data contained in the devices. By the form of maps, charts and tables there are many ways to display

the information based on the user needs. Thus, this set of tools will give higher-level outputs for

visualization.

Another key aspect is to test the interoperability of different endpoint addresses. The behavior

of each one of the tools is the same regardless of the device that is accessed. This is accomplished

since all these devices are running a SensorThings API server.

Moreover, the Go application that aggregates the responses from the various endpoints is

headless. This means that other applications may perform the same requests in order to get the data

and then, present it in different ways than the ones presented in the web application.

6.7 Conclusions 59

(a) Heatmap y

(b) Heatmap x

Figure 6.3: Heatmap

60 Dashboard Implementation

Figure 6.4: Map representation of the clustered View for 4 different datastreams

6.7 Conclusions 61

Figure 6.5: Table containing the information of the result values for a point represented in the map

Figure 6.6: Table containing the information of the result values for a point represented in the map

62 Dashboard Implementation

Figure 6.7: Representation of the Historical Locations of two distinct Things

Figure 6.8: Representation of the Historical Locations of three Endpoints and multiple Things

6.7 Conclusions 63

Figure 6.9: Interface for the selection of Datastreams and time span

(a) Observation Values of a Datastream

(b) Minimum, Maximum and Average values of the Observation Results grouped by month

64 Dashboard Implementation

Figure 6.11: Interface for the selection of Datastreams and their corresponding gaps

Chapter 7

Evaluation

This chapter, describes the analysis of the solution with the objective to pinpoint the fulfillment of

the initially established goals.

7.1 Management of the SensorThings API entities

To test whether the web application can perform the required operations related with the manage-

ment of entities, some entities were created, deleted and updated. If the web application is working

properly then the values in the database ought to be changed in conformance with the actions

performed by the user.

7.1.1 Creating a new Thing entity

The best example would be to create a new Thing entity as it would also mean that the properties field

would be already filled, meaning that this Thing could properly be used to generate a GetCapabilities

document. After filling form presented in Figures 7.3 that refer to the service identification, service

properties and operations metadata. After issuing the request, the web application will generate

the JSON for the HTTP POST request, according to the Listing 7.1. To verify if the newly created

Thing actually occur in the database we can check it in three different ways. The first one is by

going to the SensorThings API database and using a tool like PgAdmin31 to view the Things table.

The Figure 7.1 shows a SELECT query to retrieve the newly created Thing entity. The second

method is by issuing a GET request to the endpoint address to retrieve the Thing. The last method

is by simply using the web application on which the data will be displayed in a table, as depicted in

Figure 7.2.

1 {

2 "name": "Create Operation Test",

3 "description": "Get Capabilities test",

4 "properties": {

1https://www.pgadmin.org/

65

66 Evaluation

Figure 7.1: Form with the properties field containing metadata about the service.

5 "Version": "2.0.0",

6 "ServiceTypeVersion": "SOS2.0",

7 "Status": "Ongoing",

8 "ServiceType": "SOS",

9 "Profile": "N/A",

10 "Title": "Service Title",

11 "Abstract": "Testing the XML creation based on a JSON structure",

12 "Fees": "None",

13 "AccessConstraint": "Free Access",

14 "ProviderSite": "coral-tools.inesctec.pt",

15 "ProviderName": "Mercury",

16 "ServiceContact": {

17 "OrganisationName": "INESC-TEC",

18 "IndividualName": "Jose Alexandre Teixeira",

19 "EmailAddress": "jast@inesctec.pt",

20 "Role": "Student",

21 "ContactInfo": {

22 "HoursOfService": "N/A",

23 "ContactInstructions": "Email",

24 "Address": {

25 "DeliveryPoint": "Forge",

26 "City": "Porto",

27 "AdministrativeArea": "Paranhos",

28 "PostalCode": "N/A",

29 "Country": "Portugal",

30 "ElectronicMailAddress": "jast@inesctec.pt"

31 },

32 "Phone": {

33 "Voice": "N/A",

34 "Facsimile": "N/A"

35 }

36 }

37 },

38 "Date": "2018-06-15T12:15:43.000Z",

39 "ContainsOperations": [

40 {

41 "OperationName": "GET Things",

42 "HTTPMethod": "Get",

43 "ConnectPoint": "http://localhost:8080/sensorthings/v1.0/Things",

7.1 Management of the SensorThings API entities 67

Figure 7.2: Table containing all the Thing entities of an endpoint address.

