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Introduction  

In finance, the systemic risk can be defined as the probability that a given set of events and 

circumstances undermines the stability of an interconnected financial system. In this regard, 

three basic elements that characterize the systemic risk can be identified: 

• Probability: it is a number between 0 and 1 associated to a given event, trying to describe 

its likelihood of occurrence. 

• Triggering event: it is the unexpected unfavorable event that hits a single component of 

the financial chain and then stretches throughout the entire process. It can be derived 

from the public system (e.g. a liquidity constraint imposed by the central bank), from 

an external shock (e.g. a natural disaster) or from an internal endogenous shock (e.g. the 

failure of a bank). 

• Propagation dynamic: it is a phenomenon that depends on the structure of the financial 

system and it is strictly related to the level of interconnection among institutions; hence, 

to the intensity of contagion and to the depth of spillover effects, through a sequence of 

consequent events (e.g. a cascading failure). 

The importance of the systemic risk is high and ever increasing for at least three categories of 

subjects. 

• Policy makers and financial regulators deal with this topic in order to implement 

restrictive measures and provide instructions to the agents, pursuing the minimization 

of the probability of unexpected systemic occurrence, and therefore the impact of 

adverse events on the system. 

• Academic researchers have recently channeled their attention to the systemic risk as an 

object of study, in order to identify its deep determinants and to elaborate increasingly 

complicated models for the phenomenon description and for the forecasting. 

• Business practitioners, i.e. risk managers and institutional investors, need to measure, 

monitor and manage the exposures to systemic risk, and all that it is related to, given 

that this kind of risk tends to reduce the benefits of diversification, and may bring 

painful financial experiences. 

It is important for all these subjects to measure, control and manage systemic risk, and further 

understand the dynamic of occurrence of risk spillovers across institutions and markets. For 

this purpose, it is pertinent to make a distinction about the notion of systemic risk:  

• first of all, the systemic risk contribution, i.e. the negative externality that a large and 

strongly interconnected financial institution may exert on other institutions by just 

undertaking additional risk, and then by undermining the financial stability; 

• second of all, the financial system risk, which refers to the overall dimension of risk, 

i.e. the probability to experience a systemic event. 

It is also useful to frame the systemic risk in accordance with its specific source. 

• Firstly, an internal idiosyncratic problem of a big single institution may easily spread to 

other institutions which keep many financial connections to it involving the entire 

system. 
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• Secondly, we could observe a group of institutions that share a common risky exposure 

toward a product, a market or a country, and that may materialize itself in an adverse 

event, striking the whole system.  

• Lastly, systemic risk can arise endogenously inside the financial market because of 

financial imbalances, and unfold itself in a sudden and harmful way for the system (i.e. 

the case of a speculative market bubble, or the same circumstance which led to the 2008 

financial crisis).  

Naturally, a source of systemic riskiness is not independent from other sources and a systemic 

financial disruption can have more sources or can be the ultimate point of a sequence of more 

scenarios. 

Taking into account all these features, the main involved institutions have recently concentrated 

their efforts in the deepening of this topic. In particular, since the 2008 financial crisis, new 

definitions and new measures of systemic risk have been implemented, as well as new tools in 

risk management and risk modeling have been created. We have witnessed significant 

developments about the ways in which systemic risk is being measured and assessed by public 

and private institutions.  

The need and the usefulness to employ accurate and complete tests and reliable early warning 

indicators to assess the presence and the intensity of systemic risk is out of the question. Using 

reliable indicators is very helpful to gauge the early warning signals. In this case, the test 

reliability can be defined as the ability of a given model to issue signals with relatively limited 

out-of-sample forecast errors. In other words, the reliability of a model can be tested by 

comparing its forecasting performance against other models through an out-of-sample 

validation, which means using the known sample data to get the model parameters, and then 

proceeding to using the model to make predictions about unknown data, independent from the 

sample. These procedures are essential for assessing systemic risk, and then to implement the 

right corrections in the portfolios of customers, or to timely implement macro-prudential 

policies.  

The aim of the latest research has been to create and to identify those indicators, risk measures 

and risk modeling that provide the best early warning signals about systemic financial risk. 

The impossible challenge is to implement a comprehensive model that manages to capture and 

to disclose any detail and any signal of possible increasing systemic risks inside a system, like 

the economic and financial one, which is highly interconnected with a very complex structure 

that is rapidly and constantly evolving. 

Considering these points, the purpose of this thesis is to try to develop and to apply a test 

procedure to evaluate the presence of systemic risk inside the financial markets at a given time. 

Especially, for the identification of signals related to systemic risk, an early warning model will 

be built by combining two different statistical tools: the quantile regression analysis (whose 

reference contribution comes from the American econometrician Roger William Koenker, 

which published in 1978, together with Gilbert Bassett, the book “Regression Quantiles”, a 

work in turn based on other past ideas and approaches not yet been explored in depth until then) 

and the mixed frequency data sampling regression model (MIDAS model was firstly introduced 

by Eric Ghysels et al. in 2002, in its “The MIDAS touch: Mixed data sampling regression 

models”, and then developed in depth by Elena Andreou et al. in 2010, in its “Regression 

Models With Mixed Sampling Frequencies”). 
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Each one of these approaches produces some advantages and brings specific characteristics 

which allow a unique and differentiated analysis of systemic risk. 

Quantile regression analysis is performed for the estimation of the conditional quantiles (i.e. 

the median and any other percentile of the population distribution) of the variable of interest 

through a set of predictor variables, differently from the famous Ordinary Least Square method 

used to estimate simple linear regression models, and as a result, to get the conditional mean of 

dependent variable. Hence, quantile regression models the conditional quantile of a dependent 

variable, such as the first decile (q=0,10) or the ninety-ninth percentile (q=0,99), describing the 

impact of a set of explicative variables on different points of the conditional distribution of the 

same dependent variable. This analysis provides many advantages. 

• First of all, quantile regression allows the evaluation of the impact of a shock on each 

specific part of the dependent variable distribution, while the OLS estimates give us 

information linked to the change of the conditional mean of the distribution. Moreover, 

the quantile approach is more appropriate to estimate the asymmetric impact of a shock 

on a distribution: it is used to investigate the relation between systemic risk and 

macroeconomic framework.  

• Secondly, the quantile estimates are known to be more robust to extreme values with 

respect to OLS estimates, for the same reason the median is not sensitive to extreme 

values of the sample distribution, as opposed to the mean. This is very useful in the 

financial analysis: since heavy financial stresses are rare events, we can model linkages, 

interdependences and any other financial pattern in a more reliable and stable way. 

Rather than running a regression among data sampled at the same frequency, MIDAS allows to 

combine data with different sampling frequencies, especially for those cases in which the 

variable of interest is sampled at a lower frequency and the relevant explicative data is sampled 

at high frequency. An example can be seen in some macroeconomic models, based on variable 

of interests sampled quarterly or annually, like the GDP growth, and explicative variables 

sampled monthly, such as inflation. Other examples can be found in financial economics, as we 

deal with abundant data at intra-daily sampling frequencies, like stock returns or daily 

volatilities, used to explain data with lower frequencies. The most significant advantage of 

MIDAS approach is to allow to efficiently exploit all available information extractable from 

sampling data, whatever the sampling frequency, and then avoiding the series aggregation. 

By combining these two approaches, the target is to implement and to fine-tune a procedure to 

test the presence of systemic risk in a reliable way. 

The thesis is structured as follows. Chapter 1 provides an overview of the systemic risk in every 

basic aspect: its definition, its origin and the relevant literature. Chapter 2 presents a description 

of the most important tools to measure systemic risk, by providing a categorization of them. 

Chapter 3 will describe the theoretical framework of the main tools needed for the empirical 

analysis: all the conceptual and mathematical characteristics of the two basic approaches used 

to implement the test, that is the MIDAS regression model and the quantile regression. The 

detailed description of the methodology for the empirical analysis will be described as well. 

Chapter 4 will show the application of the theoretical knowledge with an empirical analysis, 

that is the presentation of the main results. The conclusion is a brief summary of the work, with 

other possible extensions. The detailed description of dataset and all MATLAB codes will be 

reported in the Appendix A and Appendix B, respectively. The very last section will be 

dedicated to the list of figures and tables and to the references. 
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Chapter 1 

Systemic Risk: An Overview 
 

 

This chapter provides an overview about the nature of the systemic risk, in each main aspect: 

its definition, its origin and the relevant literature. 

 

 

1.1  Definition of Systemic Risk 
Defining systemic risk might be difficult, as the circumstances in which it materializes itself 

vary so much that identifying common patterns and common characteristics among situations 

is quite difficult. For this reason, the systemic risk lacks a univocal interpretation, and its 

underlying concept is wide and not clearly definable. 

At the same time, the importance to find a useful and comprehensive definition is out of 

question. A unique and overall operating definition of systemic risk would allow the 

implementation of coherent models, requirements, measures and monitoring systems from 

regulators and financial managers, and then providing a common standard for all agents. More 

homogenous and more precise measures of risk in turn allow a more optimal portfolio 

management and the implementation of less ambiguous public policies. It would be the best 

target for public authorities, who, over the past two decades, introduced the financial stability 

of the whole financial system among the principal macroeconomic objectives. 

A first definition comes from the Bank of International Settlement, which in 1994 defined the 

systemic risk as “the risk that failure of a participant to meet its contractual obligations may in 

turn cause other participants to default with a chain reaction leading to broader financial 

difficulties”. Kaufman in 1995 defined systemic risk as the "probability that cumulative losses 

will accrue from an event that sets in motion a series of successive losses along a chain of 

institutions or markets comprising a system […], that is, systemic risk is the risk of a chain 

reaction of falling interconnected dominos". In both these definitions, there are at least three 

common elements which should characterize any other definition of risk: some financial 

difficulties which hit an entity, the failure of the same entity and the spreading of all negative 

financial consequences as a chain reaction to other interconnected entities. 

In 2000, Freixas, Parigi and Rochet related the concept of systemic risk to that of spreading of 

financial crisis from one country to another. They analyzed the role of the payment systems and 

the response of the central banks in dealing with financial distress due to lack of liquidity. 

Furthermore, in 2000, Allen and Gale highlighted the key role of contagion in the spreading of 

adverse events, stating that a shock “may cause a bank to go bankrupt and liquidate its assets. 

This causes other banks which have deposits in it to also go bankrupt and so on. Eventually all 

banks are forced to liquidate their assets at a considerable loss”. 

The first authors to ever provide a structured schematization of all possible scenarios of 

systemic crisis were De Bandt and Hartmann. They defined systemic risk as “the risk of 

experiencing systemic events in strong sense”, i.e. those events which cause the failure of some 

institution inside the market. In particular, they pointed out the two main components of the 
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systemic risk: the initial unexpected shock and the propagation mechanisms. They very clearly 

explained the difference between the idiosyncratic shock (which affects only a single clearly a 

single institution) and the systematic shock (which affects the whole market, e.g. a sudden 

increase of inflation rate, a stock market crash or a sudden liquidity shortage in a given financial 

market), and provided a clear description of the propagation mechanism, that is the mechanism 

through which shocks propagate through the entire system. They stated that “the transmission 

of shocks is a natural part of the self-stabilizing adjustments of the market system to a new 

equilibrium”.  

In 2004, Kupiec and Nickerson defined the systemic risk in relation to the negative financial 

consequences of its materialization, that is, the possibility that an economic shock could bring 

a substantial increase in the volatility of stock prices, significant reduction in corporate 

liquidity, potential failures and loss of efficiency. 

In 2005, Chan et al. described systemic risk as “the possibility of a series of correlated defaults 

among financial institutions (typically banks) that occurs over a short period of time, often 

caused by a single major event”. The correlated defaults are the demonstration of the contagion, 

a direct consequence of the level of interdependence and of the intensity of network among 

financial institutions. For that, authors report the typical example of the bank run, i.e. the 

banking panic for which most depositors decide to simultaneously withdraw their funds from 

the bank, creating a run that can ultimately cause bank failures. 

Similarly, Billio et al. in 2010 argued that “systemic risk can be realized as a series of correlated 

defaults among financial institutions, occurring over a short time span and triggering a 

withdrawal of liquidity and widespread loss of confidence in the financial system as a whole”. 

In this definition, the new element is the loss of confidence, which in the financial system might 

cause a violent break of the whole financial market (as it has happened in the interbank market 

during the recent financial crisis), with consequent reset of exchanged volumes and consistent 

losses for actors. 

As we can see, each definition of systemic risk adds some details and some additional 

characteristics that mark the specific concept. In all cases, the common points are two: an 

unfavorable event, that is the shock, and a set of consequent negative impacts, that is the 

propagation dynamic, which in turn puts in trouble the whole financial system.  

Figure 1.1: Systemic events in the financial system                 
Source: ECB Working Paper no. 35 by De Bandt and Hartmann, “Systemic Risk: A Survey”, 2000  
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The systemic risk is the probability that all the above-mentioned situations will take place, or 

more in general, the probability that an entire market or financial system collapses, as a 

consequence of the materialization of some specific risk combined with a strongly 

interconnected system, with many interdependencies and interlinkages. 

At this point, it is useful to make some distinctions across different facets of the argument. 

The first distinction to keep in mind is between uncertainty and risk. The uncertainty is a 

situation in which one does not have a background information of the event. Hence, the 

distribution of the phenomenon is unknown. The risk, on the contrary, is the known probability 

of a phenomenon, derivable from a known probability distribution. A Knight’s publication of 

1921 stated that “risk is present when future events occur with measurable probability”, while 

“uncertainty is present when the likelihood of future events is indefinite or incalculable”. This 

distinction is relevant because the research of Epstein and Wang in 1994 proved that 

uncertainty, unlike risk, may lead to indeterminate equilibria, that is a set of continuum 

equilibria for some given fundamentals. In this context, actually not so rare, the final 

equilibrium price is determined by “animal spirits”, and this might explain the wide volatility 

of stock prices. 

The second basic distinction is between systemic risk and specific (or idiosyncratic) risk. As 

described earlier, systemic risk is the overall, not diversifiable, risk which characterizes the 

entire financial system, that can be summarized with the beta measure of the activity. Specific 

risk is the risk inherent to a specific individual asset (a particular company’s stock or other 

security), group of securities or at most to a given asset class. This last component of risk can 

always be eliminated by portfolios diversification, since investors do not need to be rewarded 

to bear that. Therefore, this type of risk is not a crucial determinant of the expected portfolio 

return. It depends on the specific characteristics of the issuer company, and it is essential to 

appreciate its capital solidity and its economic prospect, as well as taking into account the 

characteristics of the sector. Therefore, specific risk should be based on the fundamental 

analysis of the issuer company, and it is relevant in equity pricing and in the interest rate 

determination of corporate bonds. 

The last distinction is between systemic risk and systematic risk. Duan and Zhang, in 2013, 

made the following distinction: “systematic risk arises from exposures to common risk factors, 

and systemic risk is purely due to interconnections” and “although large systematic risk may 

lead to systemic risk, they are not synonymous”. Consequently, the systemic risk is the 

probability to have a shock at company level with relative contagion due to connection and 

consequent break of the system, while the systematic risk can be thought as the market risk, 

that is the probability of experiencing losses due to common factors, including the economy 

(recession and expansion), interest rates change, natural disasters, geopolitical issues. For 

instance, in 2008, the failure of Lehman Brothers (the shock) caused a wave of financial distress 

throughout the whole financial system (the propagation), because of its high integration and 

connection. This was the realization of a systemic risk. As a consequence of the financial 

markets’ break, a huge recession involved the world, so that whoever invested in risky assets 

during the previous years underwent a heavy reduction of investments value, whatever the 

portfolio combination. This was the realization of a systematic risk. It is evident that the 

realization of a systematic risk could determine an increase of systemic risk, because of the 

lower cash flows for firms and the lower possibilities to get funds in the financial markets. 

Nevertheless, as it happened in 2008, depending on the intensity of the financial break, systemic 

risk might lead to an increase of systematic risk as well. 
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1.2  Origins of Systemic Risk 

The understanding of the fundamentals of systemic risk is crucial for any setting of risk 

management and test procedure. In this section, we will try to identify those basic factors from 

which systemic risk originates, involving all other institutions.  

As seen, systemic risk involves two joint components: the shock and the transmission 

mechanism. In 2012, Billio, Getmansky, Lo and Pelizzon identified four sources of systemic 

risk, known as “the 4 Ls”: losses, leverage, liquidity and linkages. While from an alteration of 

the first three Ls could stem a shock, the last L expresses the potential of a systemic involvement 

through a transmission mechanism.  

Losses of a company are an important vehicle of idiosyncratic risk, which can easily trigger a 

self-fulfilling mechanism of instability spreading. For instance, a bank that takes a lot of 

downside risk through investments in risky assets, with highly volatile returns and unstable 

price dynamics, may face a consistent increase in the probability of losses. Losses must be 

cushioned within the bank: a reduction in the credit supply, an increase of the debt issue or the 

reduction of the bank capital value. When these types of imbalances come up, the probability 

of materialization of a systemic risk considerably increases (Lang and Forletta, 2019). 

Leverage is a central component of systemic risk, and it must be continuously monitored, as 

the financial risk it entails is huge. Financial history shows that most financial systemic crisis 

erupted in a context of highly leveraged institutions and excessive optimism. The systemic 

crisis caused by an excessive systemic leveraging could lead to a consistent and persistent 

deterioration of the systemic health and of living standard of agents. This is due to the very 

strong pro-cyclicality of the leverage. When everything goes well for companies and 

households, the healthy balance sheet incentives the landing expansion for asset purchases, the 

increased asset demand push up prices and, as a result, the assets value in the balance sheet. 

When asset prices are widely above the intrinsic value of the asset, i.e. that explained by its 

fundamentals, the release of some news about the presence of the bubble or about the real 

solidity of a company is sufficient to trigger harmful deleveraging processes, in which massive 

assets sales and assets prices drop and impairments of balance sheets cause the stoppage of 

financial markets. This is the materialization of a systemic risk, in accordance with the basic 

scheme, shock and propagation. However, the financial leverage of a firm roughly measurable 

as the ratio between its total assets and its equity remains an easy way to increase the business 

profitability and the investment opportunities. 

Lastly, liquidity plays a central role in the explanation of systemic risk. Generally speaking, 

liquidity can be defined as the possibility of an economic agent to exchange part of their existing 

wealth with cash, financial assets or other types of goods. In particular, there exists a standard 

classification of the concept of liquidity. 

• Monetary liquidity is the liquidity delivered by the central bank to the financial system, 

in accordance with its need. In other words, it is the monetary base of the economy, 

given by the sum of cash and bank reserves. Through the central bank operations, 

monetary liquidity is provided in order to balance the eventual lacks of liquidity of the 

system.  

• Funding liquidity is the ability to settle obligations with immediacy when due. The 

International Monetary Fund defines it as “the ability of a solvent institution to make 

agreed-upon payments in a timely fashion”. Generally speaking, funding liquidity may 

also refer to the capacity of financial operators to get financing in a timely fashion in 
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terms of cash and capital. The two concepts are related. In general, as long as a company 

manages to maintain cash inflow higher than cash outflow at any instant of time, this 

company will be considered a liquid company. For a bank, cash inflow sources are new 

deposits, new assets sales, securitization, new debt issue or equity issue, new lending 

from interbank markets or directly from the central bank. 

• Market liquidity is a measure of the liquidity of an entire market. A market is liquid 

whenever trades can be executed at very low costs, in a timely manner and with limited 

impacts on prices. So, time needed for the conclusion of the operation, burden of 

transaction costs and exchangeable amount at a given moments are the three basic 

components to define the market liquidity. An asset is liquid when it can be quickly sold 

in the market without high costs, and then “liquidated” in cash. As far as market 

liquidity, there is a set of stylized facts: market liquidity can suddenly dry up; market 

liquidity has some commonality across securities, and it is strictly related to the 

volatility; market liquidity is subject to ‘flight to quality’, that is the movement of 

capitals from risky assets issued by distressed companies (less liquid) towards safer 

assets issued by solid companies; finally, market liquidity co-moves with the market, 

and in particular, a negative relationship between the market liquidity and the assets 

returns exists (Acharya and Pedersen, 2005). 

Therefore, low liquidity is a source of price volatility and market failure, and an early indicator 

for market stress. From that, liquidity risk is defined as the probability to become illiquid, and 

in particular it is a function of the availability of financing sources and of immediacy in the 

assets exchange. As a result, the liquidity risk is included in the asset pricing as a premium, 

called liquidity premium, and in the overall final yield of a security as a spread, called liquidity 

spread. When an asset is expected to be highly liquid, the liquidity spread will be very low, and 

this reduces the overall return rate and increases the price of the security. 

Actually, there is evidence that the liquidity risk is stably present but has a limited impact on 

the return rate, and relatively much less relevant than the credit risk. Anyway, situations in 

which this risk is high are as rare as potentially disruptive for the whole system: when it 

materializes itself, the resources allocation undergoes many inefficiencies, the lack of liquidity 

increases the systemic risk, and the consequent financial instability could turn into a systemic 

financial crisis. Therefore, illiquidity and systemic risk are strictly linked: holding an illiquid 

portfolio entails a large price impact of a potential forced liquidation, and this affects the 

company’s own capital. If the phenomenon involves many parties, all of them will suffer the 

consequences of a high correlation and of a potential global financial crisis. This is the essence 

of the systemic risk: the involvement of more institutions in the bearing of a shock, which aligns 

the correlations among assets and among equities. That is the reason why, when a systemic risk 

materializes itself, the “flight to quality” occurs, i.e. portfolios and wealth adjustments 

consisting of massive sales of more risky assets and purchase of safer assets like valuables, 

unrelated to the financial markets (just think of the strong increase in the gold price during a 

systemic distress). For that reason, market liquidity is the first alarm that reports to authority 

some shortcomings inside the market, and that could degenerate in a systemic distress.  

With that being said, the real danger behind the liquidity risk is the default risk. A financial 

institution is insolvent when it can no longer entirely meet its financial obligations when due, 

and in particular unable to pay its medium and long-term bonds. It happens when the value of 

total assets becomes irredeemably lower than the value of total claims, and the cash generated 
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by activities is insufficient to repay debtors. The endpoint is the closing of the involved 

company. The issue consists in distinguishing institutions that are just illiquid from those that 

are insolvent. During the period of economic expansion and financial stability of the market, it 

is quite easy to identify insolvent institutions and to understand when a company is facing just 

a temporary problem of liquidity. But when the recession comes and the financial market 

crashes, the widespread liquidity problems that many companies must face make it very 

difficult to identify the real insolvent firms from those which have no problem with long-term 

cash flows and repayments. There is no clear separation between liquidity problems and 

insolvency cases, and the systemic risk becomes more intense and heavier. 

At the basis of liquidity shortages for a firm there is a mixture between market illiquidity and 

the so called “maturity mismatching”: it is the situation in which a firm holds more short-term 

liabilities than short-term assets, and equivalently more long-term liabilities than long-term 

assets. A related concept is the “liquidity mismatching”, when at any time cash flows generated 

by financial assets does not match with cash flows needed to repay financial liabilities when 

due. As long as a company manages to repay any debt whenever it is due, it means that there is 

no internal liquidity problem, and no financing problem, even though the leverage is high. The 

real problem comes up when financing becomes too costly and the market liquidity quickly 

dries up. An interesting case is the liquidity management of a bank. A bank borrows funds from 

deposits, that are short-term liabilities, and lends funds in the long term, asking a higher interest 

rate which allows an interest spread: this is the net interest margin, and it is an important source 

of profit for a bank. Hence, the only maturity mismatch is not a danger for the system, but 

problems arise when market liquidity dries up and depositors demand all their funds back. This 

is the case of a bank run, that can heavily undermine the solidity of a bank and triggers a 

systemic crisis. Diamond and Dybvig explained in a famous model how liquidity mismatch 

may cause a self-fulfilling panic. 

Taking into consideration the above-mentioned points, the capacity to get financing is a crucial 

aspect for an institution, and it is a decisive factor to monitor in order to maintain financial 

stability. 

The last fundamental element, in order to have a complete general understanding about the 

origins of systemic risk, is the linkage. There would not be any systemic risk in a context 

without linkages among institutions, because the propagation mechanism would be missing. 

About this last component, the starting point of the analysis is the financial contagion theory. 

The financial system can be imagined as a very interwoven chain, where assets of an institution 

towards others correspond to liabilities from the same institutions, issued to finance other 

activities. If a bank undergoes a reduction in the value of its asset, it will probably have a more 

prudent behavior, by reducing further exposures and risks, in order to maintain itself financially 

solvent. This means to reduce loans granted to other institutions, to sell or securitize some 

assets, to convert deposits and other liquid assets in cash, and finally to cushion a loss on equity. 

Each one of these operations produces a simultaneous effect on the balance sheets of institutions 

which are in some way linked to the bank. For example, if a bank declares default on its 

obligations, then all claim-holders will face a loss equal to the total amount lent to the bank; if 

one of them undergoes such a high loss that its own capital is insufficient to absorb it, the 

solution is in turn to declare default. The transmission mechanism could easily involve the 

whole system, as a consequence of a so-called “domino effect”. 

The concept of contagion has a basic role in this dynamic. The interdependence among 

institutions of the financial chain is related to both payments system and direct loans. Studies 
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have been conducted on the mechanism of contagion and what emerges is that its impact is not 

necessarily strong, but it is mitigated by the fact that financial institutions do not sit and watch, 

rather, they obviously counteract to the incoming distress. Methods to predict and respond to 

potentially systemic shocks are constantly being developed and updated. Therefore, although 

they cannot entirely eliminate the risk of contagion, they still provide tools for risk mitigation. 

A contagion can stem from a default, but also from the variability of asset prices. Fluctuations 

of asset prices can entail losses big enough to create a shock to some institutions, and trigger a 

propagation, even without direct reciprocal loans among them. The consequent losses may 

make it more difficult to get financing, forcing further constriction in the activities and in the 

assets value. Reductions in the equity value are equivalent to reductions in the assets value of 

other financial intermediaries, and asset sales may bring to lower prices, which will cause 

further balance sheet effects, and then higher losses for an increasing number of institutions 

(Brunnermeier and Pedersen, 2008). In general, a leveraged institution faces a stronger 

reduction in its value: when its assets value decreases by a given percentage, the net value of 

the institution might decrease by an even higher percentage, because of a greater reduction for 

the equity, that is for that part of balance sheet available to absorb losses. 

There are three main ways to recapitalize the bank and to restore a sustainable leveraging: it is 

possible to ask for a capital infusion by stockholders, therefore increasing the capital; it is 

possible to ask for a debt restructuring, which means reducing the liabilities; it is possible to 

sell part of own assets, by selling them and getting liquidity to repay liabilities. This last action 

can trigger the so-called asset price effects and the above-mentioned balance sheet effects, and 

if these negative impacts are discounted in the market valuation by economic agents, the 

chances for a materialization of a systemic risk increase considerably. 

As earlier mentioned, the initial condition of leveraged institution may amplify the asset price 

effects on the balance sheets. The two basic financial mechanisms which describe these 

systemic distressed situations are named “loss spiral” and “margin spiral”, and both identify the 

more general “liquidity spiral”. 

