891 research outputs found

    Bounded Influence Approaches to Constrained Mixed Vector Autoregressive Models

    Get PDF
    The proliferation of many clinical studies obtaining multiple biophysical signals from several individuals repeatedly in time is increasingly recognized, a recognition generating growth in statistical models that analyze cross-sectional time series data. In general, these statistical models try to answer two questions: (i) intra-individual dynamics of the response and its relation to some covariates; and, (ii) how this dynamics can be aggregated consistently in a group. In response to the first question, we propose a covariate-adjusted constrained Vector Autoregressive model, a technique similar to the STARMAX model (Stoffer, JASA 81, 762-772), to describe serial dependence of observations. In this way, the number of parameters to be estimated is kept minimal while offering flexibility for the model to explore higher order dependence. In response to (ii), we use mixed effects analysis that accommodates modelling of heterogeneity among cross-sections arising from covariate effects that vary from one cross-section to another. Although estimation of the model can proceed using standard maximum likelihood techniques, we believed it is advantageous to use bounded influence procedures in the modelling (such as choosing constraints) and parameter estimation so that the effects of outliers can be controlled. In particular, we use M-estimation with a redescending bounding function because its influence function is always bounded. Furthermore, assuming consistency, this influence function is useful to obtain the limiting distribution of the estimates. However, this distribution may not necessarily yield accurate inference in the presence of contamination as the actual asymptotic distribution might have wider tails. This led us to investigate bootstrap approximation techniques. A sampling scheme based on IID innovations is modified to accommodate the cross-sectional structure of the data. Then the M-estimation is applied to each bootstrap sample naively to obtain the asymptotic distribution of the estimates.We apply these strategies to the extracted BOLD activation from several regions of the brain from a group of individuals to describe joint dynamic behavior between these locations. We used simulated data with both innovation and additive outliers to test whether the estimation procedure is accurate despite contamination

    Invariant Causal Prediction for Sequential Data

    Full text link
    We investigate the problem of inferring the causal predictors of a response YY from a set of dd explanatory variables (X1,,Xd)(X^1,\dots,X^d). Classical ordinary least squares regression includes all predictors that reduce the variance of YY. Using only the causal predictors instead leads to models that have the advantage of remaining invariant under interventions, loosely speaking they lead to invariance across different "environments" or "heterogeneity patterns". More precisely, the conditional distribution of YY given its causal predictors remains invariant for all observations. Recent work exploits such a stability to infer causal relations from data with different but known environments. We show that even without having knowledge of the environments or heterogeneity pattern, inferring causal relations is possible for time-ordered (or any other type of sequentially ordered) data. In particular, this allows detecting instantaneous causal relations in multivariate linear time series which is usually not the case for Granger causality. Besides novel methodology, we provide statistical confidence bounds and asymptotic detection results for inferring causal predictors, and present an application to monetary policy in macroeconomics.Comment: 55 page

    Program GAP Technical Description and User-manual

    Get PDF
    GAP is a program developed by the Joint Research Centre of European Commission on request of the Directorate General Economic and Financial Affairs, following Werner Roeger¿s guidelines who is gratefully acknowledged. The GDP cycle or output gap is the key variable of the cyclical adjustment of EU Member States budget balance, as agreed in the Stability and Growth Pact. Following a 2002 ECOFIN decision, the EC applies the Cobb-Douglas production function to obtain the gap from the cyclical components of labour and total factor productivity (TFP). Program GAP estimates unemployment and TFP cycles using inflation and capacity utilization data respectively in a bivariate unobserved component models à la Kuttner (Journal of Business & Economic Statistics, 1994). Estimation can be performed both in the frequentist and in the Bayesian frameworks. Downloads at eemc.jrc.ec.europa.eu/Software-GAP.htm.JRC.G.9-Econometrics and applied statistic

    Sig-Wasserstein GANs for conditional time series generation

    Get PDF
    Generative adversarial networks (GANs) have been extremely successful in generating samples, from seemingly high-dimensional probability measures. However, these methods struggle to capture the temporal dependence of joint probability distributions induced by time-series data. Furthermore, long time-series data streams hugely increase the dimension of the target space, which may render generative modeling infeasible. To overcome these challenges, motivated by the autoregressive models in econometric, we are interested in the conditional distribution of future time series given the past information. We propose the generic conditional Sig-WGAN framework by integrating Wasserstein-GANs (WGANs) with mathematically principled and efficient path feature extraction called the signature of a path. The signature of a path is a graded sequence of statistics that provides a universal description for a stream of data, and its expected value characterizes the law of the time-series model. In particular, we develop the conditional Sig-W1 metric that captures the conditional joint law of time series models and use it as a discriminator. The signature feature space enables the explicit representation of the proposed discriminators, which alleviates the need for expensive training. We validate our method on both synthetic and empirical dataset and observe that our method consistently and significantly outperforms state-of-the-art benchmarks with respect to measures of similarity and predictive ability

    Monitoring multicountry macroeconomic risk

    Get PDF
    We propose a multicountry quantile factor augmeneted vector autoregression (QFAVAR) to model heterogeneities both across countries and across characteristics of the distributions of macroeconomic time series. The presence of quantile factors allows for summarizing these two heterogeneities in a parsimonious way. We develop two algorithms for posterior inference that feature varying level of trade-off between estimation precision and computational speed. Using monthly data for the euro area, we establish the good empirical properties of the QFAVAR as a tool for assessing the e ects of global shocks on country-level macroeconomic risks. In particular, QFAVAR short-run tail forecasts are more accurate compared to a FAVAR with symmetric Gaussian errors, as well as univariate quantile autoregressions that ignore comovements among quantiles of macroeconomic variables. We also illustrate how quantile impulse response functions and quantile connectedness measures, resulting from the new model, can be used to implemennt joint risk scenario analysis.publishedVersio

    Conditional Sig-Wasserstein GANs for Time Series Generation

    Get PDF
    Generative adversarial networks (GANs) have been extremely successful in generating samples, from seemingly high dimensional probability measures. However, these methods struggle to capture the temporal dependence of joint probability distributions induced by time-series data. Furthermore, long time-series data streams hugely increase the dimension of the target space, which may render generative modeling infeasible. To overcome these challenges, we integrate GANs with mathematically principled and efficient path feature extraction called the signature of a path. The signature of a path is a graded sequence of statistics that provides a universal description for a stream of data, and its expected value characterizes the law of the time-series model. In particular, we a develop new metric, (conditional) Sig-W1W_1, that captures the (conditional) joint law of time series models, and use it as a discriminator. The signature feature space enables the explicit representation of the proposed discriminators which alleviates the need for expensive training. Furthermore, we develop a novel generator, called the conditional AR-FNN, which is designed to capture the temporal dependence of time series and can be efficiently trained. We validate our method on both synthetic and empirical datasets and observe that our method consistently and significantly outperforms state-of-the-art benchmarks with respect to measures of similarity and predictive ability

    Price Wars and Collusion in the Spanish Electricity Market

    Get PDF
    We analyze the time-series of prices in the Spanish electricity market by means of a time varying-transition-probability Markov switching model. Accounting for changes in demand and cost conditions (which re°ect changes in input costs, capacity avail- ability and hydro power), we show that the time-series of prices is characterized by two signi¯cantly di®erent price levels. Based on a Green and Porter (1984)'s type of model that introduces several institutional details, we construct trigger variables that a®ect the likelihood of starting a price war. By interpreting the signs of the triggers, we are able to infer some of the properties of the collusive strategy that ¯rms might have followed. We obtain more empirical support to Green and Porter's model than previous studies
    corecore