44 "Metadata": {

45 "Metadata": "Metadata field",

46 "Link": "http://sensorup.com/docs",

47 "About": "Get all the things"

48 },

49 "Parameter": [

50 "ThingX",

51 "ThingY"

52]

53 },

54 {

55 "OperationName": "GET Datastreams",

56 "HTTPMethod": "Get",

57 "ConnectPoint": "http://localhost:8080/sensorthings/v1.0/Datastreams",

58 "Metadata": {

59 "Metadata": "Metadata field",

60 "Link": "http://sensorup.com/docs",

61 "About": "Get all the things"

62 },

63 "Parameter": [

64 "ThingX",

65 "ThingY"

66]

67 },

68 {

69 "OperationName": "GET ObservableProperties",

70 "HTTPMethod": "Get",

71 "ConnectPoint": "http://localhost:8080/sensorthings/v1.0/

ObservableProperties",

72 "Metadata": {

73 "Metadata": "Metadata field",

74 "Link": "http://sensorup.com/docs",

75 "About": "Get all the things"

76 },

77 "Parameter": [

78 "ThingX",

79 "ThingY"

80]

81 },

82 {

83 "OperationName": "GET Sensors",

84 "HTTPMethod": "Get",

68 Evaluation

85 "ConnectPoint": "http://localhost:8080/sensorthings/v1.0/Sensors",

86 "Metadata": {

87 "Metadata": "Metadata field",

88 "Link": "http://sensorup.com/docs",

89 "About": "Get all the things"

90 },

91 "Parameter": [

92 "ThingX",

93 "ThingY"

94]

95 }

96]

97 }

98 }

Listing 7.1: Payload of a Thing POST request

7.2 Using pycsw and GeoNetwork for metadata publishing

Another key aspect to validate the degree of conformance of the GetCapabilites document generated

is to use it with other cataloguing tools. After a thorough analysis of several available options

the chosen implementation was pycsw due to its functionalities for publishing and discovery of

geospatial metadata, including the OGC CSW metadata format.

In order to test it, firstly it was needed to install the OSGeoLive2 distribution that already

contains a pycsw instance installed. Afterwards, to proceed to the cataloguing of the sensors’

metadata it was necessary to execute a series of commands to properly setup the database and the

endpoint address of the devices that were to be harvested. The database is automatically created by

running a configuration file, inherent to pycsw. However, to allow for the harvesting of the OGC

SOS 2.0 it was necessary to create an XML that contains the endpoint address of the source to be

harvested. In this case, the Go API that was developed provided a route whose main purpose was

to supply the GetCapabilities document in an XML encoding for it to be processed by the pycsw.

To test its conformance with a generic client, such as GeoNetwork that is also included in the

OSGeoLive distribution, the pycsw instance needed to be able to be harvested and its information

to be catalogued properly in the GeoNetwork platform.

7.2.1 Comparison of a Sensor Observation Service GetCapabilities

This first test is supposed to determine if the produced document is structurally similar with other

GetCapabilities response. To assess this, there was made a comparison between the GetCapabilities

document produced by the 52North SOS application and the metadata document produced by the

application. In the code listings 7.2 and 7.3 it is shown each one of the results for the Service

Identification field.
2https://live.osgeo.org/

7.2 Using pycsw and GeoNetwork for metadata publishing 69

1 "serviceIdentification" : {

2 "title" : {

3 "eng" : "52N SOS"

4 },

5 "abstract" : {

6 "eng" : "52North Sensor Observation Service - Data Access for the Sensor Web"

7 },

8 "accessConstraints" : [

9 "NONE"

10],

11 "fees" : "NONE",

12 "serviceType" : "OGC:SOS",

13 "profiles" : [

14 "http://www.opengis.net/extension/SOSDO/1.0/observationDeletion",

15 (...)