In a loss spiral, an initial external shock, like a loss, a default or an unexpected cost increase, 

could cause important liquidity problems inside the internal liquidity circuit of a company. As 

said, liquidity problems may force the asset liquidation, which may trigger some downward 

price fluctuations and further losses on existing positions, then generating a systemic 

involvement. 

The margin spiral strengthens the loss spiral. When an investor buys an asset, they can use this 

asset as collateral and borrow money against it. The difference between the security’s price and 

its value taken as collateral (because a loan is never granted for the total price) is called margin, 

and must be covered by the equity. Equivalently, the total asset value of a firm is financed by a 

given amount of debt, but not completely, because a part must be covered by its own capital. 

Hence, the total margin can never exceed the total own capital at any time, and it determines 

the maximum leverage. When a loss, as a default, overwhelms a company, along with the loss 

spiral, the margin spiral triggers as well: the assets reposition got through sales causes an overall 

price reduction, making prices move away from their fundamentals; this process, other than to 

make losses on existing assets increase, (causing further funding problems) causes an increase 

of the margin, which forces a leverage reduction and further asset sales. Moreover, when 

funding liquidity becomes stricter, institutions becomes more adverse to taking long positions 

in high-margin securities, because of the high capital required. But lower market liquidity leads 
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to more price fluctuations, higher volatility, higher financing costs and consequently higher 

financing risk. 

In this context, risk managers are more likely to wish a dejection of their leveraging, but when 

many institutions de-leverage their positions, the market liquidity suddenly dries up. Losses 

spiral and margin spiral are self-perpetuating pro-cyclical processes that heavily amplify an 

initial shock like a default, as well as the burden of the systemic risk. In particular, Adrian and 

Shin show that leverage is pro-cyclical in a financial system in which balance sheets are 

continuously marked to market, because assets’ prices fluctuations stimulate continuous 

adjustments, corrections and reactions by financial institutions. In this framework, aggregate 

liquidity can be seen as the growth rate of the aggregate financial sector balance sheet: when 

asset prices increase, balance sheets quickly become stronger and the leverage degree declines; 

the accumulated surplus capital is progressively employed in expanding balance sheets, through 

more asset purchases and loans and more short-term debt. When the borrowers research is very 

intense, the risk to deal with sub-prime borrowers considerably increases, up to the downturn 

of the credit cycle and the materialization of the systemic risk. 

Finally, there is one last more theoretical issue that is strictly related to the propagation of a 

systemic risk. It concerns the externality, which plays a key role in the risk spreading. In 

economics, an externality is a negative or positive impact on the wealth of someone of an action 

performed by a third party. In finance, negative externalities due to the behavior of an institution 

can more easily affect the wealth of other institutions, their actions and the overall financial 

stability.  

There are many examples about financial externalities and their dynamics.  

One of them is the rapid and generalized spreading of negative information about the solidity 

of an institution, in a context of strong information asymmetry. The only failure of a bank could 

trigger a bank run towards other banks, even if performing and totally solid, for the sole reason 

that depositors fear the real solidity of their own bank, perceived as a failing bank as well. A 

correct, transparent and continuous communication between the financial intermediaries and 

their customers could reduce the fear because it would reduce the asymmetric information.  

The same goes for those clients who were debtors of the failing bank: it may become more 

difficult for them to get financing by other banks, because a bank failure causes more 

burdensome restrictions on credit lines, and less trust towards former failed bank’s clients. The 

failure of a bank leads to a loss of information on relationships and creditworthiness, and alert 

the entire network that the failed bank was not doing a correct screening and monitoring of its 

own clients. The consequence is a negative externality on former clients and stakeholders.  

Another example is the individual decision of a financial intermediary to become universal and 

to sell any kind of financial product and financial service for any type of clientele. This decision 

implies the necessity to enter the financial chain in such a way that it can forge the highest 

number of relationships and contacts. The expansion, the internationalization and the 

universalization of a company and of its activities may create a focal point inside the financial 

system, so that the well-being of such institution determines the stability of the entire system. 

It is the so-called “too big to fail” and “too interconnected to fail” situation, and the complexity 

of these linkages considerably increases the systemic risk. On this specific matter, there are 

important monitoring policies and moral hazard issues for public authorities, whose main target 

is financial stability. 

A last example is provided by the strict relation between the financial system and the real 

productive economy. When a bank faces a shock, rather than selling assets, it can decide to 
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perform a credit rationing and increase interest rates on new debts; this decision unavoidably 

falls back on consumption, saving and investment possibilities and desires of firms and 

households. The result is a probable reduction of transactions, output and prices. The 

consequent recession involves the entire system, and this is a very big negative externality 

which in turn hits the financial markets. It is a task of public authorities to mitigate both the 

intrinsic systemic risk of the system (through a set of provisions and regulations and through a 

correct setting of monetary policies by the central bank), and the possible vicious cycle that a 

recession may cause on financial safety of economic agents, through a right implementation of 

economic policy and public intervention. 

 

  

1.3  Brief Literature Review on Systemic Risk 
This section presents a review of the main contributions and the main conclusions concerning 

systemic risk in the literature of the past decades. It is important to note that the more consistent 

progress about this topic have come true over the last two decades, and this is probably due to 

a deeper understanding of financial dynamics, to the introduction of more complicated and 

complete econometric tools and to the necessity to provide explanations on relatively recent 

global phenomena and events, such as the global financial crisis.  

The introduction of systemic issues dates back to the Great Depression, when the classical 

economic theory faced some difficulties in explaining the persistence and the harmfulness of 

the crisis. Keynes first, in his General Theory, found a possible interpretation of the crisis, and 

first dealt with the topic of basic uncertainty and its role in the disequilibrium of the capitalistic 

systems. Later, other authors, such as Kindleberger and Minsky, argued that the financial 

structure endogenously leads to the increase of the fragility of the system, with an increase in 

the probability of crisis; these authors implicitly pointed out the endogeneity of systemic crises 

and, therefore, the presence of a systemic risk component. During the ’70s and ‘80s, due the 

occurrence of a sequence of international economic instabilities and further financial crisis over 

the world, more contributions to the theory on systemic risk were provided by economists. In 

particular, adjustments mechanisms of financial systems to external shocks was analyzed, in 

order to formalize an overall view about crisis, which can be generated either endogenously 

and exogenously. The investigation about behavioral aspects and about their role in the 

materialization of a systemic crisis began and made progress. Nonetheless, up to 1980s, the 

research about systemic issue remained limited to a few pieces of work, and mostly focused on 

descriptive economic and historical analysis of systemic events, such as crisis.  

From the ‘80s onwards, contributions increased in number and improved in quality. The 

systemic phenomenon was studied by economists from different perspectives, without 

necessarily a common direction of interest, and through the usage of different backgrounds and 

different methodologies. The massive application of new mathematical and econometric 

models and the analysis performed by means of financial data and empirical evidence gave a 

strong boost in this field. The consequent proliferation of working papers about systemic risk 

over the last twenty years of the XX century was very heterogenous. 

It is possible to follow three directions of investigation in the literature about systemic risk (as 

suggested by Bazzana and Debortoli, 2002), identifiable in accordance with the origin place of 

the systemic event: the payment system, the financial system and the banking system. 
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The decision to use a given payment system and settlement procedure for the financial 

transactions has been seen as an important characteristic for systemic events. Authors have 

focused on the features of settlement structures and of payment systems as determinants of 

systemic crisis. The study of these systems implies a deep analysis of the network of 

relationships among financial institutions, and the investigation of basic concepts as the shock 

propagation and contagion. In particular, the payment system can be a source of systemic risk 

because of a direct and fast transmission of shocks to others or because of an unexpected 

malfunction of the same payment system. Therefore, researchers focused on the definition and 

identification of some types of risk, whose monitoring and measuring nowadays are essential 

for risk managers: the credit risk, the liquidity risk, the operational risk and the legal risk. 

Simultaneously, the financial system began to be analyzed as a vehicle of systemic shocks that 

lead to systemic crisis. Contagion models derived starting from investors’ portfolio decisions 

and asset price dynamic models have been implemented. 

In general, the discussion developed on the fact that the financial market constitutes a mean of 

propagation, but also a source of systemic events. For example, as it has been mentioned before, 

large price fluctuations and market liquidity crisis can affect single financial institutions, and 

from that spread through the whole market, or can directly affect large part of the market, as a 

large number of operators are involved. 

Researches of Calvo and Mendoza showed that the globalization of risky assets markets may 

reduce incentives to collect costly country-specific information and increase incentives to hold 

an arbitrary market portfolio. All of this strengthens the contagion among investors, and 

therefore the systemic risk; with short-selling constraints, the gain to get information at a fixed 

cost could reduce as markets grow.  

Schinasi and Smith found that the role of leverage and of diversification is essential and 

sufficient to explain the contagion: for investors it is optimal to sell risky assets when a shock 

comes up, and the portfolio rebalancing leads to the spreading along the financial chain. 

Therefore, contagion can be explained without assumptions of market imperfections, but just 

through the standard portfolio theory. 

Kodres and Pritsker argued that the contagion is due to the portfolio rebalancing on 

international markets after a macroeconomic shock, and the information asymmetries amplify 

this impact. Moreover, they provide explanations and evidence about the particular suffering 

state of emerging countries (at that time, many crises were involving emerging countries, above 

all Russia, Mexico and Argentina).  

Allen and Jagtiani studied the effects of bank portfolio diversification. When an institution 

includes non-banking activities in its asset portfolio, it reduces its exposure to sectorial 

idiosyncratic risk but increases exposure to systemic risk. This reduces the same potential of 

diversification, and since this risk does not appear in the risk premium, the systemic risk 

exposures are enhanced. 

Das and Uppal found that the effect of systemic risk on the composition of the portfolio is 

limited, and that systemic risk slightly reduces the benefits of diversification suggested by 

standard theory. They started from two stylized facts: returns on international equities are 

characterized by jumps; the jumps simultaneously occur across countries, creating the systemic 

risk. They implemented a model of equity returns through a multivariate system of jump-

diffusion processes, where the arrival is simultaneous across assets. They concluded that 

systemic risk does affect the allocation between the riskless and risky assets, but there is a small 
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impact on the composition of the risky portfolio, and this reduces the benefits from international 

diversification. 

A fundamental contribution to the economic and financial theory has been given by that line of 

research that tried to overcome all those unrealistic assumptions of “perfection” and 

homogeneity of the world in the standard theory. During ‘80s, many authors discovered 

important features used to elaborate more realistic assumptions and models, in order to catch 

the imperfections of the world. In particular, the causes of the assets price dynamics were 

investigated, as a sudden fall or unjustified growth, with models based on the hypothesis of 

heterogeneous agents instead of representative agent, and the pieces of work that emphasized 

psychosocial and cognitive aspects. 

Grossman and Stiglitz proved that prices just partially reflect all the information available, and 

for that reason markets are not always efficient. Haltiwanger and Waldman pointed out that 

agents are heterogenous in preferences and in ability to analyze information, and formulate their 

own expectations with limited rationality for the most. Hart and Kreps demonstrated that the 

idea that rational speculative activity should bring to more stable price is not always correct.  

As a result of these new important economic principles, following researches in finance focused 

on the real and evident discrepancies between theory and evidence: many investors don’t follow 

the advice of financial theory, don’t hold the market portfolio, don’t diversify correctly and buy 

a limited number of stocks, selected after a personal deepening, a given public announcement, 

or after seeing a mass phenomenon, then combining the rational approach with the emotionality. 

Authors defined these investors as noise traders: they act on the basis of partial information and 

in general of what they consider useful to give some individual advantages, when in reality it 

is imprecise and irrelevant information.  

De Long et al. highlighted the importance of these agents because they are the majority, and 

their actions heavily affect the price formation process. Based on this hypothesis of “noise”, 

many models on prices dynamics have been implemented.  

An important conclusion has been provided by Calvo and Mendoza in 1999: within a financial 

market, investors can be divided between informed and uninformed, where uninformed ones 

tend to imitate the informed ones; therefore, causing a problem of signal extraction when 

informed investors act in accordance with information not related to fundamentals, and this 

favors the propagation of eventual shocks through the financial markets.  

Brock and Hommes implemented a model based on the assumptions of heterogenous agents 

and with limited rationality, and they demonstrate how their choices affect the price fluctuations 

and the market trends. 

Camerer provided important contributions on the distancing of assets prices from their 

fundamental value. In particular, he defined three phenomena: growing bubbles, information 

bubbles and fads. Growing bubbles are explosive trends of assets prices in a context of rational 

expectations, where investors, in a social mechanism of coordinated opinions, expect further 

increases. Information bubbles are price deviations from fundamentals due to some market 

failures which impede the price to correctly embed all available information. Fads are price 

deviations from fundamentals due to social and psychological forces following a change in risk 

perceptions or in the perceived utility. In general, a financial bubble is a powerful and dangerous 

vehicle of instability and systemic risk. Though there is a wide literature about causes and 

consequences of bubbles, and the mechanisms that lead to their formation and explosion, in this 

context it sufficient to say that possible causes of bubbles are: excessive monetary liquidity in 

the financial system, which incentives inconsiderate leveraging and excessive credit supply by 
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the bank, causing more asset price volatility; social and psychological factors as investors’ herd 

behavior, investors’ irrationality and incapacity to derive the exact assets’ fundamental value, 

moral hazard (which induces agents to undertake an excessive level of risk). 

The last line of investigation on systemic risk is linked to the banking system, and in particular 

to the transmission mechanisms of a shock from a single bank to the whole system. 

Generally speaking, systemic risk is an unavoidable and intrinsic part of the financial sector, 

which is more susceptible to shocks and contagions than other sectors of an economy, mainly 

at banking level. The vulnerability of the banking system unfolds in those cases of run, and it 

is due to the intrinsic nature of the banking activity: savings collection through deposits and 

funds lending, which consists mainly of illiquid and long-term operations. 

With this structure, a sudden and unexpected increase in the withdrawals would force the bank 

to liquidate its assets, incurring in significant losses. As said, the difficulty of a single bank may 

involve the entire banking system by transmitting it through some channels, and from that it 

may reach the entire economy. These propagation channels, which have been widely studied 

throughout years, are the same ones as the priorly mentioned: the direct exposure channel, from 

which the domino effect occurs, and the information channel, from which the bank run. 

In this framework, the reference point is the work by Diamond and Dybvig, who, in a famous 

model, tried to explain how the banks' holding of illiquid assets like loans, and liquid liabilities 

like deposits, may cause a self-fulfilling panic among depositors. In fact, banks hold only a 

fraction of the deposits and lend the remaining part, while a sudden increase in withdrawal 

requests, met on the basis of the first-come-first-served rule, may prompt all bank’s depositors 

to withdrawal as well, because of the increased fear about bank's insolvency. Potentially, the 

liquidity shortage could drag the bank into a deep crisis.  

Gorton confirmed the same intuitions: a banking crisis occurs when, due to informative 

problems, depositors decide to withdraw their funds and use them in alternative and more 

profitable way, fearing a poor performance of the bank's assets. 

Chen made remarks saying that banking panic and contagion occurs when, in a situation of 

first-come-first-served rule, and under information lack and imprecisions about the bank’s 

patrimonial health, depositors get scared and decide to withdrawal.  

Aghion, Bacchetta and Banerjee went even further and discovered that, when a bank is unable 

to find funds necessary to satisfy the higher withdrawal requests, the probability of bankruptcy 

raises; this triggers panic because of the spreading of beliefs of lack of liquidity, and this boosts 

contagion.  

Allen and Gale deepened the liquidity shock transmission among banks. In particular, they 

explained how the strength of a contagion depends on the structure of intermediaries’ 

relationships in the various regions. Since liquidity shocks are not perfectly correlated across 

regions, an optimal practice for a bank is to hold assets from institutions located in other regions. 

This would provide an insurance against liquidity preference shocks. It is proved that the more 

interwoven the network of connections, and the more complete the structure of interregional 

claims, the more stable and robust the system. Theoretically, this important conclusion, later 

confirmed by the financial network theory, is a way out from a systemic point of view, with the 

purpose of reducing the systemic risk. 

Freixais, Paris and Rochet argued that banks face liquidity needs as depositors do not know the 

place where they will need to consume. This encourages the creation of interbank credit lines 

in order to better cope with liquidity shocks. Unfortunately, this interbank exposition increases 

systemic exposition due to coordination failure, even if all banks are solvent. A bankruptcy due 
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to some kind of shock will affect the entire system in accordance with the pattern of payments 

across areas, and this can also affect healthy banks.  

Peek and Rosengren demonstrated that, while in the past local shocks were more contained 

within the country of origin, today, due to globalization, advanced technology and new 

structures, they quickly spread at an international level. 

Over the last twenty years, the literature about every faceting of systemic risk has grown 

rapidly, involving many different aspects, methodologies and interpretations. 

A line of investigation tried to develop new mathematical and statistical measures of the 

intensity of systemic risk, by inferring it directly from assets prices and their correlations. 

A great contribution in this regard has been given by Adrian and Brunnermeier. At first, they 

elaborated the concept of Conditional Value at Risk (CoVaR), that is the value at risk of 

financial institutions conditional on an entire distressed financial system. Then, they measured 

the institution’s marginal contribution to systemic risk as the difference between CoVaR and 

the financial system’s VaR. Finally, they proposed a measure of the overall systemic risk by 

taking the difference in the VaR of the financial system conditional on a distressed institution 

with respect to median state: the ∆CoVaR. They showed that all the main determinants of 

systemic risk, as foreseen by the theory, (leverage, liquidity, maturity mismatching, dimension 

and price bubbles) are significant in the explanation of ∆CoVaR; this also implied a strong 

predictive power. 

Billio, Lo, Pelizzon and Getmansky edeveloped several econometric measures of 

connectedness, and then useful proxies for systemic risk, based on Granger-causality networks 

theory and principal-components analysis applied to financial institutions’ monthly returns. 

They discovered that all financial sectors have become increasingly connected over the last 

decades, therefore increasing the systemic risk with complicated varying network of 

relationships; moreover, there is an evident asymmetry toward the banking sector, which turns 

out to be a core element in the transmission of shocks.  

Acharya et al. defined useful measures regarding each financial institution’s contribution to 

systemic risk: the systemic expected shortfall (SES) is the tendency of an institution to be 

undercapitalized when the whole system is undercapitalized; SES increases with its Marginal 

Expected Shortfall (MES), that is the expected loss in the tail of systemic loss distribution. 

Recently, Brownlees and Engle presented a measure of systemic risk contribution for a 

company, called SRISK. It measures the firm’s capital shortfall when a heavy market prices 

decline occurs, as a function of company’s size, leverage and long run marginal expected 

shortfall. Moreover, they proved that it is able to capture early warning sign of a crisis. 

Furthermore, many other researchers developed other important systemic risk, by using market 

and balance sheet information (e.g. by Chan Lau and Gravelle, Avesani, Duan and Wei, 

Huang). 

Meanwhile, the importance of the deepening and modeling at best the role of systemic 

correlations among institutions, prices and assets classes arose. 

Lee, Lin and Yang found that the assets correlations increase with company size but reduce 

with its default probability. Additionally, they proved that assets correlations are industry 

specific, asymmetric and with a pro-cyclical impact on real economy, rising during economic 

downturns and declining during economic upturns. In general, many studies reported that 

financial crisis are associated with increase of both cross-correlations among stocks and the 

level of systemic risk. 



 25 

Allen et al. created a model to show how asset commonality and short-term debt of banks 

interact to generate an excessive systemic risk. In fact, when banks exchange assets to reduce 

individual risks, two asset structures may emerge: a clustered asset structure, where groups of 

banks hold common asset portfolios and default together, or an uncluttered asset structure, 

where defaults are more dispersed. In this framework, information contagion can more likely 

be found in the clustered structure, unless the bank debts are more long-term.  

Das and Uppal created a model to determine the investor’s optimal portfolio through a 

multivariate system of jump diffusion processes. They based this model on a set of confirmed 

stylized facts: returns of international equities are characterized by jumps; jumps tend to occur 

simultaneously, and this generates the systemic risk; systemic risk reduces the benefits of 

diversification and hits more leveraged positions. They found that, while losses from reduced 

diversification may be smaller, the loss from highly leveraged positions may be larger. 

Busse et al. once again confirmed, through a probabilistic approach, that the systemic risk does 

reduce the gain from diversification. In particular, they tried to compute the risk loading on the 

portfolio premium due to the presence of systemic risk, by using measures as VaR and Tail 

VaR.  

A very important historical event, which marked the western economies forever, the political 

institutions, hence the academic research on systemic risk as well, was the 2008 financial crisis. 

This event was taken as an object of study by many authors, as a case either for deepening new 

branches and analysis methodologies, and for further applications to investigate in order to 

fulfill shortcomings of the theory. In particular, indirect spillover effects, common exposures 

and informational contagion played an important role in the crisis, because they triggered 

liquidity spirals and the blackout of the financial system. The failure of such a big, relevant, 

interconnected and central investment bank, as Lehman Brothers Holdings Inc., is considered 

one of the strongest shocks ever hitting advanced economies in recent times, and that caused 

the materialization of a huge systemic risk. In general, the 2008 financial crisis demonstrated 

that factors for financial distress of large parts of the economy strongly depend on the 

interconnections among financial institutions. Moreover, an increasingly set of new financial 

instruments emerged in order to maximize returns with minimal specific risk for financial 

institutions. Unfortunately, by acting optimally at an individual level, nobody gave attention to 

the possible effects on the stability of the entire system, and a huge systemic risk grew.  

Diamond and Rajan showed how a bank failure becomes contagious, not through the typical 

channel of bank run, but rather through the consequent liquidity shortage. They proposed a set 

of possible government interventions which take into account the fact that liquidity and 

solvency problems are endogenous and not perfectly identifiable. 

As early as 2009, during the Great Recession, academic research focused all its efforts on the 

study and on a better understanding of the ongoing events. 

Hellwig first tried to analyze the intrinsic causes of the global financial system crisis, and how 

the subprime securities crisis in US turned into a worldwide crisis. The securitization, that is 

the procedure with which a bank pools a set of contractual debts (such as mortgages or other 

assets) into one new security (MBSs, or ABSs, of which CDOs) whose cash flows are linked 

to that of underlying debts, and sells it to other investors, played a basic role in the explanation 

of the huge propagation of the shock in the financial system. The author argued that the 

incidence of systemic risk in the system was huge because of an excessive maturity and liquidity 

transformation operated by financial institutions through the shadow banking system (where 

Structured Investment Vehicles, Special Purpose Entities, Hedge Funds and others operated): 
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when the system broke down in 2007, the overhang of ABS caused additional downward 

pressure on securities prices. When operators began to recognize the defaults in US mortgages, 

a mix of interaction between market malfunctioning and insufficiency of equity capital in 

financial institutions caused a detrimental downward spiral in the global financial system. 

Brunnermeier et al. highlighted the importance of bank’s capitalization and the level of liquidity 

in the detrimental spirals triggered by a crisis. Before the crisis, an asset price boom of housing 

occurred; after the burst, banks faced many difficulties to raise funds: the excessive lack of 

confidence of banks in the downward phase is an explanation of pro-cyclical balance sheet 

movements. Authors tried to investigate the reaction of the banking sector to monetary 

impulses, controlling for level of liquidity and capitalization. The main result is that the less 

capitalized and liquid banks face more pro-cyclical effects. 

Acharya and Merrouche investigated in depth the liquidity issue, both before and during the 

crisis. They found that, just after August 2007, when money markets froze, the liquidity demand 

on the interbank markets faced an increase of 30% for precautionary motives. In particular, this 

increase involved banks with higher credit risk in a period of high payment activity, driving up 

interbank rates. 

More recently, Acharya and Thakor analyzed the “dark side of liquidity creation”. The linkage 

between leverage, liquidity creation and systemic risk gives rise to some questions that their 

study tries to address. They consider a model in which both debt financing and equity financing 

discipline the bank managers in order to create an ex-ante liquidity: debts does it by the credible 

threat that, if the made investments will not earn enough return to cover the expense for 

interests, the company might be forced to inefficiently liquidate its assets, and in extremis it 

fails; instead, equity financing disciplines bank managers by providing compensation-based 

incentives to select the most efficient projects. However, since these incentives involve 

payments from ex-post cash flows, equity financing may reduce the ex-ante bank liquidity. 

Consequently, the optimal capital structure of the bank is affected by the trade-off between the 

ex-ante efficiency of leverage relative to incentives for managers given by equity and the ex-

post cost of inefficient liquidations due to high leverage. With uncertainty about aggregate risks, 

bank creditors take their cue from liquidation decisions of other banks, but this behavior may 

lead to contagious liquidations, such as bank runs. Authors proved that, under given conditions, 

banks choose excessive leverage relative to the socially optimal level, and this justifies the 

public intervention through capital requirements. 

Gai et al., by using a network approach, found that systemic breakdowns of the interbank 

market can be explained with a precautionary provision by banks because of more concerns 

about future liquidity needs, and more fears to undergo a liquidity drying. In fact, during the 

crisis, the interbank markets froze up because banks stopped lending at all, and this led to 

devastating effects on the whole financial system and on the real economy. Authors highlighted 

the contribution that stricter liquidity requirements for SIFI (Systemically Important Financial 

Institutions) can reduce contagion through financial markets. 

Kritzman et al. identified the main drivers of the financial system breakdown in the failure of 

prudent regulation of financial markets and in the excessive risk taking by institutions. 

Moreover, securitization, shadow activities and a flexible accounting prevent researchers from 

directly observing the deep interdependencies of financial institutions, and this made it difficult 

to correctly monitor the systemic risk. For that reason, authors introduced the absorption ratio, 

a measure of implied systemic risk which captures the extent to which markets are unified. 
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When markets are strictly linked, they become more fragile, and negative shocks propagate 

more quickly and broadly. 

Another important case of study was the European debt crisis, in which different patterns and 

different evaluations of the role of systemic risk (in this framework linked to the concept of 

sovereign relevance) were implemented. 

A basic contribution was given by Pagano and Sedunov. They showed the existence of a 

positive correlation between the aggregate systemic risk taken by financial institutions and 

sovereign debt yields of particular European countries. For that, they suggested that the 

systemic risk of a country’s financial system (especially in Europe where there are such 

heterogenous systems) should be included in the sovereign debt return. Moreover, they also 

discovered a flight-to-quality effect towards stronger and safer countries, such as Germany, and 

at the same time a spillover effect across weaker financial systems: this instability inside a 

strong and large commercial and monetary integrated area like the EU led to a heavy and 

dangerous systemic risk. 

A more recent and very successful line of investigation, that can be seen as the natural evolution 

of a branch that was taking into consideration matters such as contagion and 

interconnectedness, is represented by the network theory applied in finance. The network theory 

is a mathematical approach which studies the graphs, namely representations of relations among 

points (individuals), and that introduced new analytical elements, such as social structure, edge, 

vertex, links. In this case, this approach allowed the analysis of the structure of the connections 

among financial institutions, providing new models and new methods for the identification and 

the quantification of the systemic risk.  