16 "http://www.opengis.net/spec/waterml/2.0/conf/xsd-xml-rules"

17],

18 "versions" : [

19 "1.0.0"

20]

21 },

Listing 7.2: Output of a GetCapabilities

1 "ServiceIdentification": {

2 "ServiceType": "SensorThings",

3 "ServiceTypeVersion": "0.0.1a",

4 "Profile": "SensorThings API OWS Profile",

5 "Title": "Raspberry C3",

6 "Abstract": "This is a brief narrative description of this server,

normally available for display to a human",

7 "Keywords": {

8 "Keyword": ""

9 },

10 "Fees": "NONE",

11 "AccessConstraints": "N/A"

12 },

Listing 7.3: Output of the application

Despite a small difference between both results, nonetheless it is proven that the solution

developed has the same structure. For sake of simplicity the fields Service Provider and Operations

Metadata are omitted but they were compared and the differences noticed in the Service Provider

field are very similar. However, due to the nature of the SensorThings API resource-oriented

architecture the Operations Metadata field had to be restructured and some differences can be found

between the snippets 7.4 and 7.5 where both represent an operation exposed by the server.

70 Evaluation

1 "Batch" : {

2 "dcp" : [

3 {

4 "method" : "POST",

5 "href" : "http://seabiotix.inescporto.pt:8080/52n-sos-webapp/service/

json",

6 "constraints" : {

7 "Content-Type" : {

8 "allowedValues" : [

9 "application/json"

10]

11 }

12 }

13 }

14]

15 },

Listing 7.4: Output of the SOS on operations metadata

1

2 "Name": "POST Thing",

3 "DCP": {

4 "HTTP": {

5 "HTTPVerb": "POST",

6 "URL": "http://194.117.25.107/sensorthings/v1.0/Things",

7 "Constraint": "N/A"

8 }

9 },

10 "Parameter": null,

11 "Constraint": "N/A",

12 "Metadata": {

13 "Metadata": "Field for metadata",

14 "Link": "http://developers.sensorup.com/docs/",

15 "About": "Create a Thing."

16 }

Listing 7.5: Output of the application on operations metadata

7.2.2 Harvesting a SensorThings API endpoint

To test whether the backend application was able to correctly generate the GetCapabilities doc-

ument pyCSW was used. To do this the pycsw method post_xml was responsible to request the

GetCapabilities to the endpoint address of the backend application. This request will result in

the backend application to query the Thing entity that corresponds to the given ID and endpoint

address provided as parameters of the GET request. The configuration file of Listing 7.6 was used

7.3 Interoperability of the SensorThings API 71

1 <?xml version="1.0" encoding="UTF-8"?>
2 <Harvest xmlns="http://www.opengis.net/cat/csw/2.0.2" xmlns:xsi="http://www.w3.org

/2001/XMLSchema-instance" xsi:schemaLocation="http://www.opengis.net/cat/csw
/2.0.2 http://schemas.opengis.net/csw/2.0.2/CSW-publication.xsd" service="CSW"
version="2.0.2">

3 <Source>http://192.168.1.102:8081/getcapabilities?&endpointaddress=http
://192.168.1.102:8080/sensorthings/v1.0/Things(2)&thingid=2&xml=false&
parameters=all</Source>

4 <ResourceType>http://schemas.opengis.net/sos/2.0/sosGetCapabilities.xsd</
ResourceType>

5 <ResourceFormat>application/xml</ResourceFormat>
6 </Harvest>

Listing 7.6: XML file to harvest the Mercury endpoint

to harvest a Thing entity with ID equal to the value 2 on the Mercury endpoint, known as having

the IP address of 192.168.1.102 as the OSGeoLive instance was running on a local Virtual Machine.

7.2.3 Using GeoNetwork

After the pyCSW proceeded with harvesting the endpoint it now contains the data described by the

GetCapabilties document. However, to enable the visualization of this information and to present it

in GeoNetwork and to assess if the service was well described to prove it integrates with the CSW

specification GeoNetwork was used to harvest the pyCSW instance running in the same machine.

The following Figure depicts the interface of the GeoNetwork that will proceed with the harvesting.

7.3 Interoperability of the SensorThings API

One of the most important aspects over the development was to take into consideration the inter-

operability that the SensorThings API was designed to. Therefore all the queries that are issued

by the backend application will be the same regardless of the SensorThings API server imple-

mentation. To assess this there were used some SensorThing API endpoints that were running

different implementations and were also maintained by different entities. In the list below there is

the description of the several endpoints that were used and a brief summary on the SensorThings

API server implementation and the entities responsible for its maintenance.

• StAlbert Wildfires — contains crowdsourced data from sensors that measure the air quality

in the region of St. Albert, Canada. It is managed by a SensorUp SensorThings Cloud Server.

• Snapshot Toronto Bikes — relates to Toronto’s data on cycling and cyclists. It is also

managed by a Sensorup SensorThings Cloud Server.

• Scmix Server — contains a huge collection of observation data dating to 2010 and is

maintained by INESC-TEC. It is running a FROST implementation.

72 Evaluation

• O2SOS Raspberry Pi & C3P0 Raspberry Pi — Raspberry Pi that are running a FROST

implementation additionally they have been configured to run a script that will be using the

SenseHat module to gather data from the surrounding environment of Temperature, Humidity

and Atmospheric Pressure. They were maintained within this work.

• Mercury — contains collections of data that was extracted from comma-separated values

files, also running a FROST implementation. It was maintained within this work.

Depending on the endpoint address, some differences are expected on the sense the Sensor-

Things API server is going to respond. For example, the Scmix server has a very large pagination

which means that any entity that is going to be queried, the response will contain a very high

number of result values. This means that if a Datastream contains over nine hundred thousand

observations they will all be retrieved, this will naturally incur in a longer response time of a given

request. To address, that particularity the SensorThings API has the option that a given query will

only retrieve a given number of values with the $top parameter.

Moreover, the backend application works in the way that regardless of the endpoint address the

query will always be issued the same. If there is a @iot.NextLink key in the JSON response then a

new request will be issued to that address until the value returned of that key is null.

7.4 Creating an IoT platform

This section documents all the steps related to the creation of a sensor platform in order to evaluate

the work from the widest perspective. The source of the data is from a comma-separated-values

file which contains measurements of different physical properties such as air temperature, wind

direction, barometric pressure and expressed in different units of measurement. The dataset being

analyzed for this test occured during the period of the 11st of August, 2015 to the 19th of September

of 2016 at roughly the same Location, in Galway, Ireland.

7.4.1 Setting up the IoT platform

Firstly, to allow for the insertion of Observations there needs to exist the underlying information to

give a meaning of the measurements recorded in the dataset, also referred as the results. In order

to do so, a new Thing was created to further associate the other entities to it. Moreover, after the

creation of the Thing, its corresponding Datastreams were created. But before proceeding to the

creation of the Datastreams it was necessary to also create its associated Observable Property

and Sensor entities. To achieve this, the Device Management module functionalities were used to

interface with the endpoint address to create these entities.

To understand which Datastreams ought to be created, it was needed to analyze the CSV file.

For this specific approach it was assumed that a distinct column referring to a physical property

would be associated to a single Datastream. Furthermore, to feed the SensorThings API server,

running on the Mercury machine, with the Observation results, it was necessary to create a script

in JavaScript that was responsible for parsing the file and generate the required HTTP Post requests

7.5 Conclusions 73

to start inserting the results in the STA database. The Listing 7.7 refers to one of the requests that

was made, specifically to the Datastream whose ID is 5.

1 request.post(’http://localhost:8080/sensorthings/v1.0/Datastreams(5)/Observations’,

{

2 body: {

3 "phenomenonTime": elem.time,

4 "resultTime": elem.time,

5 "result": elem.dr1,

6 "FeatureOfInterest": {

7 "name": "Galway, Ireland",

8 "description": "Location of the Feature Of Interest",

9 "encodingType": "application/vnd.geo+json",

10 "feature": {

11 "type": "Point",

12 "coordinates": [elem.lon, elem.lat]

13 }

14 },

15 },

16 json: true

17 });

Listing 7.7: HTTP Post Request

7.4.2 Querying the Observation Data

After parsing the CSV file and inserting its correspondent results into the STA database on the

Mercury machine it would be now possible to use the developed tools refered in Chapter 6.

Naturally, not all the Tools would be the best suited to present the data as there is no particular

geographical richness since the measurements all refer to roughly the same geographical location.

However, it is indeed possible to retrieve the measurements of the Datastreams and present them

from a chart view. Therefore it was mostly used the tool referred in Section 6.5 to visualize the

result values in charts. The final output of the chart for the Datastream Wind Speed, in the units

of meters per second with filtering the first date as 11th of August, 2015 and the last date 25th of

August, 2015 would produce the following chart depicted in Figure 7.4.