Nevertheless, early models of financial risk already put emphasis on networks, describing direct 

domino effects caused by defaults on claims between financial institutions: Furfine (2003) 

studied the network structure of the financial system in the US, Upper and Worms (2004) in 

Germany, Agnes Lubl´oy (2006) in Hungary, van Lelyveld and Liedorp (2006) in the 

Netherlands, Elsinger et al. (2006a) in Austria, Wells (2004) in the UK, Mistrulli (2007) in 

Italy. 

For instance, Elsinger et al. tested a new approach to assess systemic risk by using a network 

model of interbank loans, and found that the correlation among banks’ asset portfolios is the 

main channel of contagion. Even if the systemic contagion is an outstanding event, it can 

heavily strike the financial system, and authors proved that, to prevent contagion, it suffices a 

small amount of fund by a lender of last resort. 

Alentor et al. performed a complete analysis with a network model purpose-built to evaluate 

the financial stability and to understand how the structure of financial system affect the systemic 

risk. They modeled a banking system, where a set of banks (the nodes) are connected by 

interbank linkages (the edges) and then proceeded to evaluate the likelihood of contagious 

defaults by making some key parameters defining the structure vary (such as capitalization 

level, interconnectedness degree, exposures size, systemic concentration). They came to some 

important conclusions: better capitalized banks are more able to face contagious defaults, in a 

non-linear fashion; connectivity degree is non-monotonic, that is at lower levels of connectivity, 

an increase in it makes the contagion effect stronger, but at higher levels of connectivity, a 

further increase in connectivity makes bank more capable to face shocks; the size of the 

interbank liabilities raises the probability of contagious defaults; the higher the systemic 

concentration of the banking systems the larger the systemic risk. 
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Cont and Moussa highlighted the need to use the network structures theory in order to reduce 

the bias of estimates on contagion and systemic risk. Moreover, they proved further basic 

results: contagion is sensitive to changes in the network structure and to the level of 

connectivity; more heterogeneous networks are more resilient to contagion; a double 

conflicting effect when increasing the connectivity of a network exists: on the one hand there 

is a reinforcement of potential channels for the propagation a financial distress, on the other  

hand there is a stabilizing element due to higher risk sharing; the prevailing effect depends on 

the level of capitalization of the whole network: in undercapitalized networks, a higher 

connectivity makes the network more sensible to instable contagions. 

Battiston et al. modeled a network of credit relations among financial agents through a system 

of stochastic processes describing the dynamics of individual financial robustness (that is the 

ability to cope with changes due to some shocks). The density of a network is a proxy of the 

level of diversification within the system, and it is used as an explicative variable for the 

probability of individual default and for the probability of systemic default. Authors proved that 

the risk diversification may create some instability as the number of subjects in the network 

arises. This is due to the fact that more financially fragile actors inside the network do amplify 

an initial shock and this worsens the intensity of a systemic crisis. 

Amini et al. proposed a new framework to test the resilience of a financial network to shocks. 

They used an analytical criterion for resilience to contagion based on the analysis of default 

cascades in heterogeneous networks. It is observed that the size of a default cascade generated 

by a shock may be wide when the depth of the shock achieves a given threshold. 

Battiston et al. defined the systemic risk as the probability of default of a large portion of the 

financial system, and it is a function of the network structure. Under this perspective, they 

identified financial institutions as nodes and edges as lending relations among them, weighted 

by outstanding debt; then created a new measure, the Debt Rank, which is the fraction of the 

total economic value potentially affected by the distress of each single node. This method 

allows to identify the systemically important nodes inside the network, and can be used to 

categorize the so-called SIFIs from not SIFI. Authors were so able to identify the key American 

financial institutions during the 2008 financial crisis. Their result remarked the importance to 

integrate the issue of “too-connected-to-fail” and “too-central-too-fail” to the classical “too-

big-to-fail” by policy makers and academics. 

Poledna and Thurner re-used the Debt Rank measure to assess the systemic risks in the financial 

networks by each bank. They argued that the systemic risk in financial networks may be heavily 

reduced by increasing transparency, i.e. by making public the estimates of Debt Rank of each 

individual bank to all other banks, and then by forcing the reduction of the interbank borrowing 

from risky SIFIs. This ideal framework would favor a more homogeneous risk sharing within 

the system, because of a massive reduction of cascading failures. 

Cellai et al. constructed a financial network model that combines the default-related and the 

liquidity-related contagion mechanisms, such that it was possible to quantify the impact of the 

illiquidity and the default of an institution on the overall systemic level of liquidity and others’ 

defaults. The basic element of this model is the concept of “cascade”: when an institution 

becomes insolvent, this shock on the asset side of creditors may propagate and cause further 

insolvencies to others, generating a “cascade”, i.e. an “accumulation” of defaults of banks in 

the system. The same goes for the liability side: an eventual illiquidity and difficulty to get 

funding for an institution may turn out as a shock for its debtors, and accumulate itself in an 
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“illiquidity cascade”. The conclusion is that, without fire sales, the mean level of defaults in the 

financial network is negatively linked to the capacity of the bank to be liquid. 

Hautsch et al. created the realized systemic risk beta to measure the financial companies 

systemic risk contribution, conditional on network spillover effects and market information. 

This beta is calculated as the total time-varying marginal effect of a firm’s VaR on the total 

systemic VaR. 

Acemoglu et al. investigated the resilience of financial networks to financial contagion under 

different conditions. They found that a more densely connected financial network, which 

undergoes a negative shock, seems to be more financially stable, but only up to a certain point, 

beyond which density may make the propagation more fluid. Then, they pointed out that the 

same determinants that contribute to resilience under certain assumptions, do contribute as well 

to higher systemic risk under other assumptions. 

An advanced approach has been provided by Billio, Caporin, Panzica and Pelizzon in their 2015 

work “Network connectivity and systematic risk”. They defined the “systematic risk” as the 

risk that an investor’s well diversified portfolio is exposed to, due to the dependence of returns 

to common variables. At the same time, the systemic risk is strictly linked to the concept of 

contagion risk and spillover effect, and to the linkages between institutions. They highlighted 

the need to separate channels through which risk can propagate: exposures to common factors 

in case of systematic risk, contagion and spillover in case of systemic risk. For that purpose, 

the most feasible model to capture systemic risk exposures and to describe features of a network 

of connections is just a network model. Their goal was to analyze the strict relation between 

systematic risk and systemic risk, and in particular to estimate the feedbacks among network 

exposures and common factors, by using network-based methods to get information on linkages 

among institutions. Their model is a variant of the CAPM/APT model in which networks are 

used to infer exogenous links among assets. With this framework, authors were able to identify 

four components of the asset risk: the structural idiosyncratic risk, the structural systematic risk, 

the endogenous risk strictly derived from asset interconnections and network exposures which 

is reflected in the systematic risk, and the endogenous risk derived from effects of 

interconnections on the idiosyncratic risk. By using this risk structure, it is possible to identify 

three sources of the risk premium: the common factors exposure, the impact of asset 

interconnections to common factors and the amplification effect of idiosyncratic risk. Authors 

tried to estimate the impact of the network exposures and common factors on risk exposures 

and risk premia of stock. The main results are basically four: the systematic component is the 

prevailing driver of the total risk of a diversified portfolio; the idiosyncratic risk has a low 

impact on the total portfolio risk, while the impact of network exposures on the idiosyncratic 

risk is irrelevant; the risk absorption due to negative correlations among assets has a relevant 

role; a systematic risk component due to network exposures is present but varying over time. 

Roukny, Battiston and Stiglitz showed how the networks structure could make it more difficult 

to assess the real level of systemic risk in the credit markets. They introduced a model to 

compute specific and systemic probability of default in a banking network based on credit 

relations and affected by external shocks. After identifying network conditions that lead to 

multiple equilibria, it is proved how these equilibria increase uncertainty in the estimation of 

the default probability and of the expected losses. 

One final note for the role of systemic risk in policy making. The issue of the financial systemic 

risk has been crucial for policy makers since the 1970s, when the Basel Committee on Banking 

Supervision was established by advanced economies. Since then, many international 
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institutions, common regulations and policies have been studied and adopted in order to try to 

govern and address the systemic risk and to maintain the financial stability, at least in the first 

world. In general, it is possible to classify preventive policies, that try ex ante to minimize the 

systemic risk, and resolution policies, that try ex post to minimize the negative impacts 

following the materialization of a systemic risk. We can identify macro-prudential policies, 

monetary policies and network infrastructure policies. 

Macro-prudential policies consist of ex-ante targeting measures on the banks’ balance sheets, 

and aim to enhance the resilience of financial institutions to external shocks. They provide a set 

of anti-cyclical capital requirements, leveraging requirements, margin requirements and 

liquidity requirements that have the objective to disincentive excessive risks taking, whatever 

the types of assets classes involved. In particular, the countercyclical capital buffer policy plays 

a crucial role: it requires banks to hold more capital when credit is increasing quickly, and it 

allows them to use it when losses arise in times of recession and credit crunch. These policies 

are very important in order to continue supplying credit to the real economy. In Europe, the 

ultimate responsible for macro-prudential policies monitoring is the European Systemic Risk 

Board, as a part of the European System of Financial Supervision, but there are many other 

institutions, such as the Basel Committee, the Financial Stability Board and national authorities. 

Monetary policies have the basic task to maintain the price stability, but can contribute for 

financial stability through a powerful set of tools, which heavily affect the decisions of 

economic agents and investors. In particular, the definition of reference interest rates, of 

liquidity, of mandatory reserve requirements and the implementation of given purchase 

programs have a strong impact on the systemic risk, both perceived one and actual one within 

the system. In the Eurozone, the European Central Bank, along with the governors of central 

bank of member states, are the ultimate responsible of the monetary policy. 

Network infrastructure policies are a set of rules that all operators within the financial market 

must comply with in order to ensure the correct functioning of markets and infrastructures. 

They provide a wide set of regulations of safe conduct of business and competition policy, such 

as transparency and information requirements for financial intermediaries towards authorities 

and consumers, product quality requirements, reporting and disclosure, client protection, 

bankruptcy procedures, other procedures on clearing, settlement and recording of payments and 

financial transactions. The purpose of these policies is to pursue the systemic stability and the 

soundness of all operators in the financial markets, so that all transaction-related risks can be 

mitigated. At an international level, the general regulatory principles have been published by 

the Committee on Payment and Settlement Systems in the “IOSCO Principles for Financial 

Market Infrastructures”. In Europe, there are many regulations and directives on markets 

infrastructures, such as EMIR, MIFIR, MIFID, MAR and MAD, SFD and so on. 
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Chapter 2 

Measurement of Systemic Risk 
 

 

The complexity of the financial system consists of deep interconnections among a huge number 

of economic agents with different characteristics and interests, legal contracts with many types 

of provisions and enforcement, economic practices, financial operations and decisions, and in 

general of the market environment built up by authorities and management companies: the 

combination of all these inputs and their simultaneous interactions determine the outputs and 

the outcomes of the financial markets. The necessity to monitor and to evaluate the progress by 

all financial actors, from public authorities, fund’s managers and intermediaries to individual 

investors or households, requires the creation of a very large variety of models and measures, 

in order to make informed and optimal decisions about investments and activities. In particular, 

the monitoring and the correct measurement of systemic risk have always played a central role 

for the institutions, and its modeling, as seen, was affected by the discoveries in the literature, 

based on different evolving assumptions. 

As some studies confirm (Danielsson, Shin and Zigrand, 2010), market participants’ actions 

mostly depend on perceived risk: when they believe that financial trouble is coming, they react 

by taking hedging actions that are reflected by an effective increase of realized volatility. 

Hence, the conclusion is that investors’ preferences and expectations are not independent but 

they affect each other, making a systemic distress come true in a self-fulfilling way. This 

generates an endogenous systemic risk because it arises within the market, and it is opposed to 

exogenous risk, which takes into account a shock that is external to the financial system, and 

prompts investors to react in order to protect themselves. For instance, we can consider the case 

of an endogenous increase of the systemic risk within the financial system, such as a speculative 

bubble. In this case, we can presume the existence of schematic dynamics which periodically 

occur in the system, and that can be modeled and measured, allowing the construction of 

predictive models for systemic risk. It is shown that, as a price bubble builds up, the investors’ 

perceived risk declines and the actual intrinsic risk accordingly increases, while, after the burst, 

the contrary occurs: a quick drop in the intrinsic risk and an unjustified huge rise in the 

perceived risk, which amplifies the disruptive force of the shock. Therefore, there is a double 

result: perceived risk and actual risk have a negative correlation, and the irrational behavior is 

a characteristic of the financial market.  

On the contrary, if we observe an unpredictable exogenous shock hitting the financial market, 

then the previous systemic risk response model would be inadequate, and different settings and 

measures should be considered. In fact, given that these shocks are infrequent, unpredictable 

and unknown, and given that there is no common pattern to be studied and analyzed, it is much 

more difficult to create an empirical and statistical basis on which to build a model for 

measurement of financial risks and for forecasting probable financial crisis. 

Moreover, further elements complicate the evaluation: when a financial crisis occurs, it hits 

economies in different ways, with different triggering factors, different channels of propagation 

and toward different parts of the economy. The huge heterogeneity adds degrees of complexity 

in the implementation of good predictive and systemic risk control system. According to some 
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more pessimist authors, there is not even a possibility to reliably and consistently identify 

actions, dynamics within the financial systems and common schemes that are always valid, 

because of the heterogeneity across systems and over time, and the uniqueness of such events. 

In any case, it is vital for institutions and authorities to perform unbiased evaluations through 

the use of trustworthy tools and measures: the former in order to make optimal decisions for 

own business and own clients, the latter in order to pursue public mandates, such as financial 

stability and consumer protection, but also to limit government bailouts and to implement 

financial reforms. For this reason, the pursuit of new quantitative tools has never stopped over 

time. 

 

 

2.1  Classifications of Systemic Risk 
In the literature, the efforts focused on systemic risk assessment developed along two 

dimensions: the time dimension of the systemic risk, that is the pro-cyclicality strictly linked to 

the “aggregation” of risk over time due to systemic factors, and the cross-sectional dimension, 

which analyses how the systemic risk is deployed within the financial system at a given 

moment. This last dimension is strictly related to the network and linkages across institutions, 

and an unbiased evaluation of the systemic risk must include both dimensions. The final 

purpose is to create assessment instruments which are consistently able to capture signals about 

systemic trends that could make financial markets vulnerable to unpredictable shocks. 

About the systemic risk assessment, there are mainly three aspects that an analyst should take 

into account:  

• the first one is based on the study of the risk arising from the asset side of institutions’ 

balance sheets, such as the default risk, country risk and market risk;  

• the second one is based on the study of the risk arising from the liability side, such as 

business risk and funding risk;  

• the last one is based on those risks deriving from interactions between the two sides, 

such as liquidity risk, maturity or currency mismatch. 

For each aspect there are three possible approaches to consider:  

• the first approach focuses on balance sheets’ linkages, trying to discover and to measure 

the size of shocks, the intensity and the direction of propagation; 

• the second approach makes use of market data and tries to exploit the information 

conveyed by returns and assets prices, such as volatility, correlations, credit spreads, 

liquidity spreads, risk premia and so on, to estimate systemic risk and shocks 

correlations; 

• the last approach is based on the analysis of a set of indicators that allows simulations 

in order to evaluate the probabilities that an initial unstable situation combined with 

possible incoming shocks, may result in a heavy systemic crisis. 

Moreover, systemic risk may emerge in the cyclical dimension or in the structural dimensions: 

• the cyclical dimension of the systemic risk is strictly related to the temporary risk 

perceived by institutions at any given moment of the economic cycle, and in particular 

emerges with too much risk appetite during economic growth periods, and too much 

risk aversion during recessions; when this risk materializes, the system will suffer 

periods of low liquidity, fire sales, pronounced price reduction, weak balance sheets, 

credit crunch; 
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• the structural dimension of the systemic risk emerges in case of structural problems in 

the financial infrastructures, in the relationships among institutions, due to lack of 

appropriate regulations, excessive public monetary interventions, financial innovations 

or other country issues; it occurs with more intensity in presence of too-big-to-fail and 

too-interconnected-to-fail companies, and may heavily undermine the financial 

stability. 

It can be useful to keep in mind some distinctions about the relevant economic risks. In general, 

the risk strictly linked to the systemic conditions of the markets, that is to market prices of 

traded securities, is the so-called "market risk", and it is function of systemic factors. It is the 

risk that investors bear because of volatility in the market value of financial assets, and then in 

held portfolios value, and it is due to factors affecting the entire market. Sometimes, market 

risk is referred to the systematic risk, because it cannot be eliminated by diversification, but 

only partially hedged. In accordance with the type of price, there are four different categories 

of this risk:  

• equity price risk: it refers to all those positions affected by changes in the stock prices; 

as equity, it is quite most to any change in the economy, and it is one of the relevant 

parts of the market risk; 

• interest rate risk: it refers to all those positions whose market price is affected by the 

evolution of the long-term interest rates prevailing in the market; it involves assets as 

bonds, forward, futures and swaps, and comprises sub-categories of risk, as yield curve 

risk, basis risk and repricing risk; 

• exchange rate risk: it refers to all those positions whose price is affected by fluctuations 

in the exchange rates between the domestic currency and the foreign currency; it hits 

mainly all those institutions which operate in the international markets; 

• commodity price risk:  it hits all those assets whose price is affected by the fluctuations 

in the prices of commodities traded in the markets, like oil, gold, silver, and it involves 

assets as derivatives and repurchase agreements.  

A last relevant component of market risk is the volatility risk: it is the risk of variations in the 

prices of assets as a consequence of changes in the volatility of other risk components. For 

example, the equity risk is related to the change in the stock price, but these changes do not 

follow a constant standard deviation, since it is possible to face periods with higher market 

volatility of the same stocks. The volatility risk is particularly relevant in portfolios of 

derivatives, where the volatility of the underlying price is a relevant determinant of the 

derivative price. The measure of the sensitivity of asset prices to changes in the volatility of 

underlying asset price is called Vega. 

In the risk assessment and management for the derivatives, there are many other types of useful 

risk measures: Delta measures the sensitivity of the market portfolio value to the change in the 

underlying asset price; Gamma measures the non-linearity between the market derivative price 

and the corresponding underlying asset price; Rho (or discount rate) measures the sensitivity of 

the market portfolio value to the change in the discount rate used to discount the cash flows; 

Theta is the sensitivity of the market portfolio value to the incoming of maturity, therefore to 

the passage of time.  

For a general classification of all measures of systemic risk, the most recent complete work is 

by Bisias, Flood, Lo, Valavanis, who, in 2012, published “A Survey of Systemic Risk 

Analytics”. They provided a review of thirty-one quantitative measures of systemic risk from 
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the literature, focusing on those issues particularly relevant for risk measurement and 

management. It is quite interesting to see the performed classification proposed by them and 

the relative groupings of all measures, that allows to rapidly and efficiently identify measures 

that optimally satisfy the finality and the scope that the reader pursues.  

They performed a classification of the main systemic risk measures by basing it on four criteria 

that reflect four perspectives in the usage of indexes: the supervisory perspective, the research 

perspective, the required datatypes and the reference time horizon.  

We are going to describe briefly each perspective, focusing mainly on those issues of particular 

interest for this thesis. 

 

2.1.1 Systemic Risk Measures by Supervisory Scope 
The classification on the supervisory perspective has been thought for supervision and 

monitoring of systemic risk from government authorities in dealing with public issues. In 

particular, the taxonomy proposed by authors is useful for each public authority that operates 

in a given field or given financial sector, and wants to identify those measures that best suit 

their scope. A given systemic risk measurement system may be more or less appropriate for 

each public supervisor depending on its mandate; and since a financial crisis is always 

characterized by shocks and triggering events affecting specific institutions and specific sectors, 

the existence of customized measurement schemes can help identify the weakness and intervene 

accordingly.  

In this classification, the main distinction is between micro-prudential measures and macro-

prudential measures: this distinction recalls an important international regulatory standard, 

which provides for the partition of levels of supervision. On the one hand, the macro-prudential 

regulation and supervision occurs at a system-level, and aims to mitigate risk for the financial 

system as a whole. Macro-prudential regulators and supervisors need reliable indicators of 

systemic risk to pursue their mandate, and intervene with appropriate macro-prudential tools, 

such as capital requirements, necessary to prevent financial pro-cyclicality. On the other hand, 

the micro-prudential regulation and supervision focuses on specific companies’ activities, and 

operates at a firm-level. The aim is to ensure the robustness of institutions’ balance sheets to 

shocks, and in particular to ensure their solvency, the correct conduit of business and consumer 

protection. While doing that, the micro-prudential authority significantly contributes in keeping 

the systemic risk under control. For that reason, this perspective provides the two mentioned 

categories of measures, macro-prudential and micro-prudential ones. Within this latter, there 

are further sub-categories, pertaining to the reference financial sector to which measures relate: 

securities and commodities, banking and housing, insurance and pensions, in addition to 

“general application” measures.  

About this perspective, Bisias et al. analyses an important aspect relative to the reaction of 

human behavior to economic policies, recalling the famous Lucas critique, according to which 

econometric models’ predictions lose their effectiveness when a new policy is implemented, 

due to the reactions and the self-fulfilling expectations of economic agents. Anyway, the 

monitoring of the level and of the dynamics of the systemic risk is a necessary operation for the 

objectives of authorities.  
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The following figure shows in detail all sub-categories with the list of measures. Further 

explanation about each measure will be provided in the following sections. 

 

2.1.2 Systemic Risk Measures by Research Method 
The classification based on research perspective is focused on theoretical models and 

econometric methods, from which systemic risk measures are developed. The research 

taxonomy as proposed by Bisias et al. has been thought to be user-friendly for researchers, 

allowing them to quickly point out common algorithms and data structures within each 

category. Authors identified in a synthetic and very useful way the origin of systemic risk in 

the already mentioned four “L”: when economic agents overuse leverage to increase returns, 

the volatility of outcome is amplified, because a small loss may easily turn into a heavy liquidity 

shortage, due to a negative loop of fire sale of illiquid positions throughout the linkages 

network. From this scheme of the financial crisis, they classified systemic risk measures into 

Figure 2.1: Classification of systemic risk measures based on the supervisory perspective 
Source: “A Survey of Systemic Risk Analytics” by Bisias, Flood, Lo and Valavanis, 2012 
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five groups: loss probabilities distribution measures, default likelihood measures, illiquidity 

measures, network effects measures, and macroeconomic conditions measures. 

The following figure shows the complete list of measures in accordance to this criterion. Each 

sub-category and the most relevant measures will be described in the next sections. 

 

Probability distribution measures 

The loss probability distribution measures, also called “tail measures”, calculate the systemic 

risk by analyzing the co-dependence among distributions of appropriate variables of interest: 

they are based on the joint distribution of outcomes of a set of financial institutions, and are 

able to provide information from estimates of correlated losses. In particular, these measures 

are cross sectional, since they examine the dependence of a group of financial institutions at a 

given moment of time in a transversal way, and make typically use of equity returns. Anyway, 

measuring the dependency between two distributions requires the overcoming of some hurdles, 

Figure 2.2: Classification of systemic risk measures based on the research perspective 
Source: “A Survey of Systemic Risk Analytics” by Bisias, Flood, Lo and Valavanis, 2012 



 

 38 

such as the inaccuracy of assumptions on the distribution of returns, the lack of a sufficiently 

large set of historical data, the necessity to deal with extreme values. 

A brief description of some measures, that is CoVaR, Co-Risk, MSE, SES and the Mahalanobis 

distance will follow. 

As we know, the Value at Risk (VaR) is a risk measure of loss for investments, trying to 

estimate with a given probability how much a portfolio may lose over a certain time period. It 

is a measure that quantifies the risk of a portfolio, useful both for regulatory purposes and for 

internal management, in order to limit excessive exposures to losses. Since VaR enables 

comparisons across portfolios and assets classes, it has become a reference measure, that is a 

benchmark for risk managers in the asset allocation processes and for researchers in the creation 

of more structured and complicated risk models. In terms of the measured loss, reference is 

made either to the total value of a position or to the risk per euro invested (return), and the basic 

question VaR answers to is: what is the highest hypothetical loss such that there is a low 

probability (5%) that the effective loss is greater than this amount over a given time horizon? 

Statistically, VaR measures how much a financial institution can lose on a financial asset in 

terms of market value or return rate, with a given probability and over a given time horizon. It 

is therefore defined as the q-quantile of the asset return distribution which satisfies: 

𝑃𝑟൫𝑋𝑖 ≤ 𝑉𝑎𝑅𝛼
𝑖 ൯ = 𝛼 

where X is the return of the institution i, and 𝛼 is the significance level, the prefixed probability 

which usually takes value 0,05. In other terms, the VaR is the quantile of the returns density 

which satisfies:  

න 𝑅𝑡𝑓ሺ𝑅𝑡ሻ𝑑𝑅𝑡 =
𝑉𝑎𝑅ሺ𝛼ሻ

−∞

𝛼 

where 𝛼 is the probability that losses will be larger that VaR. 

So, at this point, the first listed measure, that is the Conditional Value at Risk (CoVaR), will be 

more intelligible. While the VaR is referred to the risk of a single institution, the CoVaR 

measures the systemic risk as the VaR applied to the whole financial system conditional on the 

situation of strong common distress of all other institutions. In fact, the risk associated to one 

bank does not necessarily reflect the systemic risk, that is the risk of financial instability in the 

entire system. At the same time, a systemic risk measure should identify the risk brought by 

each institution to the whole system, because of its deep interconnection and consequent 

externalities. Moreover, risk measures are effective if they focus on forms of imbalances, 

bubbles or liquidity constraints, that is the real drivers of systemic risk.  

Given these conditions, 𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑖

 is the VaR of the institution j (or of the whole financial 

system), conditional on an event G (𝑋𝑖), function of the return X of the institution i. If we 

assume that the event is that the return of institution i achieves its VaR, then  

𝐺൫𝑋𝑖൯ = {𝑋𝑖 = 𝑉𝑎𝑅𝛼
𝑖 }, and CoVaR is explicitly defined as the q-quantile of the joint 

probability distribution such that: 

𝑃𝑟ቀ𝑋𝑗 ≤ 𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑖

|𝑋𝑖 = 𝑉𝑎𝑅𝛼
𝑖 ቁ = 𝛼 

Therefore, the CoVaR corresponds to the VaR of the institution j when the return of the 

institution i achieves its VaR, and it allows to study the consequences within a network of 

financial institutions. In fact, when we consider the whole system, the 𝐶𝑜𝑉𝑎𝑅𝛼
𝑠𝑦𝑠𝑡𝑒𝑚|𝑖

 points 

out which institutions contribute more to the systemic risk.  
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From that, it is possible to get the difference between the VaR of the institution j when the 

return of the institution i is at its VaR (then, conditional on the distress of i) and the VaR of the 

same institution j when the return of the institution i is at its median state.   