7.5 Conclusions

This chapter described several experiments that were aimed to each one of the modules that compose

the whole solution. In order to verify whether the functionalities addressed the goal that this project

was initially designed to, both web application and the backend application were used to perform

several actions from a user perspective. Moreover, this chapter also includes the results of the

validation of the proposed metadata model for the SensorThings API. It includes the static analysis

74 Evaluation

of a document produced from the backend application and a GetCapabilities document generated

from a third-party implementation. And it also contains the result of the harvesting experiment

executed by a pycsw instance of the GetCapabilities document that is generated to assess if it is

valid.

7.5 Conclusions 75

Figure 7.3: Form with the properties field containing metadata about the service

76 Evaluation

Figure 7.4: Values of the Datastream Wind Meters/second of the Mercury endpoint

Chapter 8

Conclusions and Future Work

This chapter sums all the conclusions of the overall work that was produced throughout the

development of this dissertation. Furthermore it also will contain a brief description of the future

work intended to be carried on and a small reflection on the limitations that arose during the

development process.

8.1 Summary

The work presented here, focused on the development of several components that comprise to create

and enable an heterogeneous IoT environment. This environment is composed by any number of

independent platforms that can be managed by third-party organizations, or even individuals that

want to expose their data to contribute to a richer environment. Inevitably leading to problems

of interoperability between these platforms by using the SensorThings API specification this will

contribute to mitigate the problem of communication between devices. By taking advantage of this

specification this helped to build an application that will be responsible to establish a communication

to these platforms with a common language, through the same requests and independently. Thus,

it was possible to build an application that was responsible to manage the entities under the

SensorThings API of each platform that is recognized in the application as well as enable the user

to have an interface to proceed to that same management and maintenance thus avoiding the use

of manual HTTP requests, by providing an intuitive web application interface. Moreover it was

also possible to develop a set of tools that are responsible to retrieve the result of measurements

carried out by the sensors of the IoT platform in a seamless way. This would lead to the production

of higher-value outputs such as Heatmaps or aggregation of Observation records by their Feature

of Interest. Moreover, it also makes possible to aggregate the data that the platforms contain

and present it to the user without him having to know the underlying topology of these sensing

platforms. And finally, another important aspect that this work focused on was the adaptation

of a resource-based model into a compatible service-based model due to the need to create a

GetCapabilities document that contains metadata information about the service. This would mean

77

78 Conclusions and Future Work

that several other implementations of the OGC ecosystem would be able to communicate to enrich

machine-to-machine discovery and operations.

After analyzing the state of the art it was possible to get to know the other initiative that

are being carried out by organizations such as SensorUp and the tools they develop with the

SensorThings API as well as giving the solution presented in this dissertation a more distinct

approach for the interoperability problem. During the phase of creating the solution it was clear

that to support the claim of being possible to create a multi-platform IoT environment based on

SensorThings API it was needed to create an application based on a client-server architecture that

creates an interface with its users through an web application, communicating with a backend

application. This backend application operates with the data inherent to the application such as

managing endpoints and users but will also take the task of communicating with the external Iot

platforms to perform all the CRUD operations that are enabled by its underlying Resource-Oriented

Architecture. To complement this solution and to assess the quality of the GetCapabilities document

it was also used third-party applications such as pyCSW and GeoNetwork to perform harvesting

operations. From the development perspective it encompassed in three different segments, one

being the management of SensorThings API entities of a given IoT endpoint, the second being the

harvesting and cataloguing of these endpoints and the last the development of tools to visualize

the data contained in these endpoints. The web application was also used to prove as a validation

mechanism as the more platforms were being added thorought the development it was possible to

test how the proposed solution was behaving. As concluded, this complete solution proved to be a

viable proof of concept in terms of creating a whole ecosystem of independant IoT platforms that

share a same common language, the SensorThings API.

8.2 Future Work

This section introduces the work that is going to be developed to increase the functionalities of the

current state of the web application. These features are important to fulfill the requirements of the

project that this dissertation is based on.

Storage of results in the user’s personal space

This feature allows for the storage of previous queries the user has issued. This is important due to

the fact that we assume the platforms will not always be available. Therefore, if the user has the need

to persist a particular segment of data from a query such as the Observations from a particular date

there will have to be a mechanism to save it. The proposed idea for this is to implement a RESTful

API in nodeJS that communicates with a MongoDB database. So, this application is intended to

accept requests from the web application, those requests contain in its payload a pre-processed

document that is ready to be stored in the database. This document contains information that the

user might find relevant such as the result of a query of one of the tools available such as Heatmaps,

as well as the entities of a SensorThings API endpoint such as the Observations. This document can

afterwards be retrieved and presented in the web application. From the web application perspective

8.2 Future Work 79

there should be an interface that displays the collection of documents that the user owns and each

document can be displayed in the web application.

Further development of tools

The different tools that were developed are a good starting point for the creation of a rich mechanism

to produce high-level visualization outputs of the SensorThings API entities. As it already contains

the principles of multi-platform aggregation of entities, filtering options and pagination mechanisms

it is possible to be further expanded with more options to view this data. Now, the development of

these tools will take into consideration a deeper understanding on the Observable Property entity

for instance. As the Observable Property is the entity that describes the physical property that is

being measured there may be created new tools that will specifically better-suit and give a more

indepth visualization, such as presenting deep sea measurements of temperature, conductivity and

depth for instance.

80 Conclusions and Future Work

References

[1] Arjun P. Athreya and Patrick Tague. Network self-organization in the Internet of Things. 2013
IEEE International Workshop of Internet-of-Things Networking and Control, IoT-NC 2013,
pages 25–33, 2013.

[2] Emmanuel Baccelli, Cenk Gundogan, Oliver Hahm, Peter Kietzmann, Martine S. Lenders,
Hauke Petersen, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wahlisch. RIOT: an
Open Source Operating System for Low-end Embedded Devices in the IoT. IEEE Internet of
Things Journal, 4662(c):1–12, 2018.

[3] Adhitya Bhawiyuga, Mahendra Data, and Andri Warda. Architectural Design of Token
based Authentication of MQTT Protocol in Constrained IoT Device. 2017 11th International
Conference on Telecommunication Systems Services and Applications (TSSA).

[4] Arne Bröring, Christoph Stasch, and Johannes Echterhoff. OGC Sensor Observation Service.
OGC Implementation Standard, page 163, 2012.

[5] Nicola Bui and Michele Zorzi. Health care applications. Proceedings of the 4th International
Symposium on Applied Sciences in Biomedical and Communication Technologies - ISABEL
’11, (August):1–5, 2011.

[6] Angelo P. Castellani, Nicola Bui, Paolo Casari, Michele Rossi, Zach Shelby, and Michele
Zorzi. Architecture and protocols for the internet of things: A case study. 2010 8th IEEE In-
ternational Conference on Pervasive Computing and Communications Workshops, PERCOM
Workshops 2010, pages 678–683, 2010.

[7] Francisco Cercas and Nuno Souto. Comparison of Communication Protocols for Low Cost
Internet of Things Devices. Design Automation, Computer Engineering, Computer Networks
and Social Media Conference (SEEDA-CECNSM), 2017 South Eastern European, 2017.

[8] Luis Cruz-Piris, Diego Rivera, Ivan Marsa-Maestre, Enrique De La Hoz, and Juan R. Ve-
lasco. Access control mechanism for IoT environments based on modelling communication
procedures as resources. Sensors (Switzerland), (3), 2018.

[9] Dave Evans. The Internet of Things - How the Next Evolution of the Internet is Changing
Everything. CISCO white paper, (April):1–11, 2011.

[10] Weichao Gao, James Nguyen, Wei Yu, Chao Lu, and Daniel Ku. Assessing Performance of
Constrained Application Protocol (CoAP) in MANET Using Emulation. Proceedings of the
International Conference on Research in Adaptive and Convergent Systems - RACS ’16, pages
103–108, 2016.

[11] GOST. GOST, 2018. Available at https://www.gostserver.xyz/, accessed in 2018-
06-23.

81

https://www.gostserver.xyz/

82 REFERENCES

[12] Dominique Guinard, Vlad Trifa, and Erik Wilde. A resource oriented architecture for the Web
of Things. Proc. of 2010 Internet of Things (IOT’10), pages 1–8, 2010.