Hence, 𝛥𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑖

 quantifies how much a bank i contributes to increase the risk for the 

institution j: 

𝛥𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑖

= 𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑋𝑖=𝑉𝑎𝑅𝛼

𝑖

− 𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑋𝑖=𝑀𝑒𝑑𝑖𝑎𝑛𝑖

 

Focusing on the systemic dimension, 𝛥𝐶𝑜𝑉𝑎𝑅𝛼
𝑠𝑦𝑠𝑡𝑒𝑚|𝑖

 is the difference between the VaR of the 

financial system conditional on the situation of distress of institution i, and the VaR of the 

financial system when the performance of the institution i is at its median value of the 

distribution. This measure quantifies spillover effects by measuring how much an institution 

adds to the overall risk of the financial system. 

It can be equally useful to derive 𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑠𝑦𝑠𝑡𝑒𝑚

: this is the VaR of the institution j when the 

whole system is at its VaR, that is when the return of the market portfolio of all institutions’ 

assets is at its VaR, and the entire financial system is suffering. It helps to identify those 

institutions that are most at risk in case of a financial crisis. Hence, 𝛥𝐶𝑜𝑉𝑎𝑅𝛼
𝑗|𝑠𝑦𝑠𝑡𝑒𝑚

reflects the 

increase in the VaR of the institution j given a financial crisis, and measures the extent to which 

a single bank is affected by a systemic risk.  

These measures based on the VaR have some shortcomings:  

• they do not provide any information about the size of losses; 

• they are not coherent measures, since they do not fulfill the sub-additivity principle. 

Without going into the mathematical details, Artzner published in 1999 a famous paper in which 

a set of four desirable properties for measures of risk was defined, calling “coherent” all 

measures which comply with them. These properties are:  

• the positive homogeneity: if a position is multiplied by a scalar, the risk measure will 

also be a multiple of that scalar, and it implies that the risk of a position is proportional 

to its size; 

• the monotonicity: if a portfolio has a better value than another portfolio under any 

possible scenario, then the risk of first one must be smaller than the risk of the second 

one; it implies that, if the losses of a portfolio are smaller than the portfolio Y, the risk 

measure of X should be smaller than that of Y;  

• the translational invariance: it implies that addition of a sure amount of capital in a 

portfolio should reduce the risk by the same amount; 

• the sub-additivity: the risk measure of a portfolio should never be higher than the sum 

of the risk measure values of each single position of the portfolio; this means that the 

risk of a portfolio can be lower or at most equal to the sum of the risks of the individual 

positions, and it ensures portfolio diversification principle. 

It has been shown that VaR is not a coherent risk measure as it does not respect the sub-

additivity property: at sufficiently low probability levels, VaR of a portfolio may be lower than 

the sum of the VaR of the single positions, and some works highlighted that this happens 

because the return distribution exhibits fat tails.  

Problems described above are overcome by implementing a risk measure called Expected 

Shortfall (ES), which fulfill all the properties. This is the expected value of losses undergone 

by an institution given the situation of distress (losses beyond the VaR, fixed a level of 

confidence). Therefore, the Expected Shortfall at 𝛼-level is the expected portfolio return in the 
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worst 𝛼% of cases, and it is an excellent alternative to VaR, because more sensitive to the shape 

of the tail of the return distribution. 

Then, ES is the average of returns R of a firm or of a portfolio, when its loss exceeds its VaR:  

𝐸𝑆𝛼 = −𝔼[𝑅|𝑅 ≤ 𝑉𝑎𝑅𝛼] 

ES is either sub-additive and homogeneous measure, and then complies with all properties. This 

makes this risk measure appropriate and very useful, to be used as a criterion for the 

composition of optimal portfolios. It is possible to note that, while the VaR provides the 

expected capital needed for a financial institution to limit the probability of failure, the 

difference between ES and VaR represents the expected value of the cost to face to save the 

bank from bankruptcy, in the case in which its capital is not enough. ES represents also the 

premium that an insurer would ask an institution if he wants to insure against the risk of losses 

higher than the VaR. 

The two tail measures strictly linked to ES are the Marginal Expected Shortfall (MES) and the 

Systemic Expected Shortfall (SES). 

For the derivation of the MES, there is a useful theoretical exemplification. A big financial 

company with a large organizational structure, composed by many territorial units and many 

target markets, could need to know the contribution of each individual operating unit to the 

total firm’s profitability. The similarity is with a financial portfolio: the institution is a big 

portfolio, with assets and liabilities, that is with many positions on different financial products 

traded by units. It is possible to get the total return of the institution, R, as the sum of the returns, 

r, of each individual unit i, weighted by the relative contribution to the total return, y: 

𝑅 = ෍𝑦𝑖

𝑖

𝑟𝑖 

In this case, the ES of a financial portfolio, with significance level α will be:  

𝐸𝑆𝛼 = −෍𝑦
𝑖

𝑖

𝔼[𝑟𝑖|𝑅 ≤ 𝑉𝑎𝑅𝛼] 

Finally, we can take the first derivative of ES with respect the weight y of each institution, and 

this allows us to compute the impact of an increase in the weight of a given asset return on the 

expected total return in case of distress:  

𝛿𝐸𝑆𝛼

𝛿𝑦𝑖
= −𝔼[𝑟𝑖|𝑅 ≤ 𝑉𝑎𝑅𝛼] ≡ 𝑀𝐸𝑆𝛼

𝑖  

This is the generic definition of the Marginal Expected Shortfall for the unit I, given 𝛼.  

So, MES measures the assets’ expected loss when the portfolio returns fall below a certain 

threshold, the VaR, over a given time horizon; likewise, MES measures the expected return of 

a firm’s unit when the whole company has a return below the VaR. Finally, MES can be adopted 

to a systemic context: in this case, it measures a firm’s expected equity loss when market return 

falls below its VaR over a given time horizon. It can be defined as the average return of a firm 

during the worst days for the market, and represents the company's contribution to a systemic 

crisis. Then, the expected marginal loss conditional on a distress case is a proxy of the 

contribution of a bank to the overall systemic risk. Bisias et al. calculates MES as the mean of 

the returns of a firm’s equity during the 5% worst cases for the overall market return, proxied 

by the CRSP Value Weighted Index. 
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Marginal risk measure Conditional on institution Conditional on system 

VaR MVaR CoVaR 

ES MES CoES 

 

A little more complicated fashion is required to implement the Systemic Expected Shortfall 

(SE) measure. SES provides another way to measure the contribution of single institution to the 

systemic risk, by calculating the propension of a firm to be undercapitalized when the whole 

system is undercapitalized. Let 𝑒0
𝑖  be the equity of the firm i at time zero, 𝑒1

𝑖  the equity at time 

one; 𝑘𝑖
 a fraction of the total asset 𝑎𝑖; 𝐸1 = σ 𝑒1

𝑖𝑁
𝑖  the total market capitalization at time zero, 

in a market with N institutions; 𝐴 = σ 𝑎𝑖𝑁
𝑖  the value of the total assets in the market. Hence, it 

is possible to define the SES of firm i as the expected amount of equity capital falling below a 

given target threshold, that is the fraction of total assets of institution i, all conditional on the 

systemic crisis, that is the situation of systemic undercapitalization, when the total market 

capitalization is less than a fraction of total market assets: 

𝑆𝐸𝑆𝑖 = 𝔼[𝑒1
𝑖 − 𝑘𝑖𝑎𝑖|𝐸𝑖 ≤ 𝑘𝐴] 

At this point, we let 𝑟𝑖 =
𝑒1
𝑖

𝑒0
𝑖  be the stock return of firm i; 𝑙𝑖 =

𝑎𝑖

𝑒0
𝑖  be the leverage of firm i;  𝑅 =

𝐸1

𝐸0
 be the total return of the market; 𝐿 =

𝐴

𝐸0
 be the aggregate leverage of the whole system. It is 

possible to calculate the percentage return measure of SES: 

𝑆𝐸𝑆𝑖ሺ%ሻ = 𝔼[𝑟𝑖 − 𝑘𝑖𝑙𝑖|𝑅 ≤ 𝑘𝑙] 

It has been shown that SES increases with the degree of leverage l of a financial institution and 

with its expected loss, calculated in the tail of the losses distribution of the system. 

Since SES is a theoretical construct, it requires some proxies (on equity, expected falls for a 

firm and for the system and so on) and leading indicators (as MES, leverage) in order to be 

implemented and estimated. 

An interesting systemic risk measurement, based on stochastic processes, networks and 

conditional probability of default, is the CoRisk (Giudici and Parisi), which measures the 

change in the institutions’ probability of default due to spillovers and contagion effect. To 

derive this measure, three steps have been implemented:  

• first of all, the countries’ economy is divided in three macro-economic sectors, 

sovereign sector, productive sector and financial sector; 

• secondly, for each sector, a spread measure is linearly modelled as function of an 

country-related idiosyncratic component and a common systematic component, in order 

to control for different sources of risk;  

• thirdly, these spreads are used to derive correlation networks, identifying the most 

relevant contagion channels, and to calculate the probabilities of default for each 

economic sector in each country; 

• finally, the default probabilities are combined with the correlation network in order to 

get the CoRisk. 

In particular, the CoRisk-in measures the change in the default probability of an economic agent 

due to the contagion from an external shock, while the CoRisk-out measures the impact of this 

change towards other external firms and sectors.  

Table 2.1: Classification of marginal systemic risk measures conditional on a given event 

thperspective 
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Without going into the analytical details in depth, here the two main formulas for this measure 

will be provided. 

We define 𝑃𝐷𝑡
𝑚

 as the probability of default for the institution m at time t, and 𝑇𝑃𝐷𝑡+1
𝑚

 the total 

probability of default at time t+1 for the same institution, which embeds both sector-specific 

and contagion risk components. The 𝐶𝑜𝑅𝑖𝑠𝑘𝑖𝑛 can be considered as the percentage variation of 

the survival probability (1-𝑃𝐷𝑡
𝑚ሻ of an institution m, when a potential contagion from external 

shock occurs: 

𝐶𝑜𝑅𝑖𝑠𝑘𝑖𝑛,𝑡
𝑚 =

ሺ1 − 𝑃𝐷𝑡
𝑚ሻ − ሺ1 − 𝑇𝑃𝐷𝑡+1

𝑚 ሻ

ሺ1 − 𝑃𝐷𝑡
𝑚ሻ

 

It is then shown that if 𝐶𝑜𝑅𝑖𝑠𝑘𝑖𝑛,𝑡
𝑚

>0 (or <0), the total default probability of institution m 

increases (declines) after a contagion effect. In those cases in which the institution is damaged 

in terms of default probability by positive linkages within network, then the contagion is said 

to be negative (since TPD>PD, then CoRisk-in>0); on the other hand, there is a positive 

contagion when an institution obtains advantages from negative linkages with other neighbors 

(since TPD<PD, then CoRisk-in<0). 

By deriving the partial correlation coefficients between interest spreads of two institutions, m 

and n, and by controlling for the systematic component S, we get 𝜌𝑚𝑛|𝑆, and with that we can 

calculate 𝐶𝑜𝑅𝑖𝑠𝑘𝑜𝑢𝑡: 

𝐶𝑜𝑅𝑖𝑠𝑘𝑜𝑢𝑡,𝑡
𝑚 = 1 − ሺ1 − 𝑃𝐷𝑡

𝑚ሻσ 𝜌𝑚𝑛|𝑆𝑛≠𝑚  

As said, 𝐶𝑜𝑅𝑖𝑠𝑘𝑜𝑢𝑡 measures the impact exerted by the institution m on its near partners it is 

linked to. It is interesting to note that the incoming contagion is different from the outcoming 

contagion, and it is due to the different impacts of the shocks on the single institutions’ default 

probabilities. Under this perspective, CoRisk-in is a good proxy of the vulnerability of a firm, 

while the CoRisk-out is a proxy of its systematic financial importance. 

By applying this model to the Eurozone countries during last decade, it was discovered that the 

sovereign sector distress increased the systemic component more than the financial sector, and 

the propagation didn’t favor the risk sharing, but made weaker the weakest institutions and 

stronger the strongest institutions. This synthetic risk measure appeared to be quite flexible, 

because it allows to evaluate the relevance on the systemic risk of each country, of each main 

economic sector, for type of risk, both in the cross-sectional and temporal dimension. 

Ultimately, the Mahalanobis distance is deepened. Mathematically, it is the measure of the 

distance between a point A and a distribution D, in terms of standard deviations away A from 

the mean of D: if this distance is zero, then point A is at the mean of D, otherwise it is moved 

away from the mean. Kritzmann and Li re-used this mathematical measure in finance, in order 

to calculate the financial turbulence. 

A financial turbulence indicator measures the intensity of violent or unsteady movements in the 

global financial market across time, and provides some important implications for the financial 

asset allocation. Not to be confused with the concept of systemic risk measure: this is linked to 

the fragility or robustness of the financial system, and measures its susceptibility to shocks, 

before the materialization of a turbulence. The turbulence occurs when asset returns and prices 

behave in an uncharacteristic way given their historical pattern, showing extreme movements, 

decoupling of correlations and increased volatility.  

In particular, Chow et al. showed in their important works how to use the squared Mahalanobis 

distance to compute the financial turbulence, and created a model to base on it the construction 

of appropriate portfolios. The market turbulence index proposed by them is the following: 
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𝑑𝑡 = ሺ𝑦𝑡 − 𝝁ሻσ−1ሺ𝑦𝑡 − 𝝁ሻ′ 

where 𝑑𝑡 is a scalar indicating the market turbulence for a particular time period t;𝑦𝑡 is a vector 

of observed asset returns of n assets during t; 𝝁 is the vector of historical mean returns; σ−1
 is 

the inverse of the sample variance-covariance matrix of historical returns. 

The observation of the outcomes of this measure highlighted some basic features: the structure 

variance-covariance of asset returns is not constant over time; the economy oscillates between 

a steady low-volatility expansive state and a panic-driven high-volatility recessive state; during 

the turbulent periods, the return-to-risk ratio significantly reduces, since the increased volatility; 

the turbulence is always unexpected and persistent across time; there exists a mean reverting 

behavior of the variable of interest after the turbulence. Moreover, the turbulence index is much 

widespread in the financial industry, and has many usages. Portfolio managers use it to stress-

test portfolios, or to construct regime-dependent investment strategies and portfolios in such a 

way as to be unsusceptible to turbulence, and then more resilient to shocks. Finally, they can 

use it to improve some risky strategies, in order to reduce the risk exposure.  

 

Contingent claims and default measures 

On the list, the next sub-section comprises contingent claims and default measures. 

A contingent claim is a contract whose future payoff depends on the value of an underlying 

asset, “contingent” on the realization of some given uncertain event. This is also the general 

definition of derivative, like the option, an instrument that gives the right to buy or sell the 

underlying asset at a specified exercise price by a given expiration date. In finance, the 

contingent claims have been widely used to address some financial economics issues, by 

developing models and mathematical constructs, and in corporate finance as an innovative 

valuation method. In fact, it has been noted that the firm’s equity can be associated to a call 

option on firm’s assets as underlying: the contingent claims analysis (CCA), which uses the 

same derivatives pricing models, allows the evaluation of relevant items in the firm’s balance 

sheet, like equity and debt, by exploiting information from the balance sheet and the market. In 

particular, assuming a stochastic process for the market value of the firm’s total, equity is 

represented by a call option, which gives shareholders the right to acquire bank business, while 

liabilities can be symmetrically represented by a put option, which allows a bank's creditors to 

sell the assets of the institution in case of failure. 

This approach is a flexible framework applicable to many types of analyses: it allows to 

estimate sovereign risk and to analyze the impact of banking system risk on the sovereign risk; 

to estimate the relationship between macroeconomic factors and the time pattern of implied 

bank assets, distance to distress, default probability or expected losses; to project banking risks 

under stress scenarios; and to analyze the impact of the government guarantees on bank funding 

costs. 

Another application of contingent claim analysis is to measure and analyze liquidity risk and 

systemic risk by considering banks’ short-term assets and liabilities. With this information, it 

is possible to construct measures of default likelihood for each institution and then link them 

either directly or indirectly through their joint distribution. In particular, literature focused on 

the application of CCA to evaluate the systemic risk of the financial sector. By combining 

bank’s balance sheet information and forward-looking market data, new systemic risk 

measures, based on the impact of eventual government guarantee against losses related to 

banks’ debts, have been introduced. Systemic risk is modeled by evaluating the expected losses 
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of a set of too-big-to-fail institution in financial destress: variations in market prices, and 

consequent changes in firms’ perceived risk derived from its equity volatility, affect the 

individual sensitivity to common risk factors, and then the dependence structure of expected 

losses among institutions; analyzing this dependence and its effect on the joint expected losses 

helps to identify the joint tail risk of multiple entities. The ‘tail dependence’ measuring is 

fundamental to study systems with dense linkages among many institutions. These methods 

allow to identify the marginal contribution of each financial institution to the dynamics of the 

overall systemic risk and to quantify the risk transferred from banks to the government. 

It follows a brief mathematical description of the basic model. 

The CCA aims to adjust the balance sheet for risk, by assuming that at any moment t, the market 

value of a bank's assets A, is equal to the sum of the market value of the equity E, and market 

value of total debt D (which differs from the nominal value F to be paid at maturity T): 

𝐴𝑡 = 𝐸𝑡 + 𝐷𝑡 

To assess the option incorporated in the values of debt and equity, it is necessary to estimate 

the dynamic of the market asset value. Typically, it is assumed that the asset value follows a 

Geometric Brownian Motion process, with risk-neutral dynamics given by the stochastic 

differential equation: 

𝑑𝐴𝑡

𝐴𝑡
= 𝑟𝑑𝑡 + 𝜎𝐴𝑑𝑊 

As said, the equity value can be associated to the price of a call option: if, at maturity of debt, 

the asset value allows to repay the face value to debtholders, then 𝐴𝑇 > 𝐹, and the shareholders’ 

equity will get 𝐴𝑇 − 𝐹; if at T the firm defaults on its debt, due to 𝐴𝑇 < 𝐹, then debtholders 

have the first claim on residual asset 𝐴𝑇 and shareholders get nothing. The payoff of the equity 

for shareholders will be: 

𝐸𝑡 = 𝑚𝑎𝑥ሺ𝐴𝑇 − 𝐹; 0ሻ 

At this point, it has been shown that, by applying the Black-Scholes formula for European call 

option, equity value can be calculated as: 

𝐸𝑡 = 𝐴𝑡𝑁ሺ𝑑1ሻ − 𝐹𝑒−𝑟ሺ𝑇−𝑡ሻ𝑁ሺ𝑑2ሻ 

where N represents the cumulative distribution function of a normal standard, and then: 

𝑑1 =
𝑙𝑛 ቀ

𝐴𝑡

𝐹 ቁ + ሺ𝑟 +
𝜎𝐴

2 ሻሺ𝑇 − 𝑡ሻ

𝜎𝐴ඥሺ𝑇 − 𝑡ሻ
 

𝑑2 = 𝑑1 − 𝜎𝐴ඥሺ𝑇 − 𝑡ሻ 

On the other hand, the actual value of the debt is equal to the difference between assets value 

and equity value, and re-formulating the previous formulas, the final result will be:  

𝐷𝑡 = 𝐴𝑡𝑁ሺ−𝑑1ሻ + 𝐹𝑒−𝑟ሺ𝑇−𝑡ሻ𝑁ሺ𝑑2ሻ 

Anyway, the value of the liabilities can be measured as the difference between the value of the 

debt in a risk-free world and the expected value of the losses due to the bank's default, which is 

equal to the price of a put option on the institution's assets, 𝑃𝑡: 

𝐷𝑡 = 𝐹𝑒−𝑟ሺ𝑇−𝑡ሻ − 𝑃𝑡 

from which: 

𝑃𝑡 = 𝐹𝑒−𝑟ሺ𝑇−𝑡ሻ𝑁ሺ−𝑑2ሻ − 𝐴𝑡𝑁ሺ−𝑑1ሻ 

In other words, the value of the risky debt is equal to the value of the riskless bond and the 

value of a put option on the firm’s assets, with strike price equal to the face amount. Note that 

𝑁ሺ−𝑑2ሻis the risk-neutral probability that the company will default on the debt (i.e. the 
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likelihood that the value of the company will be less than the face value of debt at its maturity), 

while 𝑑2 is known as distance to default, since represents the difference between the expected 

value of the firm’s assets and the firm’s default point. The idea that corporate debt and equity 

can be viewed as derivatives written on the firm’s assets is the basis of the structural approach, 

used to analyze credit risk.  

The contribution for the calculation of the systemic risk consists of the combination of this put 

option with other data and procedures. In particular, under the hypothesis that guarantees 

against the failure provided by the government do not affect the equity value, the spreads 

observable in the Credit Default Swap market should capture the potential expected losses faced 

by the institutions. From this, the price of the put option written on the CDS, 𝑃𝐶𝐷𝑆,𝑡, is calculated 

in order to derive the fraction of the total loss due to the firm’s default coverable by the 

government's guarantees: 𝛼𝑡 = 1 −
𝑃𝐶𝐷𝑆,𝑡

𝑃𝑡
 

Of course, the public guarantee reduces the CDS spreads, which reflects the probability to 

default, already implicit in the put option. Then, 𝛼𝑡𝑃𝑡 is the fraction of the put option price 

which reflect the default risk covered by the public guarantee, while the complementary fraction 

(1 − 𝛼𝑡ሻ𝑃𝑡 represents that part of default risk not covered by the public system, and then fully 

borne by the institution. The systemic risk measure, 𝜚𝑡, can be calculated as the total losses 

incurred by the government during a systemic crisis, equal to the sum of the amount given to 

the whole system as a guarantee, composed by N companies: 

𝜚𝑡 = ෍𝛼𝑡
𝑖

𝑁

𝑖=1

𝑃𝑡
𝑖
 

By adopting a similar framework, many other measures have been implemented, such as the 

Distress Insurance Premium (DIP). Simply, DIP is the hypothetical insurance premium needed 

to cover the risk of losses in a distressed banking system, where the distress occurs when at 

least 15% or more of total liabilities of the financial system defaulted. In particular, the systemic 

risk measure is the premium of that insurance policy which protects against losses of a 

hypothetical portfolio composed by the total liabilities in all the banking system. It is calculated 

as the risk-neutral expectation of portfolio credit losses, L, conditional on total losses equal or 

higher than its minimum value (that is a minimum share of the sector’s total liabilities): 

𝐷𝐼𝑃 = 𝔼𝑄[𝐿|𝐿 ≥ 𝐿𝑚𝑖𝑛] 

This indicator can be obtained through Monte Carlo simulations, given key variables such as 

banks’ liability value, probability of default, loss given default and correlations.  

One can notice that the definition of DIP is quite similar to that of ES (expected shortfall), since 

both of them indicate the expected loss conditional on the overcoming of a given threshold. The 

main difference is that this threshold is a percentile distribution in the ES, while it is the not 

normalized minimum value of the underlying portfolio in the DIP. 

As done for other measures, it can be useful to identify the SIFIs, by decomposing DIP into a 

sum of marginal risk contributions to the overall systemic risk (in this case the hypothetical 

insurance premium) from each institution of the banking system. The marginal risk contribution 

is the expected loss of the bank i, conditional on a large loss of the full portfolio: 

𝜕𝐷𝐼𝑃

𝜕𝐿𝑖
= 𝔼𝑄[𝐿𝑖|𝐿 ≥ 𝐿𝑚𝑖𝑛] 

It has been shown that bank’s contribution to the systemic risk is roughly linear in its default 

probability, but non-linear with respect to the institution size and the assets correlation. 
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Illiquidity measures 

Illiquidity and insolvency measures tries to capture the mechanisms and the probability that 

liquidity risk arises following negative shocks on the structure of assets and liabilities of 

financial institutions, bringing to negative responses by the companies and the financial system 

as a whole. Measuring systemic risk for illiquidity and insolvency requires the study of the 

exposures of the companies and of the susceptibility to systemic propagation. 

Contrary to what happens during stable periods on the markets, during a financial crisis an 

institution selling many quantities of assets may negatively affect market conditions, generating 

the so-called market liquidity risk. The materialization of the market liquidity risk becomes 

evident by looking at five important indicators:  

• the bid-ask spread, that is the difference between the highest price that a buyer is willing 

to pay (bid price) for an asset and the lowest price (ask price) that a seller is willing to 

ask, reflects the transaction costs, as well as the tightness between demand and supply 

of a given asset; when this indicator increases, it means that the quantities the 

counterparties are willing to trade at that prices decline, and then the asset becomes 

illiquid, difficult to exchange to a fair price; 

• the trading volumes and the frequency of trading orders for each asset and for each price 

on both buy/sell side, are an indicator of the degree of market depth; they highlight the 

distance to possible scenarios of asset illiquidity; 

• the market resilience measures the capacity of a given asset market to face and to 

withstand to external shocks, and then reflects the sensitivity of assets prices to systemic 

changes, as well as the speed with which these prices revert to its equilibrium 

fundamental value after a shock; a low market resilience indicates an intrinsically riskier 

market, with more probability to face liquidity distress; 

• the market breadth is the fraction of overall market participating in up or down price 

movements, and gives an idea of the consistency of liquidity within asset classes; 

• the immediacy indicates the time needed to execute a transaction in the market, and it 

is function of the number of market makers and participants, as well as the technology 

available for the trading. 

There are also other important issues to be covered when assessing illiquidity. 

The high asymmetric information among operators along with the widespread fear to face losses 

due to market movements may bring to imitative and herding behaviors, for which smaller 

institutions imitate the larger ones, causing self-fulfilling and self-sustaining market instability. 

Moreover, the already discussed liquidity spiral might amplify this isolated liquidity risk to the 

whole system, increasing the global systemic risk: a bank facing distress will be forced to 

liquidate some assets and to accept fire sales on the market, and if the recovered funds are not 

enough, the probability to default, and then to become insolvent, becomes dramatically high. 

Important policy implication can be derived, such as the limitation of individual liquidity risk 

to prevent systemic distress.   

As said, banks are particularly exposed to funding illiquidity, given their activity of maturity 

transformation. For a systemic perspective, the interaction between the funding illiquidity and 

the asset illiquidity is quite relevant, since funding shortages feed asset fire sales which cause 

further funding shortages to other institutions, materializing the systemic propagation. 

A brief description of two important systemic risk measures follows: the “Noise as Information 

of Illiquidity” and the “Equity Market Illiquidity”.   
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The Noise as Information of Illiquidity is a deviation measure for the systemic liquidity risk 

which is based on a set of assumptions and stylized facts. First of all, the point of view from 

the treasury bonds market is taken into account, because of its importance and high liquidity, 

in order to evaluate the liquidity condition of the overall market. It is assumed that the aggregate 

liquidity is strictly connected to the amount of available arbitrage capital, that is the amount of 

extra capital that institutions accumulate to be used in case of distress in order to provide 

liquidity: during stable and calm scenarios, banks accumulate abundant capital in the form of 

liquid assets such as treasury bonds, and for this reason, arbitrage forces entirely eliminate large 

price deviations from their fundamental values. During market crises, the accumulated capital 

declines and institutions will wish liquidate positions: the aggregate liquidity quickly dries up, 

the arbitrage forces in the market becomes weaker, and the prices move far away from their 

fundamentals. In this case, temporary price deviations highlight the arbitrage capital shortage 

and the lack of systemic liquidity, while the dynamics of the arbitrage capital is reflected in the 

position and shape of the Treasury yield curve. The survey of this “noise” in the price of treasury 

bonds is the basis for a new measure of market-wide liquidity risk, and then an indicator for an 

important component of the systemic risk. In fact, given its systematic nature, this measure 

should be informative on asset returns in those markets particularly sensitive to global liquidity 

conditions. Then, noise in the treasuries market is informative about global market liquidity, 

because of its central role and its high liquidity and low credit risk, which makes the noise 

intrinsically low. 