[13] Ayesha Hafeez, Nourhan H. Kandil, Ban Al-Omar, T. Landolsi, and A. R. Al-Ali. Smart
home area networks protocols within the smart grid context. Journal of Communications,
9(9):665–671, 2014.

[14] International Telecommunication Union. Overview of the Internet of things. Series Y:
Global information infrastructure, internet protocol aspects and next-generation networks -
Frameworks and functional architecture models, page 22, 2012.

[15] ISO. ISO 19156: 2011-Geographic information: Observations and measurements. Open
Geospatial Consortium. Implementation Standard, 2011:54, 2011.

[16] Alexander Kotsev, Katherina Schleidt, Steve Liang, and Hylke Van Der Schaaf. Extending
INSPIRE to the Internet of Things through SensorThings API. (May):1–21, 2018.

[17] Chao Hsien Lee, Yu Wei Chang, Chi Cheng Chuang, and Ying Hsun Lai. Interoperability
enhancement for Internet of Things protocols based on software-defined network. 2016 IEEE
5th Global Conference on Consumer Electronics, GCCE 2016, pages 4–5, 2016.

[18] Martine Lenders, Peter Kietzmann, Oliver Hahm, Hauke Petersen, Cenk Gündoğan, Em-
manuel Baccelli, Kaspar Schleiser, Thomas C. Schmidt, and Matthias Wählisch. Connecting
the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the
Internet of Things. (2), 2018.

[19] Juan Li, Yan Bai, Nazia Zaman, and Victor C. M. Leung. A Decentralized Trustworthy
Context and QoS-Aware Service Discovery Framework for the Internet of Things. IEEE
Access, 5:19154–19166, 2017.

[20] Ming Li, Xinyan Zhu, and Yifang Mei. Incremental harvesting model of distributed geospatial
data registry center based on CSW. Proceedings - 2011 19th International Conference on
Geoinformatics, Geoinformatics 2011, (126), 2011.

[21] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A Survey on Internet
of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications.
IEEE Internet of Things Journal, 4(5):1125–1142, 2017.

[22] Sebastian Meiling, Dorothea Purnomo, Julia-Ann Shiraishi, Michael Fischer, and Thomas C
Schmidt. MONICA in Hamburg: Towards Large-Scale IoT Deployments in a Smart City.
2018.

[23] Tino Miegel and Richard Holzmeier. High Level Architecture. pages 1–15, 2002.

[24] Umakanta Nanda and Sushant Kumar Pattnaik. Universal Asynchronous Receiver and
Transmitter (UART). ICACCS 2016 - 3rd International Conference on Advanced Computing
and Communication Systems: Bringing to the Table, Futuristic Technologies from Arround
the Globe, 2016.

[25] OGC. OGC Web Services Common Specification. Open Geospatial Consortium Technical
Reports, page 167, 2007.

[26] OGC. OGC SensorThings API Part 1 : Sensing. Open Geospatial Consortium. Implementation
Standard, pages 1–105, 2016.

REFERENCES 83

[27] oneM2M. Technical Specification TS-0001-V2.10.0: Functional Architechture. 2.10.0:1–427,
2016.

[28] Maria Rita Palattella, Nicola Accettura, Xavier Vilajosana, Thomas Watteyne, Alfredo Grieco,
Luigi, Gennaro Boggia, and Mischa Dohler. Standardized Protocol Stack for the Internet of (
Important) Things. pages 1–18, 2012.

[29] Hetal B Pandya and Tushar A Champaneria. Internet of things: Survey and case studies.
2015 International Conference on Electrical, Electronics, Signals, Communication and
Optimization (EESCO), pages 1–6, 2015.

[30] Public Engineering Report, Ingo Simonis, and Engineering Report. Open Geospatial Consor-
tium, Inc. Engineering, pages 10–061, 2010.

[31] Design Resources, Design Features, and Featured Applications. PM 2.5 /PM 10 Particle
Sensor Analog Front-End for Air Quality Monitoring Design. (May):1–44, 2016.

[32] SensorUp. SensorUp SensorThings Dashboard, 2018. Available at https://www.
sensorup.com/situation-management/, accessed in 2018-06-23.

[33] Jasper Tan and Simon G.M. Koo. A survey of technologies in internet of things. Proceedings
- IEEE International Conference on Distributed Computing in Sensor Systems, DCOSS 2014,
pages 269–274, 2014.

[34] Andrew S Tanenbaum. Computer Networks, volume 52. Prentice Hall, 1996.

[35] José Alexandre Teixeira, Artur Rocha, and João Correia Lopes. Extending the SensorThings
API to enable an OGC OWS compliant service chain. 2018. Prepared for submission.

[36] Kevin I.K. Wang, Waleed H. Abdulla, and Zoran Salcic. Ambient intelligence platform
using multi-agent system and mobile ubiquitous hardware. Pervasive and Mobile Computing,
5(5):558–573, 2009.

[37] Chia Wei Wu, Fuchun Joseph Lin, Chia Hong Wang, and Norman Chang. OneM2M-based
IoT protocol integration. 2017 IEEE Conference on Standards for Communications and
Networking, CSCN 2017, pages 252–257, 2017.

[38] Shanhe Yi, Cheng Li, and Qun Li. A Survey of Fog Computing: Concepts, Applications and
Issues. Proceedings of the 2015 Workshop on Mobile Big Data - Mobidata ’15, pages 37–42,
2015.

[39] a Zanella, N. Bui, a Castellani, L. Vangelista, and M. Zorzi. Internet of Things for Smart
Cities. IEEE Internet of Things Journal, 1(1):22–32, 2014.

https://www.sensorup.com/situation-management/
https://www.sensorup.com/situation-management/

	Front Page
	Content
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation and Goals
	1.4 Structure

	2 State of the Art
	2.1 Communication Protocols
	2.1.1 ZigBee
	2.1.2 Z-Wave
	2.1.3 6LoWPAN
	2.1.4 MQTT
	2.1.5 Constrained Application Protocol

	2.2 Communication Architectures and Platforms
	2.2.1 SensorThings API
	2.2.2 WebThings API
	2.2.3 Comparison between SensorThings API and Web Thing API
	2.2.4 oneM2M
	2.2.5 AIOTI High-Level Architecture
	2.2.6 RIOT-OS

	2.3 Semantic Interoperability in the Internet of Things
	2.4 SensorThings API Server Implementations
	2.4.1 FROST
	2.4.2 SensorUp SensorThings
	2.4.3 GOST
	2.4.4 Mozilla
	2.4.5 CGI Kinota Big Data

	2.5 Applications using SensorThings API
	2.5.1 SensorThings Admin Dashboard
	2.5.2 SensorThings Map
	2.5.3 Air quality monitoring after wildfires

	2.6 Conclusions

	3 Problem Statement and Solution Proposal
	3.1 Current Issues
	3.2 User Stories
	3.3 Solution Proposal
	3.3.1 CoralTools Backend Application
	3.3.2 SensorThings API endpoints
	3.3.3 Web Application
	3.3.4 OSGeoLive

	3.4 Conclusions

	4 Device Management
	4.1 Introduction
	4.2 Endpoint collection
	4.2.1 Collecting Thing metadata
	4.2.2 Catalog

	4.3 Control Panel
	4.3.1 Management of SensorThing API entities
	4.3.2 Management of Authorization tokens

	4.4 Conclusions

	5 Metadata Cataloguing Implementation
	5.1 Introduction
	5.2 Overview
	5.3 Structuring the metadata model
	5.4 Generating the Contents field
	5.5 Architecture
	5.6 Conclusions

	6 Dashboard Implementation
	6.1 Datastream selection
	6.2 Heatmaps
	6.3 Clustered View
	6.4 Historical Locations
	6.5 Datastreams presented in charts
	6.6 Datastream availability
	6.7 Conclusions

	7 Evaluation
	7.1 Management of the SensorThings API entities
	7.1.1 Creating a new Thing entity

	7.2 Using pycsw and GeoNetwork for metadata publishing
	7.2.1 Comparison of a Sensor Observation Service GetCapabilities
	7.2.2 Harvesting a SensorThings API endpoint
	7.2.3 Using GeoNetwork

	7.3 Interoperability of the SensorThings API
	7.4 Creating an IoT platform
	7.4.1 Setting up the IoT platform
	7.4.2 Querying the Observation Data

	7.5 Conclusions

	8 Conclusions and Future Work
	8.1 Summary
	8.2 Future Work

	References