The daily liquidity noise measure at time t, given 𝑛𝑡 the number of treasury bonds available on 

moment t, is calculated as: 

𝑁𝑜𝑖𝑠𝑒𝑡 = ඩ
1

𝑛𝑡
෍[𝑦𝑡

𝑖 − 𝑦𝑖ሺ𝑏𝑡ሻ]2

𝑛𝑡

𝑖=1

 

where 𝑦𝑡
𝑖 are the observed market yields of the bond i on day t, and 𝑦𝑖ሺ𝑏𝑡ሻ are the fitted yields 

implied by a bond price model, whose 𝑏𝑡 is the vector of parameters of a parameterized forward 

curve, backed out from the data. In particular, 𝑏𝑡 are derived by minimizing the weighted (for 

duration 𝐷𝑖) sum of the squared deviations between the observed bonds prices 𝑃𝑡
𝑖
 and the fitted 

model-implied prices 𝑃𝑖ሺ𝑏ሻ: 

𝑏𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑏
෍[൫𝑃𝑖ሺ𝑏ሻ − 𝑃𝑡

𝑖൯ ×
1

𝐷𝑖
]
2𝑛𝑡

𝑖=1

 

Measures about Equity Market Illiquidity have been proposed by Khandani and Lo (2011), 

which analyzed a trading strategy consisting of buying loser stocks and selling winner stocks, 

and then providing liquidity by correcting temporary imbalances between demand and supply. 

In particular, the performance in terms of profitability of this strategy has been observed over 

time: whenever the profitability was higher, then there was less liquidity in the market, and the 

liquidity premium of trade increased. Authors established a relationship between the illiquidity 

and the positive autocorrelation in asset returns among equity portfolios. Moreover, they found 

evidence of a significant positive autocorrelation among returns in less liquid securities 

portfolios (such as small-cap stocks, mortgage-backed securities, and so on) emerging-market 

investments. Within this framework, authors presented two types of liquidity measure. 

The first measure is the “Contrarian Strategy Liquidity Measure”, based on the simple high-

frequency mean-reversion strategy described above, where buying and selling occur over 
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lagged m-minute returns, that is portfolios are composed at time t by considering the stocks 

returns over the previous 5 (up to 60) minutes. Long positions, on those stock with the lowest 

return, and short positions, on those stock with the highest returns, are equally weighted, 

and then the overall portfolio is a neutral strategy, and rebalanced each minute. As said, cases 

with higher profitability are associable with less market liquidity, and this is reflected in the 

higher liquidity premium. Authors noted that its profitability has been decreasing for last 

decades due to the increasing number of market actors providing even more liquidity, thus 

reducing the liquidity premium. 

A second measure of market liquidity is the “Price Impact Liquidity Measure”, and is related 

to the Kyle’s “lambda”, an inverse proxy of liquidity: the higher the value of lambda the lower 

the liquidity and the market depth, and vice-versa. In particular, it measures the liquidity 

through a linear regression of the trading volume required to move the security price by one 

unit. Authors estimate this measure by exploiting information from the transactions during 

trading hours on each day, such as the sequence of intra-day returns R, prices 𝑝 and quantities 

𝑣 for each security i in each moment t. From this set of variables, they estimate the equation: 

𝑅𝑖𝑡 = 𝑎𝑖

^
+ 𝜆𝑖 ∙

^

𝑆𝑖𝑔𝑛 𝑙𝑜𝑔ሺ𝑣𝑖𝑡𝑝𝑖𝑡ሻ + 𝜀𝑖𝑡 

where the sign of the logarithm indicates the sign of the position, buying (+) or selling (-). In 

particular, if R is positive, the transaction will have the sign + (net buying), while if R is 

negative, the transaction will have the sign − (net selling). The average of the estimated price 

impact coefficients 𝜆𝑖 for each one of n assets provides the “Price Impact Liquidity Measure”: 

𝑃𝐼𝐿𝑀 =
σ 𝜆𝑖

𝑛
𝑖=1

𝑛
 

 

Network analysis measures 

So far, only aggregate systemic risk measures have been discussed. Measures of an aggregate 

nature typically tend to provide the average risk or the dispersion of a dataset, and this is a 

shortcoming. Nowadays, the global economy and the financial systems are increasingly 

complex and evolving, and a single index based on the mean is not enough informative of the 

real state of the system. Unlike the macroeconomic measures, risk measures in the "Network 

Measures" group exploit tools and knowledges specifically that seems to be more appropriate 

to detect the systemic risk. In fact, they are able to explain how systemic events unfold over 

time, and to track them evolution until the realization of the systemic crisis. Then, in this 

framework, relationships and connections among institutions acquire the most importance. 

Networks models and networks measures have proved to be valid and useful in explaining the 

increased impact of shocks on the systemic stability due to the increased complexity and 

weaving of the financial system. Two fundamental elements significantly contributed to make 

relevant the role of the networks: the innovations over the last decades and the intense financial 

globalization. The innovations increased the involvement of an always higher number of new 

institutions, instruments, contracts, practices, new funds, new sectors, and above all new 

technologies, significant stuff for the determination of the systemic risk. On the other side, the 

globalization has strengthened and stepped up the network of economic relationships among 

financial institutions over sectors and over countries, as never before. As said, the bankruptcy 

of a single too-central-to-fail institutions may trigger a system crisis, due to its 

interconnectedness with a high number of operators.  
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Billio, Getmansky, Lo and Pelizzon firstly formalized the relation between the degree of 

correlation among institutions in the market and the capacity of a financial crisis to have a 

systemic scope, and that depends on the concentration of the risk, the intensity of the 

connections and the sensitivity of relevant variables to strong changes. Authors proposed many 

econometric measures of connectedness based on the Principal Components Analysis (PCA), 

which allows the detection of the commonalities among asset returns of institutions, by 

decomposing the variance-covariance matrix of returns for each financial sector. PCA is used 

as an exploratory tool of the data, since it allows to identify the intrinsic distance and links 

among units and sectors. PCA can be executed through eigenvalue decomposition (i.e. the 

factorization of a matrix into a standard form, whereby the matrix is represented in terms of its 

eigenvalues and eigenvectors; λ is an eigenvalue of (n×n) matrix A if there exists a non-zero 

vector v such that Av=λv, where v is the eigenvector of A corresponding to λ) of a covariance 

matrix. 

A known related measure that deserves to be mentioned is the Absorption Ratio, described by 

Kritzmann et al. in 2010. This measure is the fraction of the total variance of a set of N asset 

returns explained (or absorbed) by a fixed number of eigenvectors, that are the first n < N 

principal components. A high AR indicates that the market is weak and vulnerable to negative 

shocks, and then the systemic risk is high. Letting N be the number of assets (or financial 

institutions), n be the number of eigenvectors used, 𝜎𝑒
2
𝑖 be variance of the i-th eigenvectors, 𝜎𝐴

2
𝑖
 

be variance of the j-th asset, it is possible to obtain: 

𝐴𝑅 =
σ 𝜎𝑒

2
𝑖

𝑛
𝑖=1

σ 𝜎𝐴
2
𝑖

𝑁
𝑗=1

 

A leading distress indicator is the difference between AR calculated for long and short 

estimation windows: 

𝛥𝐴𝑅ሺ𝑛ሻ = 𝐴𝑅ሺ𝑛ሻ𝑠ℎ𝑜𝑟𝑡 − 𝐴𝑅ሺ𝑛ሻ𝑙𝑜𝑛𝑔 

Another important tool for the systemic risk measurement consists in the application of 

Granger-Causality on Networks. This measure includes tests which provide information about 

the relevance of correlation degree among institutions, not conditionally on shock occurrence. 

Moreover, this approach allows as well to define the direction of the link among units, 

highlighting the source of propagation and the dynamics. The Granger causality is a statistical 

notion of causality that determines whether one time series is useful in forecasting another: 

series X is said to “Granger-causes” series Y if values of X are informative on the evolution of 

Y, and then X is useful in forecasting Y. The mathematical formulation of the test is based on 

the linear regressions of X on Y and of Y on X.  

In particular, it is possible to model the framework needed to develop this kind of tests. 

Let 𝑅𝑡
𝐴

 and 𝑅𝑡
𝐵

 be the stock returns of institutions A and B, two stationary time series with zero 

mean and a linear inter-relationship described by the following autoregressive model:  

𝑅𝑡
𝐴 = ෍ 𝛼𝑗𝑅𝑡−𝑗

𝐴 + ෍ 𝛽𝑗𝑅𝑡−𝑗
𝐵 + 𝜀𝑡

𝐴
𝑚

𝑗=1

𝑚

𝑗=1
 

𝑅𝑡
𝐵 = ෍ 𝜃𝑗𝑅𝑡−𝑗

𝐴 + ෍ 𝜆𝑗𝑅𝑡−𝑗
𝐵 + 𝜀𝑡

𝐵
𝑚

𝑗=1

𝑚

𝑗=1
 

where m is the maximum lag j chosen, 𝛼𝑗, 𝛽𝑗, 𝜃𝑗, 𝜆𝑗are the coefficients, and 𝜀𝑡
𝐴 and 𝜀𝑡

𝐵 are 

uncorrelated error terms, specifically two white noise with zero mean and unit variance. 𝑅𝑡
𝐵

 is 

said to Granger-causes 𝑅𝑡
𝐴

  when 𝛽
𝑗
 is statistically different from zero, while 𝑅𝑡

𝐴
 Granger-causes 
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𝑅𝑡
𝐵

 when 𝜃𝑗 is statistically different from zero. When both variables reciprocally Granger-cause 

each other, then there is simultaneity. The test for the Granger causality is an F-test with 

following null hypothesis:  

𝛨0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚 = 0
𝛨0: 𝜃1 = 𝜃2 = ⋯ = 𝜃𝑚 = 0

 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑅𝑡
𝐵 ⇏ 𝑅𝑡

𝐴

 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑅𝑡
𝐴 ⇏ 𝑅𝑡

𝐵 

For instance, there should not be any Granger causality between actual asset price changes and 

lagged prices under the assumption of informationally efficient market, while a positive 

Granger causality should exist in not efficient markets, because of the presence of frictions, 

transaction costs and other constraints. Moreover, the width of the Granger causality in 

evaluating the correlation among asset returns can be considered a proxy of spillover effects 

and interconnectedness among market participants: the stronger the Granger causality, the 

stronger the level of interconnections and integration among financial institutions, and then the 

relevance of an eventual systemic distress. Thus, generalizing, the identification of causal 

relationships in the sense of Granger among institutions of the financial network is a very useful 

procedure to study the propagation of the excesses of returns variability in the financial system. 

In this framework, a causality indicator can be defined: 

ሺ𝐴 ⇒ 𝐵ሻ = ቄ
1
0

 𝑖𝑓 𝐴 𝐺𝑟𝑎𝑛𝑔𝑒𝑟_𝑐𝑎𝑢𝑠𝑒𝑠 𝐵
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

This indicator variable is the basis for other five important interconnectedness measures, which 

are defined below. The generalized case will be considered: a system with N institutions that 

interact each other, generically named j and i, instead of A and B. 

1) Degree of Granger Causality (DGC): it is the percentage of statistically significant Granger-

causality relationships within a system of N institutions, for a total of N(N−1) possible 

relationships (pairs): 

𝐷𝐶𝐺 =
σ σ ሺ𝑗 ⇒ 𝑖ሻ𝑗≠𝑖

𝑁
𝑖=1

𝑁ሺ𝑁 − 1ሻ
 

When DCG is higher than a given threshold K, than there is a strong interconnectedness and 

interdependence among institutions’ returns, and a systemic event is more likely to occur. This 

risk can be calculated through Monte-Carlo simulations. In particular, Monte-Carlo simulation 

is useful to understand whether Granger causal relationships among institutions are due to 

randomness. Specifically, assuming independence among financial institutions, a certain 

number of time series representing each financial institutions’ returns are simulated, and on 

each simulated relationship the test for Granger causality is performed to identify significant 

connections. By repeating this procedure many, many times, it will be possible to represent the 

resulting distribution, whose center will be the fraction of significant connections under the null 

hypothesis of no statistical relation among institutions.  

Another similar related measure is the Dynamic Causality Index (DCI), which tries to capture 

the level of interconnection among financial institutions by computing the fraction of relevant 

Granger causality relations (that is significant at p-value < 0.05) among their returns over the 

total number of relations. 

2) Number of connections: it is useful to assess the presence of Systemically Important 

Financial Institutions, because allows to survey the relevance degree of each institution by 

simply counting the number of its connections with others. Letting 𝑆 be a variable representing 

the whole system, #In be the number of institutions in the system that Granger causes the 

institution i, #Out be the number of financial institutions in the system Granger caused by a 
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given institution i, #In+Out is the sum of the two last measures. In particular, the Granger 

causality is considered to be significant if the connectivity measure exceeds a given threshold 

K, and only those cases are useful to identify risks of systemic crisis starting from a shock. 

Moreover, #In+Out gives an idea about the centrality of the institutions. 

#𝐼𝑛: ሺ𝑆 ⇒ 𝑖ሻ|𝐷𝐺𝐶≥𝐾 =
σ ሺ𝑗 ⇒ 𝑖ሻ|𝐷𝐺𝐶≥𝐾𝑗≠𝑖

𝑁 − 1

#𝑂𝑢𝑡: ሺ𝑖 ⇒ 𝑆ሻ|𝐷𝐺𝐶≥𝐾 =
σ ሺ𝑖 ⇒ 𝑗ሻ|𝐷𝐺𝐶≥𝐾𝑗≠𝑖

𝑁 − 1

#𝐼𝑛 + 𝑂𝑢𝑡: ሺ𝑖 ⇔ 𝑆ሻ|𝐷𝐺𝐶≥𝐾 =
σ ሺ𝑗 ⇒ 𝑖ሻ + ሺ𝑖 ⇒ 𝑗ሻ|𝐷𝐺𝐶≥𝐾𝑗≠𝑖

2ሺ𝑁 − 1ሻ

 

3) Sector-Conditional Connections: these measures are similar to those of point 2), with the 

only difference that the significant causality is obtained among institutions belonging to 

different sectors. Hence, the counting of the number of significant connections is conditional 

on the type of sector. Letting M be the type of sector (banks, insurers, funds, brokers, and so 

on) indexed by α,β=1,…M, it is possible to get three measures: #In-from-Other is the number 

of other types of financial institutions in the financial system that significantly Granger-cause 

institution i, #Out-to-Other is the number of other types of financial institutions in the system 

that is significantly Granger-caused by institution i, while #In+Out-Other is the sum of the last 

two. 

#𝐼𝑛. 𝑓𝑟𝑜𝑚.𝑂𝑡ℎ𝑒𝑟: [෍ ሺ𝑆|𝛽ሻ
𝛽≠𝛼

⇒ ሺ𝑖|𝛼ሻ]|𝐷𝐺𝐶≥𝐾 =
σ σ [ሺ𝑗|𝛽ሻ ⇒ ሺ𝑖|𝛼ሻ]|𝐷𝐺𝐶≥𝐾𝑗≠𝑖𝛽≠𝛼

ሺ𝑀 − 1ሻ𝑁/𝑀

#𝑂𝑢𝑡. 𝑡𝑜. 𝑂𝑡ℎ𝑒𝑟: [ሺ𝑖|𝛼ሻ ⇒ ෍ ሺ𝑆|𝛽ሻ
𝛽≠𝛼

]|𝐷𝐺𝐶≥𝐾 =
σ σ [ሺ𝑖|𝛼ሻ ⇒ ሺ𝑗|𝛽ሻ]|𝐷𝐺𝐶≥𝐾𝑗≠𝑖𝛽≠𝛼

ሺ𝑀 − 1ሻ𝑁/𝑀

#𝐼𝑛 + 𝑂𝑢𝑡: [ሺ𝑖|𝛼ሻ ⇔ ෍ ሺ𝑆|𝛽ሻ
𝛽≠𝛼

]|𝐷𝐺𝐶≥𝐾 =
σ σ [ሺሺ𝑗|𝛽ሻ ⇒ ሺ𝑖|𝛼ሻሻ + ሺሺ𝑖|𝛼ሻ ⇒ ሺ𝑗|𝛽ሻሻ]ሻ|𝐷𝐺𝐶≥𝐾𝑗≠𝑖𝛽≠𝛼

2ሺ𝑀 − 1ሻ𝑁/𝑀

4) Closeness: it measures the shortest distance between a financial institution and all other 

institutions directly or indirectly reachable from it. In particular, an institution j is weakly 

causally C-connected to i if there exists a causality path of length C between i and j. Thus, there 

should exist a sequence of nodes 𝑘1,… , 𝑘𝑐−1 , where each node represents an institution, such 

that the impact from j to i, through the C nodes, is unitary:  

ሺ𝑗 ⇒ 𝑘1ሻ ∙ ሺ𝑘1 ⇒ 𝑘2ሻ ∙ ሺ𝑘𝑐−1 ⇒ 𝑖ሻ ≡ ቀ𝑗 ⇒
𝐶

𝑖ቁ = 1 

As said, C is the shortest distance from j to i, for which if 𝑗 ⇒
𝐶

𝑖 = 0 then 𝐶𝑗𝑖 = 𝑁 − 1 for all 

𝐶 ∈ [1,𝑁 − 1]: 

𝐶𝑗𝑖 = 𝑚𝑖𝑛
𝑐

൜𝐶 ∈ [1,𝑁 − 1]: ሺ𝑗 ⇒
𝐶

𝑖ሻ = 1ൠ 

Given a percentage of statistically significant Granger-causality relationships within a system 

of N institutions higher than a threshold K, the closeness measure for institution j is defined as 

an average of the number of possible shortest distances with the rest of the system S, and 

represents just the “proximity” in terms of connection among institutions: 

𝐶𝑗𝑆|𝐷𝐺𝐶≥𝐾 =
σ 𝐶𝑗𝑖ሺ𝑗 ⇒

𝐶
𝑖ሻ𝑖≠𝑗

𝑁 − 1
|𝐷𝐺𝐶≥𝐾 

5) Eigenvector Centrality: it measures the relevance of a financial institution in a network in 

accordance with its level of connection. It assigns a scores to each financial institution based 

its centrality and importance inside the network. The measure is the eigenvector 𝑣 of the 
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adjacency matrix [𝐴]𝑖𝑗 = ሺ𝑗 ⇒ 𝑖ሻ associated with eigenvalue 1 (that is 𝐴𝑣 = 𝑣), and can be 

written as the sum of the eigenvector centralities of institutions caused by j, conditional on a 

network with a significant number of Granger-causality relationships: 

𝑣𝑗|𝐷𝐺𝐶≥𝐾 = ෍ [𝐴]𝑗𝑖
𝑁

𝑖=1
𝑣𝑖|𝐷𝐺𝐶≥𝐾 

 

Macroeconomic measures 

Macroeconomic measures of systemic risk try to put in relation the probability of systemic 

distress in the financial system and the dynamics of macroeconomic aggregates, as presented 

by the main economic and monetary policy models. In fact, the strict relation between the 

financial system and the so-called “real economy” is known from a theoretical perspective. A 

break in the productive economy, where firms and households operate, is reflected in the 

financial system as a shock due to the stoppage of liquidity providing from operators, bank runs 

or defaults cascade in the debt chain. On the other side, a financial crisis due to bubble bursting, 

irrational behavior or debt overhangs can easily involve other productive field of the economy, 

causing a recession. Therefore, it is possible to link financial variables, based on information 

on financial institutions, to other “real” macroeconomic variables, such as real GDP, inflation 

and public debt, in order to extrapolate common patterns useful to explain the systemic risk. 

Considering all the above-mentioned criteria, systemic risk measures should be associated with 

real macroeconomic outcomes, especially in issues of policy decisions: in order to evaluate 

variations in the distributions of crucial economic variables to change in systemic risk, it is 

important to test the ability of a given risk measure to predict shifts in the expected quantiles 

following macroeconomic shocks. By performing a similar analysis, Giglio, Kelly and Pruit 

(2015) demonstrated three important stylized facts: the systemic risk measures show a 

particularly strong association with the downside risk (the risk that actual return falls below the 

expected return, in a context of uncertainty about the size of this fall) of macroeconomic shocks; 

financial sector equity volatility is quite informative about the future real activity, much more 

than the volatility of non-financial sectors; financial market distresses precede a monetary 

policy responses, even if this response could be insufficient to slow down an increased 

downside risk. 

Any macroeconomic measure of systemic risk tries to take into account the fact that fragility 

within the financial system tends to be exacerbate during a crisis, and the instability tends to 

dramatically increase its macroeconomic impact. Therefore, macroeconomic effects of so-

called “financial frictions” take place in the system, that Brunnermeier, Eisenbach and 

Sannikov (2012) tried to analyze in their “Macroeconomics with Financial Frictions: A 

Survey”. The literature on the frictions is wide, and can be subdivided into four sections: the 

works about the role of Persistence (Carlstrom and Fuerst), Amplification (Bernanke, Gertler 

and Gilchrist) and Instability (Brunnermeier and Sannikov); the credit quantity constraints, like 

credit rationing (Stiglitz and Weiss), endogenous constraints (Geanakoplos and Fostel) and 

margin spirals (Brunnermeier and Pederson); the demand for liquid assets and bubbles; the 

financial intermediaries’ theory and the money theory. 

In general, the financial frictions are the set of difficulties and "stickiness" elements involved 

in conducting a transaction, and include both monetary and non-monetary costs. In fact, the 

overall process of making transactions includes time, effort, money, and tax for gathering 

information and performing all the operations required. For instance, buying a stock or 
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borrowing money requires a set of delicate operations such as conducting research to get 

information, determining the price, complying with all regulations and bureaucratic procedures, 

spending time to materially execute the transaction. All these financial frictions, stemming from 

the financial sector, have been identified as a key element affecting fluctuations of relevant 

economic variables (like GDP growth), that is exerting an impact on the real economy.  

Implications of financial frictions have been analyzed. A temporary adverse shock is said to be 

“persistent” if its effects last for a long time, and a long time is required for a complete 

rebuilding of the previous capital from productive agents. The persistence property is a function 

of the feedback effects of the frictions in the financial system: a negative shock affecting the 

value of a business network intensifies the present financial frictions and forces entrepreneurs 

to invest less. In particular, the persistence of a shock will be as more relevant as deeper and 

more serious is the situation of illiquidity and the necessity to fire-sell, namely the channels by 

which an initial shock is amplified. As known, fire sales depress the capital price, causing loss 

spirals (the net worth of agents further reduces), margin spirals (productive agents must reduce 

their leverage ratio) and other cuts. This is the amplification effect: the reduction in capital 

caused by negative shocks to the network reduces the cost of capital, and may bring to illiquidity 

and fire sales which further reduce the price of capital, amplifying the effect of the initial shock. 

Finally, a time dimension of the amplification effect makes it dynamic: the unexpected 

persistence of a temporary shock reduces expected future asset prices, and in turn this is 

reflected into lower actual asset prices. As a consequence, the capital of productive agents even 

further is eroded, and more fire sales are required. The presence of dynamic non-linear 

amplification effects is the main reason of the existence of wide volatility dynamics, and is the 

basis of the intrinsic unavoidable instability of the financial system. Therefore, the intrinsic 

financial instability is the consequence of endogenous risks resulting from interactions in the 

system, such as the liquidity spirals, which may cause large discontinuous drop in the prices 

and funding drying up. It is at such times that a demand for liquid assets strongly emerges. 

From the perspective of the policy maker, the macro-economic aspect is fundamental, in order 

not to implement distorted policies and regulations, and to perform a correct monitoring for the 

prevention of the system. On this topic, Borio (2010) developed a complete macro-prudential 

framework, based on four well-defined dimensions: the criterion of success of given policies in 

limiting the risk of systemic financial distress; the degree to which systemic risk should be 

tracked; the right balance between an aggregate approach and a cross-sectional sectoral view; 

the right balance between rules and discretion. 

As said, the macro-prudential perspective requires a setting of regulatory and supervisory 

arrangements suited to the system as a whole, rather than to single institutions. The essence of 

the macroeconomic view is the top-down approach, consisting of the definition of general 

standard for the entire system and, from there, the derivation of standards for the individual 

institutions. The assumption is that risk drivers depend on the distorted collective behavior of 

financial institutions, which in turn depend on risk perceptions of responses to it. Therefore, 

macroeconomic perspective investigates endogenous risks that emerges at system level. The 

objective of this approach is to limit the risks of systemic financial distress, and then to contain 

the possible risks and the costs for the real economy. In general, the final purpose of macro-

prudential policy is to promote financial stability and limits systemic risk.  

In this framework, two dimensions are taken into account: the time dimension and the cross-

sectional dimension. 
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The time dimension analyzes the evolution of aggregate systemic financial risk over time, 

focusing on the central role of the pro-cyclicality of the financial system, that is the set of those 

elements and mechanisms within the economy that help to oversize the natural output 

cyclicality and fluctuations. From a policy perspective, pro-cyclicality is contrasted through 

countercyclical buffers in order to stabilize the system. 

The cross-sectional dimension analyzes the risk generation and allocation within the financial 

system at a given point in time, and in particular it studies the risks and vulnerabilities stemming 

from common exposures, interlinkages and failures. To mitigate the risks stemming from 

common exposures and interlinkages, prudential tools and requirements regarding the 

contribution of each institution to systemic risk are implemented, such that each institution pays 

for the externality its activities exert on the system. 

Finally, Borio points out the necessity to link each systemic risk measure with the purpose and 

the dimension analyzed. It is unrealistic and dangerous to base a macroeconomic policy or a 

theoretical model entirely on a single systemic risk measure, which can never capture all 

relevant aspects: the minimum distinction suggested by Borio should be between the time 

dimension and the cross-sectional dimension. In particular, according to Borio, in the time 

dimension, the ideal measure would be a robust leading indicator of financial distress, which 

allows to take remedial actions well in advance (at least over one year): they are the so-called 

early warning indicators. In the cross-sectional dimension, the ideal risk measure should be able 

to consistently quantify the individual marginal contribution of each institution to systemic risk.  

Of course, policy makers inevitably must face the trade-off between the accuracy of measures 

and models and their precision, and then between generality of information required and 

specificity of adopted measures. In general, it is believed by analysts that it is better to be 

approximately right than precisely wrong. 

 

 Macroeconomic 

perspective 

Microeconomic perspective 

Operational objective To limit systemic financial 

distress 

To limit financial distress of 

single institutions 

Ultimate objective To stabilize output To protect savers and 

investors 

Risk nature Endogenous risk (dependent 

on collective behavior) 

Exogenous risk (external to 

each single institution) 

Central risk source Correlations and common 

exposures across institutions; 

procyclicality  

Solvency, liquidity, leverage, 

confidence 

Prudential control Top-down Bottom-up 

 

Table 2.2: Comparison between macroeconomic and microeconomic perspectives 
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2.1.3 Systemic Risk Measures by Data Requirements 
 The complexity of the financial system consists as well of a huge set of different participants, 

market practices, tools, relationships characteristics and many other factors. At the same time, 

many important differences intervene among measures and models that try to capture different 

facets of systemic risk. In general, a correct framework for the detection and the management 

of the financial risk, both for policy makers and institutions, should consider different 

perspectives and different tools in order to be able to capture the continuous evolving structure 

of the financial system and to adequately use the most appropriate measures of systemic risk. 

Hence, it is important to consider how the changeability of financial systems should be included 

in the used approaches: a given approach suitable today might not be in the future. Furthermore, 

the practical implementation of certain systemic risk measures requires a set of precise and  

 

crucial decisions by the analysts, such as the institutions’ characteristics, the frequency and the 

timespan of the adopted measure, the levels of accuracy and granularity of the used dataset, the 

eventual necessity to transform the raw inputs of the measure. From this set of choices, it is 

Figure 2.3: Classification of systemic risk measures based on the data requirements 
Source: “A Survey of Systemic Risk Analytics” by Bisias, Flood, Lo and Valavanis, 2012 
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possible to derive another classification of the risk measures, approximatively based on the type 

and quantity of required data. The figure shown below lists the measures and the approaches in 

an increasing order of the level of detail and information of the data required to implement 

them. It can be useful both for regulators and financial institutions. 

Anyway, it is important to take into account the approximation of this classification when one 

is dealing with it: each single measure must be evaluated individually and adapted to the context 

it is applied, on the basis of its advantages and weaknesses, of the data available with respect 

to those required for the computation, of the foresight and the sensitivity of the adopted model 

to given aspect of the systemic risk. Therefore, the measure must be adequately chosen and 

adapted to the specific situation (e.g. the precise characteristics of the analyzed financial crisis).  

Under this perspective, using more approaches at the same time may be only partially a good 

choice, because it adds further difficulties and may not be fit to correctly evaluate the systemic 

risk. Below, a brief description of those sub-sections of measures not previously discussed.  

 

Forward-looking risk measures 

Backward-looking measures rely on historical data, used to estimate probabilities and size of 

future tail events, but presents some shortcomings. In particular, they seem to be inadequate in 

preparing authorities and institutions for eventual shocks that lie ahead. Furthermore, making 

portfolio decisions and policy making on the basis of past returns may contribute to the pro-

cyclicality of risk management, and then to consequent negative impacts. 

As an alternative solution, that tries to overcome these problems, it is useful to introduce the 

forward-looking measures, which extract information from current data about the possible 

evolutions of the variables of interest, and then of the systemic risk. Anyway, these measures 

should not be considered as forecasting tools, but as alternative tools for the evaluation of 

portfolio value and other patterns within the financial system, based on a forward-looking 

method. Moreover, even for these measures the non-linearity of relationships increases the 

degree of complication for their correct implementation. In order to better survey the risk 

dimension, forward-looking risk measures are oriented to future cash flows of portfolio 

positions under different scenarios, helping to focus the attention of the operators on the 

potential risk factors in the system. 

A useful example is given by the measure “option i-PoD” (Christian Capuano, 2008). It is the 

probability of default implied by option prices, that is inferred from equity options by applying 

the principle of minimum cross-entropy (Cover and Thomas, 2006). In particular, the 

probability of default is defined as the probability that the underlying asset value will fall below 

a given threshold, which is not prefixed but it is endogenously determined. It is shown how this 

framework provides robustly informative results on the implied expected evolution of balance 

sheet items, such as assets, equity and leverage. Moreover, this measure allows to determine 

also the implied asset volatility and the Greek letters, useful elements in the risk management. 

 

Stress-test measures 

The stress test is the assessment of the capacity of institutions to face economic shocks and to 

prove to robustly withstand under adverse scenarios. They are performed by public authorities 

mainly towards on SIFIs within the banking system, and try to plot ‘what if?’ scenarios, playing 

a crucial role in the systemic risk monitoring process.  



 57 

Accordingly, the stress test tries to answer two basic questions, by taking the perspective of a 

banking portfolio: 

1) which economic and financial scenarios would lead to significant losses? 

2) how big could these losses be? 

The answer to the first question requires the identification of those possible future extreme 

circumstances that may negatively damage the value of the institutions, while the estimate of 

the expected loss at the worst-case scenario, through the usage of a portfolio loss function, is 

the answer to the second question.  

Recently, stress tests gradually became a central element of risk management, mainly for 

supervisory purposes and financial stability analysis by policy makers. For this reason, the 

development of the most important stress testing frameworks has been implemented by central 

banks and other financial supervision authorities. In the U.S. the Comprehensive Capital 

Analysis and Review Process and the Dodd-Frank-Act-Stress Tests are performed; in Europe, 

the Stress tests of the European Banking Authority is performed.  

Within this framework, the stress test measure provides a tool to evaluate the probability of big 

losses of a portfolio, of an institution or of the whole system. This risk measure is usually based 

on the assessment of that amount of capital needed to make the probability of big losses 

sufficiently small (e.g. VaR, ES). 

The ultimate role of these tests is to allow risk reducing actions, since they bring to a better 

understanding of risk factors of each bank, and it provides indications for portfolio adjustments 

in order to avoid detrimental effects in case of bad scenarios. 

As example, the 10-by-10-by-10 network-based approach is shortly described. This approach 

is based on the analysis of the risk exposures of a selected group of SIFIs under a set of distress 

scenarios: in particular, 10 designated institutions are required to report their gains or losses, in 

terms of market value and cash flows, for each one of the 10 described stressful scenarios (for 

example, the default of a counter-party, a shift in the yields curve, an increase in credit spreads, 

a variation in housing prices), and also to provide the identities of those 10 counter-parties 

whom gains and losses are the biggest in magnitude for each scenario. The institutions at the 

top are those whose failure would produce the heaviest loss for the reporting bank. This process 

will allow policy makers to assess those nodes with higher tension in terms of liquidity and 

value, and to give a shape to the systemic risk. In fact, 10-by-10-by-10 is a scenario measure 

that may help to map joint exposures of the system and to identify further SIFIs.  

 

Cross-sectional measures 

As said, two dimensions of systemic risk can be identified: the time dimension, inherent to the 

pro-cyclicality of the financial system, and the cross-sectional dimension, inherent to the 

linkages among financial institutions, which affect the sensitivity to risk spreading over the 

whole system. These measures are useful to monitor the degree of fragility of the system and 

its resilience to shocks at each point of time, trying to examine the co-dependence among 

institutions on the basis of their financial health conditional on particular circumstance. The 

already discussed CoVaR, SES and the Co-Risk measures belong to this group. 
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2.1.4 Systemic Risk Measures by Event or Decision Time Horizon 
This last classification takes into account the time horizon with respect to given events or 

decisions related to a systemic financial distress. In particular, it is possible to identify different 

systemic risk measurement tools with respect to three temporal moments.  

 

 

1) Ex-ante measures try to capture financial signals about a potential systemic distress 

over short/medium-term period. Their objective is to provide early warning of 

Figure 2.4: Classification of systemic risk measures based on the time horizon        
Source: “A Survey of Systemic Risk Analytics” by Bisias, Flood, Lo and Valavanis, 2012 
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increasing imbalances and risks for the whole system, and a good measure of their 

performance and reliability is the ratio between the correctly predicted historical 

episodes (the signal from the systemic risk measure) and false alarms (its noise). This 

measure of signal strength relative to background noise is the signal-to-noise ratio. 

Since the core of this thesis is the implementation of an experimental early warning 

indicator for the systemic risk, the following subsection of this chapter will be 

dedicated to a deeper description of this category. 

2) Contemporaneous measures try to quantify the level of outstanding disturbance, 

confusion and uncertainty within the actual system, and the big advantage of using 

them is to allow a better and adequate asset re-allocation and a prompt view for policy 

makers during emergency situations. The reaction time is very important, since it can 

determine the fate of a firm or of the system as a whole, especially when a crisis occurs.  

3) Ex-post measures refer to the “after-the-event” situation, where probability and 

projections no longer matter, and the final outcome can be directly observed. This kind 

of measures, which the ex-post analysis is based on, is useful for many aspects: it allows 

to clearly report the events and to maintain accountability for policy makers, and in 

particular, since regulation is a repeated game, the monitoring incentives diligent 

behavior; it allows to evaluate the performance of other measures compared to what 

the regulator or institution initially projected, and to determine the accuracy of the other 

risk assessment methods; it can be used by scholars and researches to clarify certain 

events and their causes, and to identify new theoretical patterns. 

As seen, the main critical usefulness of a classification of systemic risk measurement related to 

events is the timeliness provided to the decision-making process of institutions and policy 

makers, which must decide whether, when and how to carry out a given operation on the 

financial markets. The main characteristics of the three categories are described below. 

 

Ex-ante measures of systemic risk 

Within the financial system there are many threats to financial stability, because of the existence 

of a set of unpredictable possible shocks, herding behaviors, expectations and many other 

dynamics that make the market instable and continuously changing. In this context, the 

detection and the monitoring of so many possible threats are possible just through a wide set of 

monitoring methods and ex-ante measures. In fact, these measures allow the detection of the 

systemic risk in a probabilistic sense, in order to provide an overview about increasing 

imbalances or imminent dangers inside the financial network.  

This classification identifies two further sub-groups of ex-ante measures: those consisting of 

early warnings and those based on counterfactual simulations and stress tests. 

Early warning measures are endowed with a reliable forecasting power about possible 

evolutions of the systemic risk by a given not short time horizon, in order to allow the 

identification of eventual imbalances. Therefore, these techniques attach a given probability to 

future triggering events, that in turn are based on a dataset of observations of specific systemic 

features. The next sub-section will discuss more in detail this category. 

The second subset of models, suited to analyze the systemic risk before a given adverse event, 

comprises all those measures that focus on the behavior of institutions and networks in 

hypothetical distressing conditions, trying to estimate the systemic vulnerability, intended as 

the sensibility in the institutions’ performance to an adverse combination of external factors. In 

particular, counterfactual simulations and stress tests are analysis based on a set of specific 
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scenarios, outlined through past occurred episodes, suitably built circumstances or extreme 

hypothetical situations, by considering some extreme values that given economic quantities 

may assume. At the same time, the reverse stress test can be performed in order to identify those 

circumstances and scenarios that cause certain pre-specified outcomes and level of distress for 

institutions. 

These kinds of measures are very useful also to categorize vulnerable institutions and networks. 

For example, the Supervisory Capital Assessment Program (SCAP) is a stress testing conducted 

by policy makers in the U.S. to determine if the largest U.S. financial institutions have sufficient 

capital buffers to face a financial market turbulence. This stress test applies two macroeconomic 

scenarios, described in terms of GDP growth, unemployment and housing prices, one based on 

standard assumption and the other based on a negative expected circumstance. The consequent 

analysis of each institution’s risk profile, by using models, internal dataset, and various 

estimation methods, brought to the mapping of the systemic risk in different types of 

macroeconomic scenarios. 

At the same time, policy makers have recently intensified the usage of counterfactual 

simulations in order to evaluate the systemic risk due to contagion and common exposures in 

the financial market. In fact, the adverse contagion is a rare event, that occur in few extreme 

scenarios, but that can produce a very heavy negative impact on the soundness of each involved 

institution. Therefore, counterfactual simulations provide information about relevant 

institutions, whose financial strength affects the systemic financial stability, and about the 

nature of the connections, whose structure impact on the extent and the intensity of a contagion. 

Therefore, they are able to give an indication about whether or not, and how, a contagion may 

be a problem of systemic scope. Nevertheless, there are two main theoretical shortcomings of 

counterfactual simulations as systemic risk measure: they are based on too strong underlying 

assumptions, and their models present a lack of behavioral foundations. 

 

Contemporaneous measures of systemic risk 

Contemporaneous measures of systemic risk can be categorized by their declared task, in 

accordance with the necessity of the interested institution: the quantification of the fragility of 

the system, or the monitoring of the actual evolution of a financial crisis.  

Measuring financial fragility has multiple purposes: signaling the intensity of an ongoing 

distress, and in general informing about the present state of the system; identifying the 

financially weak or failing institutions, sectors and markets; allowing the implementation of 

appropriate public interventions from those authorities which have a public mandate and must 

comply with some duties of communication with the media. The focus, given the nature of the 

systemic risk, and the way it unfolds, is always to operate within compressed time frames, in 

order to properly face and work out any systemic imbalance. For that reason, these 

contemporaneous measures allow to evaluate signals about the fragility of the system on a daily 

or even intra-daily basis. Among these frequently updated measures, there are SES measure, 

CoVaR measure, Co-Risk and the contingent claims analysis. 

The second need satisfied by contemporaneous measures is the monitoring of the evolution of 

a financial crisis. In particular, they allow to track the evolution of a distress when it unfolds, 

and they are a powerful tool for policy makers dealing with a crisis, and with the necessity to 

work out appropriate policies in rapid times. For instance, they include the Mahalanobis 

distance, the Noise as Information for Illiquidity and other tools from the Principal Component 

Analysis. 
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Ex-post measures of systemic risk 

Ex-post measures of systemic risk are a fundamental component of a more general ex-post 

analysis, very useful for the identification of some weaknesses in the financial sectors and some 

defects in the regulatory and supervisory system, allowing for any important reform. Moreover, 

by deepening and quantifying the most relevant structural vulnerabilities of financial markets 

it is possible to better understand the gaps in the regulation and in the control system, and to 

remedy accordingly. For these purposes, the ex-post measurement is the starting point, and this 

is continuously evaluated, even after a systemic event: its role for a coordinated transparent 

response by policy makers and for addressing the choices of market participants, especially in 

case of panic, is fundamental. 

These measures have two further sub-categories: measures for forensic analysis and measure 

for orderly resolution. 

Forensic analysis is based on a method of investigation whose objective is to detect and record 

causes, consequences and sequence of events in cases of adversity in the financial system, in 

order to identify institutions’ liabilities (in general, it is related to courts of law for criminal 

matters). This analysis includes the usage of a set of tools and technical expertise, including the 

measurement, for the collection of information about the system working, the participants’ 

integrity and the completeness of regulation. It is a rational procedure to deal with adverse 

events, and to proceed with resulting recovery of damages, as the redefinition of the regulatory 

framework. 

The second subgroup refers to those ex-post systemic risk measures which play an important 

role for an orderly resolution of failing institutions. In particular, Brunnermeier, Gorton, and 

Krishnamurthy proposed a real “risk topography”, that is the deep and complete study of the 

shape and features of the whole financial system, seen as a network of contractual connections. 

In particular, risk topography is a network-based model, based on the inference from each 

financial institution of the “sensitivity” of their capital account and liquidity to a set of pre-

specified possible scenarios and factors (for instance, they should report the amount of profit 

and loss, and the variation of their liquidity position, stemming from a unitary change in the 

Liquidity Mismatch Index, or in the house price, or in the interest rate, and so on). The 

topography is centered on these two dimensions, capital gain and liquidity change, because they 

are considered the most significant determinants of the behavior of financial institutions during 

financial crisis. Then, a panel dataset is created by pooling all the responses from each 

institution to the same scenarios on each reporting date (quarterly or monthly). Authors 

highlighted two main advantages of this approach:  

1) it allows to enhance the regulatory risk assessment and the macro-prudential 

supervision performed both by public authorities and the same institutions, if the 

dataset is made publicly available; in particular, the analysis of the dataset may uncover 

the presence of risk and liquidity “pockets” within the financial system, that is, of 

excessive imbalances and risk exposures, unawares undertaken by each firm, that may 

result in a large systemic concern; 

2) it would provide to the researchers the complete essential data needed for current 

macroeconomic models that still do not embed components of financial sector. 
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2.2  Early Warning Indicators for Systemic Risk 
Financial risk analysis requires a complete collection of data and the knowledge of a set of tools 

and techniques for the assessment of vulnerabilities and risks; at the same time, the monitoring 

and warning system require the detection and the analysis of causal links among those relevant 

variables determining the systemic risk. In general, the ultimate objective of an Early Warning 

System (EWS) is not to predict the exact timing of a crisis, but to estimate at each moment the 

probability of given adverse events to occur within a specific time horizon, and then to quickly 

and clearly communicate information and warnings about probable incoming dangers for the 

institutions, which can consequently respond and prudently act to protect itself with right 

policies. 

EWIs is able to anticipate extreme movements in the financial cycle, that is, as defined by Borio, 

the “self-reinforcing interactions between perceptions of value and risk, risk-taking, and 

financing constraints”. These interactions between investors’ perceptions and risk-taking give 

life to a sequence of financial expansions and contractions, which can be reflected in the 

economic cycle as well. The theoretical focus underlying this type of tools applied on the 

financial market is the endogenously determined systemic risk. In particular, the outsize 

financial booms are the right background to create the conditions of a financial crisis, with high 

risk propensity from economic agents, dangerously increasing credit supply and asset prices 

well away from assets fundamentals. Precisely, a standard EWS can be based on the setting of 

specific thresholds for the evolution of the private debt or asset prices: when the actual price 

significantly deviates from its long-run trends, overcoming prefixed threshold, it is reasonable 

to assume an ongoing increase in systemic risk, that is in probability of a financial crisis due to 

a financial bubble. Among variables that can be used for the detection of countries’ financial 

systemic risk, there are: 

• the credit-to-GDP ratio gap is the difference between the credit-to-GDP ratio and its 

long-term path; if this gap widens, then a financial imbalance is emerging, with the 

consequent increase in the systemic risk of disruption;  

• the house price gap is the deviation of inflation-adjusted property prices from their 

long-term path; its working is similar to the previous one; 

• the Debt Service Ratio (DSR) is the ratio between the debt service (interest payments 

and amortizations) and the income from the international trade; a DSRs increase signals 

a credit expansion, as credit growth is reflected into a higher debt service; 

• other ratios of the type of DSR, but based on sub-groups of debt, such as foreign 

currency debt or household debt, can be considered. 

For instance, the household debt issue has been studied in depth in recent literature. Countries 

where household debt is particularly high and increasing, such as in Netherlands, face periods 

with high consumption and a continuing GDP growth: this economic overheating can be 

detrimental for the long-run structural economic growth and for the banking system health, that 

chances a crisis. Another type of DSR considers the foreign currency debt or the cross-border 

debt, in order to evaluate the role of current account deficits or exchange rate evolution in the 

boost of systemic risk. Many studies have proven that levels of household debt and foreign debt 

are effective in surveying presence of increasing vulnerability in the system, since the 

respective indicators tend to show abnormal values over their trend during those pre-crisis 

phases in which systemic risk is increasing. These variables, even more if combined together, 

may be rather useful to extract information about probable future cumulative distress in the 
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banking system. Moreover, combining information from different variables remarkably 

improves the precision of these indicators. In fact, they showed some peaks before recent crisis, 

and for that they can be considered as good predictors of systemic risk. For all these reasons, 

policy makers have focused on studying and monitoring the household debt and the foreign 

debt as crucial variables to look at for financial stability purposes. 

In particular, policy makers should integrate EWIs within a wider and more complete analysis, 

and must be certain of the utility and robustness of the indicators. There are some specific 

properties and characteristics that EWIs should comply with to be useful in detecting the 

presence of systemic risk (Drehmann and Juselius, 2014).  

1) A statistical forecasting power of EWIs based on real time evolution of the variable of 

interest is needed for a correct implementation of time-varying macro-prudential 

policies. 

2) The timing of the signal issue is fundamental: it should emerge before a crisis, early 

enough to be effective and useful for a correct implementation of remedial policies, but 

not too early in order to avoid some detrimental and unnecessary restrictions. 

3) The stability of the signal is required to be sure of the feasibility of a new policy. In fact, 

policy makers should implement a new policy on the basis of clear long-term evolutions 

and trends of crucial variables, and not on the basis of outliers and unstable indicators. 

Therefore, EWIs should issue stable and persistent signals, reducing uncertainty on 

trends and not reducing the forecasting power when a crisis is approaching. 

4) EWI signals should be transparent, easy to interpret and linked to the financial cycle 

theory. In fact, there is evidence (Lawrence et al., 2006) that counterintuitive and not 

easily interpretable forecasts and signals are ignored by policy makers, and this makes 

EWIs less useful. Moreover, the low complexity of EWIs contributes to reducing the risk 

of overfitting. An overfitted model is a very complex statistical model which is adapted 

to observed data just because it has an excessive number of parameters with respect to 

the number of observations. In fact, even a completely wrong model can perfectly fit and 

explain dataset, but it produces unreliable predictions. 

As said, a basic element of these indicators is the critical threshold, which can be derived 

through different methodologies, and that allow to identify warning signal when the variable 

crosses it. In general, it needs to find, within a range of potential thresholds applied on a large 

panel dataset on more countries over a long time, the one which allows to significantly signal 

a warning when it is crossed. A crisis is correctly predicted if warning signals emerge whenever 

the threshold is crossed in the periods immediately preceding the crisis. It is possible to identify 

the right threshold by minimizing the noise-to-signal ratio, that is the ratio between the number 

of false alarms (warnings appearing even when no crisis occurs) and the number of correct 

warning signals (warnings appearing when the crisis occurs). In fact, being a minimization 

problem, there is an error term whatever the chosen threshold: it should be set in order to be 

able to correctly predict the highest number of crisis. The higher the number of predicted crisis, 

the higher the reliability of EWI, given the lowest number of false alarms. 

There are some caveats to consider in this framework. 

As said, the false alarms occur whenever warning signals are issued but no crisis followed. This 

does not necessarily indicate a malfunction of the indicator, since there two possibilities: either 

there are specific factors that affect the variable of interest without being linked to the systemic 

risk (and in this case the signal launched by the indicator is not significant), or the threshold is 

crossed because of a real increase of systemic risk, but the crisis does not occur since the 
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imbalance automatically disappears before the possible materialization of the crisis. Then, some 

warning signals are not necessarily succeeded by a crisis, and for that, in order to evaluate the 

performance of the EWI, it is useful to look at the fraction of crisis effectively occurred within 

a certain period of time, conditional on the breach of the threshold.  

In any case, even if the systemic risk is correctly identified by EWI, the conveyed information 

does not refer to the precise timing of the future crisis, but just to the increased probability of 

systemic distress. More precisely, EWIs are not able to signal an intensification of financial 

imbalances, but only the presence of dangerous imbalances, through a dichotomous outcome. 

Moreover, these indicators need to be interpreted with caution: their calibration is based on the 

historical evolution of the variable of interest, and for that they do not take into account more 

recent innovations in institutions and economic structure. In fact, the overall resilience to shocks 

of the system is a function of the regulatory environment (microeconomic and macroeconomic 

policies) and of the same technological and financial innovations, and this would require 

continuous re-calibrations of the indicators. Therefore, it would be better if EWIs were 

considered just a part of a more complete set of tools used to detect systemic risk and other 

vulnerabilities under different facets, and then just the first step of a broader analysis in the 

assessment of financial risk.  

Finally, there are four important shortcomings related to EWIs: 

• these indicators are constructed on historical dataset and specific relations among 

variables; the consequence is that, if a random innovation or a structural break occurs, 

a new specification of the underlying EWIs model is requires, in order to not lose the 

initial predictive power and to maintain the consistency of the indicator; 

• the heterogeneity of the financial systems across countries makes the EWIs’ intrinsic 

scheme of “one-size-fits-all” not valid; then, the thresholds set for an economy may not 

be the best one for other economies, because of countries’ specific characteristics; in 

general, it seems not possible to construct a standard indicator to be applied to countries 

based on the patterns provided by a single country, given the asymmetries of the 

systems and the impacts of adverse events; 

• EWIs are constructed to test the presence of systemic risk and vulnerabilities strictly 

referred to the economic and financial cycle, that is the endogenous alternation of 

phases of expansion and contraction within the system, and not to structural breaks and 

other random factors that may trigger a crisis without being linked to the natural cycle 

(such as those crises due to unsustainable sovereign debts, bad management of the 

monetary policy, fraudulent behaviors of important institutions); 

• since crises are rare events, there may be problems of data limitation and significance, 

even in presence of a wide coverage; the consequence is the impossibility to create a 

robust and complete framework for the application of EWIs, and hence a particular 

focus is required in the selection of dataset. 

Another fundamental point is the evaluation of the performance of the EWI, that is its 

robustness and capacity to issue right early warnings and to detect an increase of systemic risk.  

As usual in the statistical testing, two different possible kinds of errors should be analyzed: 

• type I error is the rejection of the null hypothesis when it is true; it is also known as 

"false positive", and emerges when the systemic risk has really increased, and a crisis is 

effectively oncoming, but the warning indicator fails to signal it; 
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• type II error is the acceptation of the null hypothesis when it is false; it is also known as 

"false negative" or “false alarms”, and emerges when the warning indicator signals an 

increase in systemic risk and in probability of an incoming crisis even though this risk 

is not real. 

Since the complete elimination of both kinds of errors is not possible, and since the reduction 

of one of them implies the increase of the other one, the evaluation of EWIs’ performance 

consists of the assessment of the trade-off between the error types, looking at their joint 

minimization. In particular, the procedure for the construction of a robust EWI requires the 

achievement of an optimal trade-off between the correct predictions and the false alarms: a 

perfect and totally informative EWI does not exhibit any error, and then provides the right 

positive signals whenever a crisis is really incoming, and negative signals the rest of the time. 

At the other extreme, a totally uninformative EWI provides signals without any reliability, not 

very different from the outcomes of a coin toss. In reality, plausible EWIs are between two 

extremes, and their position can be assessed through appropriate tools. For example, a common 

and useful instrument for the evaluation of EWIs’ performance is the Receiver Operating 

Characteristic (ROC) curve, that is a graphical plot representing the true positive rate (i.e. the 

probability of correct predictions) against the false positive rate (i.e. the probability of false 

alarms) for a set of thresholds. ROC curve provides a map for type I and type II errors, which 

gives indications on the informativeness of a test: by plotting the cumulative distribution 

function of probability of correct predictions in the y-axis and the cumulative distribution 

function of the probability of false alarms on the x-axis, the ROC curve is represented. The area 

under the ROC curve is a proxy of the quality of the signal issued by the indicator: for a given 

implied threshold, if this area is equal to 1, the indicator is totally informative (since its 

probability of correct predictions is 1, and its probability of false alarms is 0), while if it is equal 

to 0.50, then the indicator is totally uninformative (with a true positive rate of 50% and a false 

positive rate of 50%).   

There is a large literature on EWIs for financial system that analyzes their crucial theoretical 

aspects and tries to elaborate new frameworks and new methodologies of construction and 

calculation. Kaminsky, Lizondo, and Reinhart (1998) and Kaminsky and Reinhart (1998) 

developed operational Early Warning System for the survey of systemic risk through the 

"signal" approach. This approach is just that one described above: the evolution of a set of 

indicators is monitored in order to identify unusual paths, signaling a probable incoming crisis 

when one of them overcomes some prefixed thresholds. This approach, widely used by policy 

makers, showed to be useful in anticipating some crises (such as currency crises in 1997). 

Demirgüç-Kunt and Detragiache (1999) developed a multivariate empirical probability model 

for banking crises in order to monitor banking sector fragility, and created an EWS that issues 

a signal whenever a probability of a crisis crosses a specific threshold. Therefore, there are two 

basic methodologies to assess the risk of incoming crisis: the signal approach and the 

probability model. 

Davis and Karim (2008) analyzed the usefulness and the robustness of some approaches applied 

to a comprehensive dataset, and found that the most appropriate model to assess EWI signal for 

a crisis is the logit model, both at global level and a country level. Moreover, they highlighted 

the importance to take into account policy makers preferences, through a loss function, during 

the construction of an indicator and the setting of thresholds. 
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Bussiere and Fratzscher (2006) created an EWI based on a multinomial logit model, since it is 

shown that the binomial dependent variable models are not able to distinguish among more 

states of the world, like pre-crisis periods and the crisis/post-crisis periods, when the variable 

of interest undergoes an adjustment process towards a new sustainable and stable trend. By 

solving this bias, the multinomial logit model allows to improve the forecasting ability. 

As variables of interest, it is very common to consider both macroeconomic variables and 

financial variables, like it has been done by Alessi and Detken (2011), who investigated the 

relationship between short-term interest rates and bank risk, finding that unusually low interest 

rates over a long period of time make bank risk increase. They used a global measure of 

liquidity, that is the global private credit gap, for the construction of a real time signaling 

approach for asset price cycle. 

Lo Duca and Peltonen (2013) developed a new framework to assess the probability of financial 

distress, providing several important contributions to the literature. Firstly, they constructed a 

new Financial Stress Index (FSI), a country-specific composite index which tries to capture the 

beginning and the evolution of a crisis by grouping more stress measures referred to different 

segments of the financial system. In fact, when a negative shock occurs (such as a bubble burst, 

a currency crisis or a default), each segment of the financial system faces a distress, and this 

amplifies the shock all over the economy: the broader the distress, the stronger the co-

movements of financial variables and the more systemic the crisis. The considered segments of 

financial system are four: the equity market, the banking sector, the foreign exchange market, 

and the bond market. The components j of FSI, for each country i at each quarter t, are basically 

of two types, risk premia and implied volatilities: they are transformed into integers that range 

from 0 to 3, such that, when a given component value drops to the fourth quartile 𝑞𝑗,𝑖,𝑡 of the 

distribution, then it takes value 3. Therefore, the higher the value the higher the stress level, and 

the FSI is the simple average of the transformed variables: 

𝐹𝑆𝐼𝑖,𝑡 =
σ 𝑞𝑗,𝑖,𝑡ሺ𝐼𝑛𝑑𝑗,𝑖,𝑡ሻ

𝑛
𝑗=1

𝑛
 

FSI is useful to identify the beginning of a financial crisis. In particular, to identify systemic 

events, authors studied the relationship between the FSI and other measures of real economic 

activity. Afterwards, they created a model for the prediction of out-of-sample systemic financial 

crises by considering jointly both national and global indicators of macro-financial 

vulnerabilities in a multivariate framework. Finally, both macro-prudential indicators of 

vulnerabilities and multivariate indicators are evaluated through the usage of discrete choice 

models, and by taking into account policy makers’ preferences. In fact, many macro-prudential 

measures aim to identify and to prevent accumulating imbalances, being endowed with some 

forecasting power for systemic events. In particular, many authors (Borio and Drehmann in 

2009, or Alessi and Detken in 2009) found that global measures of liquidity are the best 

performing indicators for this purpose, since they allow policy makers to get useful information 

and to timely react to growing imbalances. 
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Chapter 3 

Theoretical Framework for New EWIs  
 

 

After having accurately presented and described the argument in the first two chapters, and 

provided a critical review of the relevant literature about the systemic risk, this third chapter 

will be dedicated to the theoretical description of framework and tools needed for the empirical 

analysis. In fact, the core of this thesis is the implementation of early warning indicators for 

systemic risk, and in particular the design of a test procedure for the survey of signals related 

to systemic risk in financial markets. This is done by performing a quantile regression on a 

Mixed-Data Sampling (MIDAS) model: these two approaches are combined to allow the 

building of this test for the identification of systemic risk, and it will consist of an application 

of the nonparametric test of Granger causality in quantile, proposed by Jeong, Hardle and Song 

(Econometric Theory, 2012). 

The purpose is to create an analytical tool that monitors the evolution of those macroeconomic 

situations where risks to financial stability become relevant. As said, the ultimate objective is 

multiple, and depends on the user’s aims: 

• to quantify the contagion risk within the financial market in order to survey SIFIs and 

their potentially dangerous interlinkages; 

• to provide signals of systemic distress from each segment of interest within the financial 

system; 

• to measure the resilience and the health of the financial system as a whole and of its key 

sectors;  

• to forecast and to anticipate crises, so that mangers can rebalance and adjust positions 

in their financial portfolios. 

However, the real advantage of an EWS is to strengthen the ability to identify incoming troubles 

within the financial system with timeliness. In general, the creation of an EWI requires the 

definition and the extent of the framework (definition of variables of interest and explanatory 

variables, data coverage across countries and markets, covered timespan), the definition of 

systemic distress and the typology of mathematical and statistical tools used in the analysis for 

the signal survey. The following sections of this chapter will describe and define the statistical 

approaches used for the design of the EWI: the quantile regression model, the MIDAS model 

and the nonparametric test of Granger causality-in-quantiles. The final part will describe in 

detail the methodology for the empirical analysis. 

 

 

3.1  Quantile Regression Models 
The quantile of order 𝜏 (or 𝜏-quantile) is that value 𝑞𝜏 of the distribution of a random variable 

𝑥 that divides it into two parts, and that includes first 𝜏*N observations in ascending order, with 

𝜏 a real number in the range [0,1] and N the number of observations. For instance, with N=50, 

the 0.1-quantile of the distribution is that value of 𝑥 that includes first 5 observations starting 

from the last one. Also, quartiles refer to those three cut quarters of the distribution, which 
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divide a dataset into four equal-sized groups; the decile is the tenth part, the median is the 0.5-

quantile and the 𝜏’th quantile is the 100*𝜏’th percentile. 

When the cumulative distribution function of the random variable 𝑥 is known, the 𝜏-quantiles 

are outputs of the quantile function: it returns the value 𝑞𝜏 of the random variable 𝑥 such that 

the probability of the variable being strictly less than 𝑞𝜏 equals the given probability, which 

corresponds to 𝜏:  

𝜏 = 𝑃𝑟ሺ𝑥 ≤ 𝑞𝜏ሻ ≡ 𝐹𝑥ሺ𝑞𝜏ሻ 

Therefore, quantile function is the inverse of the cumulative distribution function, given 𝜏:  

𝑞𝜏 = 𝐹𝑥
−1ሺ𝜏ሻ 

Quantile regression is an approach to modeling the relationship between a dependent variable 

and one or more explanatory independent variables, within a framework based on the concept 

of quantile and alternative to the more common linear regression estimated through OLS: 

whereas the method of least squares estimates the mean of the dependent variable conditional 

on a set of regressors, quantile regression estimates its conditional quantiles. In other words, 

this type of analysis allows to estimate the quantile of the distribution of 𝑦 given 𝑥, and then 

how the 𝜏th’quantile (e.g. the median) of the distribution of 𝑦 given 𝑥 changes with 𝑥. 

This type of analysis was established by Koenker and Bassett (1978), who first introduced the 

linear quantile regression and worked out a first algorithm for the computation of the proper 

coefficients. Their fundamental contribution to quantile regression was based on important past 

works in the field, mainly by Bošković, Laplace, and Edgeworth. In 1760, the mathematician 

Roger Bošković, in an attempt to confirm a suggestion by Isaac Newton, tried to estimate the 

Earth’s ellipticity by combining different measures and information on locations and latitudes 

through an alternative mathematical framework. His intuition consisted of the minimization of 

the sum of absolute deviances from respective medians, in order to obtain median regression 

slopes, and all this happened half century earlier the first formulation of the least square method 

by Legendre. Afterward, Laplace studied in deep and formalized the Bošković's ideas, and 

elaborated the so-called “method of situation”. In particular, Laplace remarked that, 

algebraically, the solution to the ellipticity problem is nothing but the computation of a 

weighted median: by minimizing the sum of absolute deviances subject to the constraint that 

the errors sum to zero, and then by imposing that the fitted line goes through the center of 

observations (average of variables), the problem becomes a regression analysis through the 

origin; by rotating the line through this artificial origin, it is possible to find that slope which 

minimizes the sum of absolute errors. In that way, Laplace suggests to estimate the intercept as 

a mean and the slope coefficient as a median. Finally, Francis Edgeworth, resuming the same 

ideas almost a century later (in 1888), gave some crucial contributions to this theoretical 

framework. He highlighted the problems related to the sample mean, whose adequacy as 

estimator heavily depends on the implausible normality assumption of data: about that, he was 

able to prove that median and mean may be very divergent under different characteristics of 

data distribution, and showed in which cases median may have smaller asymptotic variance 

than the mean. Anyway, his central work consisted of the adoption of a new geometric approach 

to median regression: he minimized the sum of absolute errors for both intercept and slope 

coefficients, discarding the Bošković -Laplace constraint of zero errors sum. Furthermore, from 

this ‘double median’ approach, he even proposed an extension for a ‘plural median’ approach 

in the multivariate case, but those few and not very powerful technological tools he had at his 

time didn’t allow him to overcome many tedious computational problems intrinsic to this 
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setting. With the widespread adoption of computers and linear programming over the last 

century, more technologically advanced and more computationally powerful tools enabled the 

completion of this approach. 

Koenker and Bassett, by resuming those previous works, started from the Edgeworth’s median 

regression estimator and ‘generalized’ it, obtaining the quantile regression estimator. 

Next subsection will present more in deep the analytical aspects of this analysis.  

 

3.1.1 Fundamentals of Quantile Regression 
Quantile regression analysis provides a very powerful explanatory and predictive statistical 

model, useful in dealing with the increasing complexity of data in a robust and flexible way. 

There are several advantages provided by the application of this type of models: on the one 

hand, they are presented as more flexible and they weaken assumptions (for instance, they fit 

conditional quantiles of the dependent variable with a general model which does not assume 

any particular parametric form for its distribution); on the other hand, they provide conclusions 

and information that no other framework is able to give (for instance, they are very useful in 

risk management since they allow to deal with problems linked to tails of conditional 

distributions or to modeling a whole conditional distribution). 

The first step is the description of the quantile regression model under an analytical point of 

view, starting from the list of required assumptions. There are three basic assumptions to be 

met for the usage of quintile regression. 

• The zero conditional quantile assumption. Similarly to the Ordinary Least Square 

estimator of the Linear Regression Model, even in the quantile regression the error term 

must not be correlated with the set of explanatory variables. In particular, as OLS 

estimator is unbiased and consistent if the model 𝔼ሺ𝑦|𝒙ሻ = 𝒙𝜷 is well-specified, that 

is if 𝔼ሺ𝜀|𝒙ሻ = 0, similarly the quantile estimator is consistent if the 𝜏-quantile of 𝜀𝜏 is 

zero at any point of the 𝒙 distribution: 

ℚሺ𝜀𝜏|𝒙ሻ = 0 

such that ℚሺ𝑦𝜏|𝒙ሻ = 𝒙𝜷. Therefore, the unbiasedness of estimated quantiles of order 

𝜏 of the dependent variable, conditional on the vector of explanatory variables, is 

satisfied when the zero conditional quantile condition of the error term is met. 

• Linearity of the model. Even though non-linear quantile regression analyses are 

available, in this framework, for simplicity, it is assumed a linear dependence between 

the response variable and other explanatory variables. In fact, the linear relationship 

may be an accurate specification of the actual relationship among variables, especially 

if no specific form is surveyed. 

• For problems related to efficiency of the estimator, it needs to take into account very 

large samples and a very continuous response variable, as well as independence of 

observations. 

It is worth noting that these assumptions are fewer and much less stringent than those required 

by OLS estimator: the distribution of 𝑦
𝜏
 conditional on 𝒙 is not assumed to have a normal 

distribution; sample observations of dependent and independent variables are not required to 

be independent and identically distributed (I.I.D.) draws from a joint distribution, and other 

specific assumptions, like homoskedasticity, do not apply; finally, the nonzero finite fourth 

moments of observations are not required, because quantile regression is robust to outliers of 
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dependent variable (but it is less robust to outliers and extremes of the explanatory variables, 

and for these cases the weighted quantile regression becomes more appropriate). 

A further issue refers to the assumptions on the error term. As known, if the least squares 

assumptions hold and if the errors are homoscedastic, uncorrelated and have expected value of 

zero (whatever the type of distribution), then OLS is BLUE (Best Linear Unbiased Estimator), 

since it is the estimator with the lowest sampling variance within the class of linear unbiased 

estimators. In the quantile regression model, the assumption of I.I.D. errors can be useful to 

simplify the underlying mathematics, allowing quickly derivation of some asymptotic 

properties. Unfortunately, the hypothesis of I.I.D. errors is actually likely to be violated, and 

for this reason, other tools can be implemented for both the OLS estimates and quantile 

estimates: the ‘robust’ option (that is the regression performed with modified standard errors, 

robust to heteroskedasticity and clustering), or resampling techniques (such as the bootstrap). 

The basic model of ordinary quantile regression is now described. Consider a target random 

variable Y as a scalar real macroeconomic factor characterized by the following distribution 

function: 

𝐹ሺ𝑦ሻ = 𝑃𝑟 ሺ𝑌 ≤ 𝑦ሻ 

The τ-th quantile of Y, for any τ ∈ (0, 1), is its inverse probability distribution function, defined 

as: 

ℚ𝜏
ሺ𝑦ሻ = 𝑖𝑛𝑓 {𝑦: 𝑃𝑟 ሺ𝑌 ≤ 𝑦ሻ ≥ 𝜏} 

that is the infimum of y such that the distribution function of y takes a value that is strictly 

greater than the prefixed order 𝜏 of quantile. The quantile function ℚ𝜏
ሺ𝑦ሻ, such as the 

distribution function 𝐹ሺ𝑦ሻ, completely characterizes the random variable Y.  

The 𝜏-th sample quantiles can be seen as solutions to an optimization problem. As shown by 

Koenker, the quantile can be interpreted as the minimizer of some "check function", or "loss 

function", denoted as 𝜌
𝜏
(⋅). This different point of view based on an optimization problem is 

analogous for other statistical measures, as the mean. Indeed, given a sample {𝑦1, … , 𝑦𝑛} from 

a single distribution 𝐹ሺ𝑦ሻ, it can be shown that the sample mean is the solution to the problem: 

𝑦 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜉 σ𝑖 ሺ𝑦𝑖 − 𝜉ሻ2 

the sample median is the solution to: 

𝒬
^

0.5ሺ𝑦ሻ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉 σ𝑖 |𝑦𝑖 − 𝜉| 

and the sample 𝜏-th quantile is the solution to: 

𝒬
^

𝜏ሺ𝑦ሻ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜉 σ𝑖 𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ 

with quantile loss function:  

𝜌𝜏ሺ𝑢ሻ = 𝑢ሺ𝜏 − 𝐼𝑢<0ሻ 

In other words, quantiles are identified as those points 𝜉 of the domain of the function 

σ𝑖𝜌𝜏
ሺ𝑦𝑖 − 𝜉ሻ at which its values are minimized. The extension from the sample problem to the 

regression framework consists of replacing the 𝜉 by the regression function 𝑥𝑖
′𝛽𝜏, where 𝑥𝑖 is 

a 𝐾 × 1 vector of regressors, in order to minimize the total "loss" of residuals defined by 𝜌(⋅). 

Hence, the check function is an asymmetric absolute loss function that retrieves the 𝜏-th sample 

quantiles, whose 𝑢, that is the argument of the function 𝜌, is just the model residuals, namely 

the difference between the observations 𝑦𝑖 and the fitted values 𝑥𝑖
′𝛽𝜏. In particular, 𝜌(⋅) assigns 

weights τ if the error is positive and (τ − 1) if the error is negative, being I(.) an indicator 
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function equal to 1 whenever u<0, and zero otherwise. Therefore, check function gives 

asymmetric weights to the error, depending on the quantile and the sign of the error. 

 

The quantiles can be written as solutions to the optimization problem: 

𝒬̂𝜏ሺ𝑦ሻ = argmin𝜉∈ℝ 𝔼[𝜌𝜏ሺ𝑌 − 𝜉ሻ] 

which, by applying the analogy principle, becomes: 

𝒬̂𝜏ሺ𝑦ሻ = argmin𝜉∈ℝ σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ 

whereby, for some 𝜏 ∈ (0, 1), we have to find 𝑦̂ = 𝑥𝛽̂ to minimize the expected loss:  

𝔼[𝜌𝜏ሺ𝑌 − 𝑦̂ሻ] = ሺ𝜏 − 1ሻන ሺ𝑦 − 𝑦̂ሻ𝑑𝐹ሺ𝑦ሻ
𝑦̂

−∞

+  𝜏 න ሺ𝑦 − 𝑦̂ሻ𝑑𝐹ሺ𝑦ሻ
∞

𝑦̂

 

By differentiating with respect to 𝑦̂, the optimality condition is: 

ሺ𝜏 − 1ሻන 𝑑𝐹ሺ𝑦ሻ
𝑦̂

−∞

− 𝜏 න 𝑑𝐹ሺ𝑦ሻ
∞

𝑦̂

= 𝐹ሺ𝑦̂ሻ − 𝜏 = 0 

Any element of 𝑦 such that 𝐹ሺ𝑦ሻ = 𝜏 minimizes the expected loss, given the monotonicity of 

𝐹. If the solution is unique, then 𝑦̂ = 𝐹−1ሺ𝑦ሻ, otherwise there exists a set of 𝜏-th quantiles from 

which the smallest one will be chosen. 

Given the usual linear regression model 𝑦𝑖 = 𝑥𝑖
′𝛽𝜏 + 𝑢𝑖, and the quantile restriction condition 

𝒬𝜏ሺ𝑢𝜏|𝒙ሻ = 0 described above, it is possible to re-write the distribution function of 𝑦 as: 

𝐹ሺ𝜏 − 𝑥𝑖
′𝛽𝜏|𝑥𝑖ሻ = Pr ሺ𝑦𝑖 ≤ 𝜏|𝑥𝑖ሻ 

and we get the linear conditional quantile function: 

𝒬𝜏|𝑋=𝑥ሺ𝑦𝑖ሻ =  𝑥𝑖
′𝛽𝜏 

In the Koenker and Bassett’s specification, expectation-based quantile representation is used 

for handling conditioning information sets, and the future quantiles of 𝑦𝑡+1, conditional on 

information set Ι𝑡, are functions of observables 𝒙𝒕: 

𝒬𝜏ሺ𝑦𝑡+1|Ι𝑡ሻ = 𝛽𝜏,0 + 𝜷𝝉
′ 𝒙𝒕 

Solving the optimization problem implemented on this conditional quantile function allows us 

to estimate the 𝜏-th regression quantile coefficient: 

𝛽𝜏̂ = arg min𝛽∈ℝ𝐾σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝑥𝑖

′𝛽𝜏ሻ 

It is interesting to compare the quantile regression model with the standard linear regression 

model. As known, the standard regression model allows to estimate the conditional expectation 

of the dependent variable, that is its average response given a set of covariates: 

𝔼ሺ𝑦𝑖|𝑥𝑖ሻ =  𝛽0 + 𝛽1𝑥𝑖1 + ⋯+ 𝛽𝑝𝑥𝑖𝑝 

and the 𝛽𝑗 are estimated by solving the least squares minimization problem: 

min𝛽0,…,𝛽𝑝
σ𝑖=1

𝑛 [𝑦𝑖 − ሺ𝛽0 + σ𝑗=1
𝑝

𝑥𝑖𝑗𝛽𝑗ሻ]
2 

Figure 3.1: Quantile Regression loss function 𝜌 
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In contrast, the conditional quantile regression model for the 𝜏-th quantile of the response 

variable, given a set of explanatory variables and the zero conditional quantile assumption, is: 

𝒬𝜏൫𝑦𝑖|𝑥𝑖൯ = 𝛽𝜏,0 + 𝛽𝜏,1𝑥𝑖,1 + ⋯+ 𝛽𝜏,𝑝𝑥𝑖,𝑝 

and the 𝛽
𝑗
 are estimated through the least absolute deviations method, which minimizes the sum 

of absolute errors: 

𝑚𝑖𝑛𝛽𝜏,0,…,𝛽𝜏,𝑝
σ𝑖=1

𝑛 𝜌𝜏ሺ𝑦𝑖 − ሺ𝛽𝜏,0 + σ𝑗=1
𝑝

𝑥𝑖𝑗𝛽𝜏,𝑗ሻሻ 

with: 

𝜌𝜏
ሺ𝑒ሻ = 𝜏𝑚𝑎𝑥ሺ𝑒;0ሻ + ሺ1 − 𝜏ሻ𝑚𝑎𝑥 ሺ−𝑒;0ሻ 

For each quantile 𝜏, the solution to this minimization problem produces a set of quantile 

regression coefficients. Moreover, they are no more constant, like in the linear regression 

model, but are now functions of the respective quantiles.  

As showed, the estimations are the result of specific optimization problems. In particular, the 

mean of a distribution is represented as that point that minimizes the average squared distance 

over population, while the quantile is that point that minimizes the same average distance, not 

squared but with weights equal to 𝜏 for points above the fitted line and (1-𝜏) for points below 

the line. To each value of 𝜏, interpretable as the proportion of the sample having values below 

the respective quantile, can be associated a specific fitted conditional quantile function, unlike 

the linear regression model. In fact, if the quantile regression model is built for 10 quantiles, 

the 10 resulting equations bring to 10 different coefficients of the explanatory variables, one 

for each conditional quantile.  

It can be noted that for different values of the 𝜏-th quantile of the response variable, the error 

terms of individual I are related, such that the distribution of 𝜀𝜏 and of 𝜀𝜄≠𝜏 are shifts of one 

another. In case of 𝜀𝜏~𝑖. 𝑖. 𝑑., the 𝜏-th quantile of the error term is not zero, but it is a constant 

𝑐 which depends on the different order considered 𝜏 and 𝜄, such that: 

𝒬𝜏൫𝑦𝑖
ห𝑥𝑖൯ = 𝒬𝜄൫𝑦𝑖

ห𝑥𝑖൯ + 𝑐𝜏,𝜄 

Then, under I.I.D. assumptions for the error term, the conditional quantile functions are just 

some shifts of one another, and the response variable distribution is not affected by any shape 

change. 

If we want to sum up the main difference between the linear regression model and the quantile 

regression model, it can be said that the former one focuses on the conditional mean of a 

response variable without taking into account its conditional distributional properties, that are 

“standardized” away with a set of strict assumptions, while the latter allows the complete 

analysis of the conditional distributional properties of the variable of interest. In particular, 

there are at least three features to be mentioned. 

• The inadequacy of the conditional mean from a distributional point of view. In the linear 

regression model, the mean of the distribution is used to represent its central tendency 

and describe the relative impact of some covariates, but, in cases of asymmetric 

distributions, it may be inadequate to identify both shape shifts and the right impact on 

variable of interest. Indeed, in case of symmetric distributions, mean and median 

coincide, but with skewed distribution the median becomes more appropriate to 

represent the central tendency. For these cases, the conditional median regression 

model, and, more in general, the conditional quantile regression model, provide the best 

analysis for modeling location changes.  
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• The violation of homoskedasticity assumption. In the linear regression model, the 

homoskedasticity assumption requires the variance of the response variable 𝑦𝑖, 

conditional on the explanatory variable 𝑥𝑖, to be constant for any observation i. Anyway, 

if the homoskedasticity does not hold, and there are different probability density 

functions for different values of explanatory variable, the conditional mean may become 

not useful to understand how 𝑥𝑖 affects 𝑦𝑖. The quantile regression model overcomes 

this shortcoming.  

• The violation of one-model assumption. One of the conditions of OLS estimator is that 

the data have nonzero finite fourth moments, that is large outliers are unlikely. This 

assumption is needed in order to avoid undue influence on the fitted regression line, but 

it has a cost: the necessity to eliminate eventual outliers reduces the reliability and the 

precision of the analysis, since information is lacking (this aspect becomes relevant in 

those study about social stratifications or distributions, like income distribution). The 

quantile regression model allows to evaluate any aspect of the distribution, without 

renouncing any information.   

It can be useful to summarize the main differences between linear regression framework and 

quantile regression framework, as done in the following table.  

 

Linear Regression  Quantile Regression  

It models the conditional mean 𝔼ሺ𝑌|𝑋ሻ It models the conditional quantiles  𝒬𝜏ሺ𝑌|𝑋ሻ 

Sensitive to outliers Robust to outliers 

Assumption on distribution is desirable Unknown distribution 

Computationally inexpensive Computationally intensive 

No large dataset required Large dataset required 

 

The coefficients estimation resulting from the quantile optimization problem benefits from 

many important properties, as shown by Koenker and Bassett. Several such properties of 

quantile regression estimators are defined by the concept of “equivariance”: when the data is 

altered in some predictable way, no fundamental effect on quantile estimation is expected to 

occur, that is the regression estimates should change such that the interpretation of the results 

is invariant. The classical example is the rescaling in a model for a temperature of a liquid: if 

the scientists decide to change the scale of the temperature from Fahrenheit to Centigrade, the 

model should not provide different substantial results. Authors managed to prove this. Four 

basic equivariance properties are presented below. 

Let 𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ be the 𝜏-th regression quantile coefficient obtained from 𝑦 and 𝑋; let 𝑎 > 0 be a 

real number and 𝛾 ∈ 𝑅𝑝 be a unit basis vector; let 𝐴 be a 𝑝 × 𝑝 nonsingular matrix; finally, the 

order 𝜏 ∈ [0,1]. Then, three specific properties are showed. 

1) Scale equivariance: 

𝛽̂ሺ𝜏; 𝑎𝑦; 𝑋ሻ = 𝑎𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ  

𝛽̂ሺ𝜏; −𝑎𝑦;𝑋ሻ = 𝑎𝛽̂ሺ1 − 𝜏; 𝑦; 𝑋ሻ   

2) Shift equivariance: 

𝛽̂ሺ𝜏; 𝑦 + 𝑋𝛾;𝑋ሻ = 𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ + 𝛾 

3) Equivariance to reparameterization of design: 

𝛽̂ሺ𝜏; 𝑦; 𝑋𝐴ሻ = 𝐴−1𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ 

Table 3.1: Comparison between Linear Regression and Quantile Regression 
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Another equivariance property is described by authors as very important to show the great 

potential of quantile regression. Let ℎሺ. ሻ be a nondecreasing monotonic function on 𝑅, and Y 

a random variable, then the quantiles of the transformed random variable ℎሺ𝑌ሻ  are simply the 

transformed quantiles of the original Y (property not always shared with the mean). This 

property is formalized in the following point. 

4) Equivariance to monotone transformations: 

𝒬𝜏|𝑥ሺℎሺ𝑌ሻሻ = ℎሺ𝒬𝜏|𝑥ሺ𝑌ሻሻ 

This property follows from observing that: 

Prሺ𝑌 < 𝑦|𝑥ሻ = Pr ሺℎሺ𝑌ሻ < ℎሺ𝑦ሻ|𝑥ሻ 

and has many important implications. When considering a transformation of the response 

variable 𝑦, such as ℎሺ𝑦ሻ (e.g. a logarithmic transformation), some important assumptions in 

linear regression model (e.g. linearity in model specification, homoskedasticity of the new 

dependent variable, or the normality assumption for residuals) may be violated, because the 

OLS estimator does not enjoy the property 4), while quantile regression estimator does. For 

instance, if a transformation of 𝑦 is performed, such as 𝐹 = 𝑒𝑦, and if 𝒬𝜏ሺ𝑦|𝑋ሻ = 𝑋𝛽𝜏, 

then: 𝒬𝜏ሺ𝐹|𝑋ሻ = 𝐹ሺ𝒬𝜏ሺ𝑦|𝑋ሻሻ = 𝑒𝑋𝛽𝜏 . 

In the multiple regression, another basic condition, called “subgradient optimality condition” 

was analytically described by Koenker and Bassett. The details will not be covered in this 

context, but the general conclusions, since this condition crucially characterizes the quantile 

regression. As shown by authors, the observations ሺ𝑦, 𝑋ሻ are said to be ‘in general position’ if, 

for any ℎ ∈ ℋ: 

𝑦𝑖 − 𝑥𝑖𝑏ሺℎሻ ≠ 0        ∀𝑖 ∉ ℎ 

where ℎ is an index 𝑝-element subsets of the first 𝑛 integers, 𝑋ሺℎሻ is a submatrix of the 

nonsingular matrix X with rows {𝑥𝑖: 𝑖 ∈ ℎ}, and 𝑦ሺℎሻ is a 𝑝-vector with coordinates {𝑦𝑖: 𝑖 ∈

ℎ}. Then, coefficients vector in its basic form is  𝑏ሺℎሻ =  𝑋ሺℎሻ−1𝑦ሺℎሻ. If ሺ𝑦, 𝑋ሻ are in general 

position, there exists a solution to quantile regression optimization problem of the form 𝑏ሺℎሻ =

 𝑋ሺℎሻ−1𝑦ሺℎሻ, if and only if: 

ሺ𝜏 − 1ሻ𝟏𝑝 ≤ 𝜉ℎ ≤ 𝜏𝟏𝑝 

where 𝜉ℎ = σ𝑖∈ℎ𝜓𝜏ሺ𝑦𝑖 − 𝑥𝑖
′𝑏ሺℎሻሻ𝑥𝑖

′𝑋ሺℎሻ−1 and 𝜓𝜏= 𝜏 − 𝐼𝑢<0, with ℎ the complement of ℎ. 

Moreover, if the inequalities are strict, 𝑏ሺℎሻ is a unique solution. 

Finally, there is another important characteristic of sample quantile regression, that is its 

robustness: an alteration in the order statistics above the median in such way that they remain 

above the median, does not change the position of the same median. Robustness properties are 

very important for quantile estimation and inference, whose outcomes and distributions are not 

influenced by the order statistics or specific observations, but rather by the local behavior of 

the conditional distribution of the response near the specified quantile. Therefore, any of the 𝑦 

observations may be arbitrary altered without causing changes in the initial solution 𝛽𝜏̂. At the 

same time, there is a higher sensitivity of quantile regression estimates to the sign of the 

residuals, which matter in affecting it, and to the observations {𝑥𝑖}. Authors explained that 𝑦 

can be freely moved up or down provided that the fitted 𝜏-th quantile regression plane is not 

crossed without altering the fit, and this highlights that observations are never neglect, but they 

equally contribute in the estimation process. This property has been formalized in such a way: 

𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ = 𝛽̂ሺ𝜏; 𝑋𝛽̂ሺ𝜏; 𝑦; 𝑋ሻ + 𝐷ሺ𝑦 − 𝑋𝛽̂ሺ𝜏; 𝑦; 𝑋ሻሻ𝑦; 𝑋ሻ 
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where 𝐷 is a diagonal matrix with nonnegative elements 𝑑𝑖. This is an important feature, even 

for the interpretation of the quantile regression. 

Moreover, in those cases in which conditional densities of the response variable are 

heterogenous and change with observations, there might be loss of robustness and efficiency of 

the estimator. The introduction of a suitably weighted quantile regression (WQR) model, which 

combines strengths across multiple quantile regressions by using data-dependent weights at 

different quantiles obtained from a sparsity function, may lead to an efficiency improvement. 

WQR estimates are more robust and efficient, but computationally more costly. In particular, 

the weighted estimator is the solution to the optimization problem: 

𝛽𝜏
𝑊𝑄𝑅

= arg min𝛽∈ℝ𝐾σ𝑖=1
𝑛 𝑓𝑖ሺ𝜉𝑖ሻ𝜌𝜏ሺ𝑦𝑖 − 𝑥𝑖

′𝛽𝜏ሻ 

where 𝑓𝑖ሺ𝜉𝑖ሻ represents the weights associated to 𝜉𝑖 for each observation 𝑖 = 1,… , 𝑛. 

Let 𝜀 = ሺ𝜀1, … , 𝜀𝑛ሻ𝑇 be a vector of random errors, 𝐹ሺ𝜀ሻ its distribution function, 𝑓ሺ𝜀ሻ its density 

function, and {𝜏𝑘 , 𝑘 = 1,… , 𝐾} a set of 𝐾 quantiles. Then, WQR weights 𝑤𝑘  can be defined 

as: 

𝑤𝑘 =
𝑓ሺ𝐹ሺ𝜏𝑘ሻ

−1ሻ

ඥ𝜏𝑘ሺ1 − 𝜏𝑘ሻ
 

where 1/𝑓ሺ𝐹ሺ𝜏𝑘ሻ
−1ሻ is called “sparsity function”, or “quantile-density function, and it is the 

density of each observation 𝑖 at the quantile of interest 𝑘. Hence, the WQR estimator is more 

efficient and reliable than the simple QR estimator since the sample information is processed 

in a more effective way through the inclusion of normalized weights 𝑤𝑘
𝑁 into estimation: 

𝑤𝑘
𝑁 =

𝑤𝑘

σ𝑘𝑤𝑘
 

Given 𝜏 = 𝜏𝑘 , the solution to the previous optimization problem is the WQR estimate, which 

can be computed as: 

𝛽̂𝜏
𝑊𝑄𝑅 = σ𝑘𝑤𝑘

𝑁𝛽𝜏𝑘 

 

3.1.2 Interpretation and Inference in the Quantile Regression  
As said, while OLS regression is the most widely used parametric model, relying on 

assumptions not often met, quantile regression requires no particular assumption on the 

distribution of the residuals, and allow to survey different aspects of the relationship between 

the response variable and the explanatory variables. Therefore, quantile regression model and 

coefficients require a different interpretation with respect to linear regression model. 

Indeed, in a standard linear regression model, such as: 

𝔼ሺ𝑌|𝑋 = 𝑥ሻ = 𝑥′𝛽 

𝛽 is the expected change in 𝑦 due to a unit change in 𝑥, when all the other covariates are held 

constant. It is the expected value of the partial derivative of 𝑦 with respect to 𝑥𝑗: 

𝜕𝔼ሺ𝑌|𝑋 = 𝑥ሻ

𝜕𝑥𝑗
= 𝛽𝑗  

On the other hand, a quantile regression model with a monotone transformation of the 

response variable (remind the property of equivariance to monotone transformations: 

𝒬𝜏|𝑋=𝑥ሺℎሺ𝑌ሻሻ = ℎሺ𝒬𝜏|𝑋=𝑥ሺ𝑌ሻሻ), such as: 

𝒬𝜏|𝑋=𝑥ሺℎሺ𝑌ሻሻ = 𝑥′𝛽𝜏 

will have the following partial derivative: 
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𝜕𝒬𝜏|𝑋=𝑥ሺℎሺ𝑌ሻሻ

𝜕𝑥𝑗
=

𝜕ℎ−1ሺ𝑥′𝛽ሻ

𝜕𝑥𝑗
 

For example, with a logarithmic transformation:  

𝒬𝜏|𝑋=𝑥ሺ𝑙𝑜𝑔ሺ𝑌ሻሻ = 𝑥′𝛽𝜏 

there will be: 

𝜕𝒬𝜏|𝑋=𝑥ሺℎሺ𝑌ሻሻ

𝜕𝑥𝑗
= 𝛽𝑗𝑒

𝑥′𝛽𝜏  

The interpretation of the coefficients in the quantile regression is analogous to that in the linear 

standard regression: while in the latter, coefficients express the impact of a unit change in the 

explanatory variable on the conditional mean of response variable, in the former one, they 

express the impact on the conditional 𝜏th quantile. Typically, predictive models of socio-

economic phenomena tend to focus on the central tendency through the conditional mean of the 

variable of interest, often by assuming a steady distribution over time and over observations. 

Actually, the relationship at different points in the conditional distribution of the variable of 

interest does change within many frameworks, and quantile regression model fits very well 

with the description of it. Therefore, while the mean regression helps to understand how the 

conditional mean of 𝑦 is affected by covariates 𝑋, quantile regression helps to identify an impact 

of covariates on 𝑦 at each quantile of its conditional distribution: this allows to get a complete 

description and view about the distribution of 𝑦 conditional on each value of 𝑋, and then to 

understand the deep relationship among variables. This makes the quantile estimation method 

a very effective tool for exploration of the potential effects of a set of covariates 𝑋 on the whole 

distribution of 𝑦, not only on its mean. For this reason, unlike standard regression, the quantile 

regression allows to model a family of curves, that need to be interpreted, and to analyze 

particular segments of the conditional distributions. Moreover, it allows to test the I.I.D. error 

assumption of OLS estimator: if the slope quantile regression coefficients randomly fluctuate 

around a constant level, and at the same time the intercept systematically increases with 𝑥, then 

there is evidence of homoskedasticity (otherwise, there is heteroskedasticity). 

Quantile regression methods have been widely used in economics and finance (e.g. to study the 

impact of some specific determinants and policies on wages, on students’ performance or on 

income distribution) as a flexible statistical tool. The point is that explanatory variables are 

unlikely to affect the response variable so as to shift the entire distribution equally by a fixed 

quantity, but rather so as to hit in different ways and with different intensities each quantile 

class of the dependent variable. Such pattern can be surveyed within the quantile regression 

framework. 

It may be useful to understand the utility of the quantile regression, and the best circumstances 

to adopt it. In general, the quantile regression is a valid option whenever the conditional mean 

fails to fully and reliably capture the data pattern:  

• in case of skewed data and asymmetric distribution, it allows to study the true 

distributional relationship of variables; 

• in case of multimodal data and data with outliers, it maintains its robustness; 

• in case of heteroskedasticity, it fits very well in dealing with it. 

Therefore, quantile regression allows to get a more comprehensive analysis of the relationship 

among variables, and its biggest advantage is the robustness to outliers in the response variable. 

Moreover, it may be quite useful in those cases with high complexity of interactions but a weak 
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relationship between the means of variables (e.g. in ecology), as well as when percentile curves 

and impacts on extreme values requires a particular focus (e.g. in finance).  

In economics, the predictive quantile regression model allows to investigate potentially 

nonlinear dynamics among macroeconomic variables, without assuming a parametric 

distribution, but letting the shape of the distribution fully depend on the predictors. Indeed, the 

quantile model detects the effects of predictors on different parts of the response distribution, 

and this allows to predict the quantiles. In this regard, this model seems to be particularly 

suitable for investigating the impact of systemic risk on macroeconomic shocks’ tail, and useful 

for the issue of reliable early warning signals for systemic risks at appropriate forecasting 

horizons. 

After showing the utility of quantile regression and the characteristics in the interpretation of 

coefficients, it is necessary to understand how to elicit robust and reliable statistical conclusions 

from data analysis. In this regard, conditional quantile regression seems to offer an easier 

interpretable objective for statistical analysis. Koenker and Bassett described the relevant 

literature on the asymptotic theory of quantile regression, and used it to present reliable tools 

for inference. 

The basic asymptotic property is the consistency. Given the parametric form of the conditional 

quantile function of 𝑌: 

𝒬𝜏|𝑋=𝑥ሺ𝑌ሻ = 𝑔ሺ𝑥, 𝛽𝜏ሻ 

then, its estimator: 

𝛽𝜏̂ = arg min𝛽∈ℝ𝐾σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝑔ሺ𝑥, 𝛽𝜏ሻሻ 

converges in probability to 𝛽𝜏: 

∥ 𝛽𝜏̂ − 𝛽𝜏 ∥→ 0  as  𝑛 → ∞ 

In an ordinary univariate sample quantile framework, with: 

𝜉𝜏̂ = arg min𝜉∈ℝ𝐾σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝜉𝜏ሻ 

it can be proved from the monotonicity of the sub-gradient condition that: 

𝜉𝜏̂ → 𝜉𝜏  as  𝑛 → ∞ 

given the random sample {𝑦𝑖 , … , 𝑦𝑛} got from the distribution 𝐹 with a unique 𝜏-th quantile, 

namely 𝜉𝜏 = 𝐹𝜏
−1. The form of the distribution of 𝜉𝜏̂ depends on the behavior of 𝜉𝜏 near 𝜏, and 

it is shown that, if density of 𝐹, 𝑓ሺ𝐹𝜏
−1ሻ, is bounded away from 0 and ∞ near 𝜏, then: 

√𝑛൫𝜉𝜏̂ − 𝜉𝜏൯~𝑁ሺ0,𝜔2ሻ 

with 𝜔2 = 𝜏ሺ1 − 𝜏ሻ/𝑓ሺ𝐹𝜏
−1ሻ2. 

Under I.I.D. sampling assumption, in order to have convergence, 𝜉𝜏̂ → 𝜉𝜏, a sufficient condition 

is: 

𝐹ሺ𝜉𝜏 − 𝜀ሻ < 𝜏 < 𝐹ሺ𝜉𝜏 + 𝜀ሻ    for all 𝜀 > 0  

Under independent but not identical distributed sampling, with the sequence of random 

variables {𝑋𝑖}𝑖=1
𝑛  distributed as {𝐹𝑛𝑖}𝑖=1

𝑛 , the consistency of the 𝜏-th sample quantile holds if: 

√𝑛ሺ𝑎𝑛ሺ𝜀ሻ − 𝜏ሻ → ∞ 

√𝑛ሺ𝜏 − 𝑏𝑛ሺ𝜀ሻሻ → ∞ 

with: 

𝑎𝑛ሺ𝜀ሻ = 𝐹𝑛ሺ𝜉𝜏 − 𝜀ሻ 

𝑏𝑛ሺ𝜀ሻ = 𝐹𝑛ሺ𝜉𝜏 + 𝜀ሻ 

where 𝐹𝑛 = σ𝑖=1
𝑛 𝐹𝑛𝑖/𝑛. 
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In a linear quantile regression model, 𝒬𝜏|𝑥ሺ𝑌ሻ = 𝑥′𝛽𝜏, with the 𝜏-th conditional quantile 

function 𝑌|𝑥, necessary and sufficient conditions to have 𝛽𝜏̂ → 𝛽𝜏 are √𝑛ሺ𝑎𝑛ሺ𝜀ሻ − 𝜏ሻ → ∞ and 

√𝑛ሺ𝜏 − 𝑏𝑛ሺ𝜀ሻሻ → ∞, where: 

𝑎𝑛ሺ𝜀ሻ = σ𝐹𝑛𝑖ሺ𝑥𝑖𝛽𝜏 − 𝜀ሻ/𝑛 

𝑏𝑛ሺ𝜀ሻ = σ𝐹𝑛𝑖ሺ𝑥𝑖𝛽𝜏 + 𝜀ሻ/𝑛 

The description of the finite sample theory of the quantile regression estimator and the 

asymptotic theory is usually preparatory to the theory of inference for the univariate quantiles. 

Koenker and Bassett described main inference tools for quantile regression: Wald tests, rank 

tests, likelihood ratio type tests and other resampling methods. 

The Wald test is designed to test for the equality of slope coefficients across quantiles, through 

the survey of inter-quantile ranges of two samples. Indeed, while linear regression model 

assumes identical conditional distributions of the dependent variable, implying no variation in 

the slope coefficients of different quantiles, the quantile regression allows them to vary across 

quantiles. In a two-sample model, with 𝑛1 observations in the first sample and 𝑛2 observations 

in the second sample, and a binary variable 𝑥𝑖 = 1 for the second sample, such that:  

𝑌𝑖 = 𝛽1 + 𝛽2𝑥𝑖 + 𝑢𝑖 

the 𝜏-th quantile regression coefficient, 𝛽2, is the difference between the 𝜏-th sample quantiles 

of the two samples. Then, the null hypothesis requires the equality of the slope coefficients 

across 𝜏1 and 𝜏2, namely the ሺ𝜏2 − 𝜏1ሻ-interquantile ranges to be equal for each sample: 

Η0:   𝛽2ሺ𝜏2ሻ − 𝛽1ሺ𝜏1ሻ = ൫𝒬2ሺ𝜏2ሻ − 𝒬1ሺ𝜏2ሻ൯ − ൫𝒬2ሺ𝜏1ሻ − 𝒬1ሺ𝜏1ሻ൯ 

                                                  = ൫𝒬2ሺ𝜏2ሻ − 𝒬2ሺ𝜏1ሻ൯ − ൫𝒬1ሺ𝜏2ሻ − 𝒬1ሺ𝜏1ሻ൯ = 0  

The Wald test, based on the asymptotic normality, is: 

𝑇𝑛 =
𝛽̂2ሺ𝜏2ሻ − 𝛽̂1ሺ𝜏1ሻ

𝜎̂ሺ𝜏1, 𝜏2ሻ
 

where the asymptotic variance of 𝛽̂2ሺ𝜏2ሻ − 𝛽̂1ሺ𝜏1ሻ is: 

𝜎2ሺ𝜏1, 𝜏2ሻ = [
𝜏1ሺ1 − 𝜏1ሻ

𝑓ሺ𝐹−1ሺ𝜏1ሻሻ2
− 2

𝜏1ሺ1 − 𝜏2ሻ

𝑓൫𝐹−1ሺ𝜏1ሻ൯𝑓൫𝐹−1ሺ𝜏2ሻ൯
+

𝜏2ሺ1 − 𝜏2ሻ

𝑓ሺ𝐹−1ሺ𝜏2ሻሻ2
] [

𝑛

𝑛𝑛1 − 𝑛1
2] 

In general, there are several tests that try to capture the significance of the treatment effect in 

these two-sample models. For instance, some tests, like the Mann-Whitney-Wilcoxon tests, 

survey the location shift alternatives, others survey the scale shift alternatives, and still others 

evaluate non-parametric alternatives.  

Rank-based inference, that is rank tests based on the dual quantile regression process, seems to 

be particularly useful for a wide variety of quantile regression inference problems, including 

the creation of confidence intervals for specific quantile regression coefficient estimates. 

Koenker and Bassett studied in deep the details and properties of this kind of tools for inference. 

An alternative to the Wald test and rank test for quantile regression is the likelihood ratio test, 

based on the value of the objective function under null and alternative models. Given the linear 

model 𝑦𝑖 = 𝑥𝑖
′𝛽 + 𝑢𝑖 with 𝑢𝑖~𝑖. 𝑖. 𝑑., the median regression coefficient can be tested such that: 

Η0:  𝑅𝛽 = 𝑟 

Letting 𝑉̂𝜏 be the value of the objective function under the unrestricted minimizing estimator 

𝛽̂0.5: 

𝑉̂𝜏 = min𝛽∈ℝ𝑝σ𝜌𝜏ሺ𝑦𝑖 − 𝑥𝑖
′𝛽𝜏ሻ 

and 𝑉̃𝜏 the function under the restricted estimator 𝛽̃0.5: 

𝑉̃𝜏 = min𝛽∈ℝ𝑝|𝑅𝛽=𝑟σ𝜌𝜏ሺ𝑦𝑖 − 𝑥𝑖
′𝛽𝜏ሻ 
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then, it is applied the statistic: 

𝑇𝑛 =
8ሺ𝑉̃0.5 − 𝑉̂0.5ሻ

𝑠0.5
 ~𝜒𝑞

2 ሺunder Η0ሻ  

where 𝑠0.5 is the value obtained by the sparsity function when 𝜏 =0.5, and 𝑞 is the rank of 𝑅. 

Finally, many resampling methods, like the bootstrap method, have been described in literature 

for the construction of confidence intervals for quantile estimators. These methods are very 

powerful because they allow the estimation of confidence intervals and other elements without 

special assumptions, and this is particularly useful in case of small sample sizes or when the 

asymptotic approximation on the variable of interest is difficult to elicit.  

A last point to be described concerns the goodness of fit and the model performance in the 

quantile regression framework. There are at least three important measures that are worth to be 

mentioned. 

The first measure is the coefficient of determination 𝑅2
, estimated as 1 minus the ratio between 

the sum of absolute deviations in the fully parameterized models and the sum of absolute 

deviations in the unconditional quantile model (unlike the standard linear regression, where 

variances of squared deviations are taken into account):   

𝑅2 = 1 −
σ𝑖=1

𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝛼̂ − 𝑥𝑖
′𝛽̂𝜏ሻ

σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝑞̂𝜏ሻ

 

This formula measures the typical “quantile loss” in terms of absolute deviations based on 

conditioning information relative to the “losses” based on the historical unconditional quantile 

estimate. It should be noted that for the in-sample fit, 𝑅2 lies between 0 and 1, while for the 

out-of-sample fit, 𝑅2 may be negative, if an unsuitable model is worse than a constant 

unconditional quantile fit.   

A second measure is the average absolute error of prediction (𝐴𝑇𝐴𝐸), which can be interpreted 

as the mean squared error (𝑀𝐸𝑆) of the standard linear model: 

𝐴𝑇𝐴𝐸 = σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝛼̂ − 𝑥𝑖

′𝛽̂𝜏ሻ/𝑁 

Therefore, the smaller the 𝐴𝑇𝐴𝐸 the better the performance. 

The last measure is the ratio of quantile exceedance (𝑅𝑄𝐸𝑋): 

𝑅𝑄𝐸𝑋 = σ𝑖=1
𝑛 𝟏𝑦𝑖<𝛼̂+𝑥𝑖

′𝛽̂𝜏
/𝑁 

This is a measure of calibration, and a well calibrated model has a 𝑅𝑄𝐸𝑋 close to 𝜏. 

 

 

3.2  Mixed-Data Sampling Regression Models 
The second basic class of tools needed to implement the early warning indicator is represented 

by the Mixed Data Sampling regression models, or MIDAS models, introduced by Ghysels et 

al. (“The MIDAS Touch: Mixed Data Sampling Regression Models”, 2002). MIDAS models, 

used both in macroeconomic analysis and in financial applications, are derived by combining 

elements from temporal aggregation literature and distributed lag models, with a weight 

function which tracks the high frequency lags of covariates.  

The distributed lag model, which is used to estimate current values of a response variable based 

on both the current values and the lagged values of covariates, after the aggregation of higher 

frequency values, usually takes the form: 

𝑦𝑡𝑞 = 𝑎 + 𝐵ሺ𝐿ሻ𝑥𝑡𝑞 + 𝜀𝑡𝑞  



 81 

where 𝐵ሺ𝐿ሻ is the lag polynomial operator, and 𝑡𝑞 = 1,…𝑇𝑞. The response to high frequency 

explanatory variable is modeled using distributed lag polynomials in order to avoid the problem 

of parameters proliferation. MIDAS models are quite similar to distributed lag models, but there 

is a crucial difference: the dependent variable, sampled at lower frequencies, is regressed on 

distributed lags of the covariates, sampled at higher frequencies, and no aggregation is 

performed. In fact, variables sampled at higher frequencies contain valuable information with 

higher predictive power than that got from aggregated models. Therefore, MIDAS models are 

tightly parameterized, reduced form regression models for time series that involve processes 

and data sampled at different frequencies, where explanatory variables have higher frequency. 

This type of regression allows to address those common situations where data are not sampled 

at the same frequency, and in particular when the variable of interest is sampled at lower 

frequency. Usually, in these cases, an aggregation of higher frequency data is done in order to 

handle data at the same frequency, but this causes an information loss that makes the estimation 

less efficient. For instance, some macroeconomic data is sampled monthly (e.g. many monetary 

variables and price) while other data is sampled annually or quarterly (e.g. real GDP). If the 

analyst wants to study the relationship between inflation and economic growth, they can either 

aggregate inflation data to a quarterly sampling frequency or apply a MIDAS regression which 

combines monthly and quarterly data.  

Here, a brief description of the MIDAS model under an analytical point of view. Let 𝑌𝑡 be the 

dependent variable sampled at some interval of reference, that is a fixed sampling frequency 

(annually, monthly, etc.), and let 𝑋ሺ𝑚ሻ be the explanatory variable sampled at a higher 

frequency, namely 𝑚 times faster than the frequency of 𝑌𝑡 (e.g., if 𝑌𝑡 are annual data, and 𝑋𝑡
ሺ𝑚ሻ

 

are quarterly data, then it is sampled 𝑚=4 times faster than 𝑌𝑡). Given the lag operator 𝐿1/𝑚 

such that 𝐿𝑗/𝑚𝑋𝑡
ሺ𝑚ሻ

=𝑋𝑡−𝑗/𝑚
ሺ𝑚ሻ

, and given a polynomial of length 𝑗𝑚𝑎𝑥 as a weighting function, 

𝐵ሺ𝐿1/𝑚; 𝜃ሻ = σ𝑗=1
𝑗𝑚𝑎𝑥

𝐵𝑗ሺ𝜃ሻ𝐿𝑗/𝑚, where 𝐿𝑗/𝑚 makes values of 𝑋𝑡
ሺ𝑚ሻ

lag by 𝑗/𝑚 periods, then the 

simplest linear MIDAS regression can take the form: 

𝑌𝑡 = 𝛽0 + 𝛽1𝐵ሺ𝐿1/𝑚; 𝜃ሻ𝑋𝑡
ሺ𝑚ሻ

+ 𝜀𝑡
ሺ𝑚ሻ

 

For example, this MIDAS model allows to regress yearly 𝑌𝑡 on quarterly or monthly 𝑋𝑡
ሺ𝑚ሻ

, up 

to 𝑗𝑚𝑎𝑥 lags.  The parametrization of lag coefficients in 𝐵ሺ𝐿1 𝑚Τ ; 𝜃ሻ requires the usage of a 

parameter vector function 𝜃 (Almon lag function, Almon exponential lag function, Beta 

polynomial function) and a suitable information criterion (Akaike, Schwarz or Hannan-Quinn). 

Usually, the number of lags of 𝑋𝑡
ሺ𝑚ሻ

 may be really large, and one might be forced to deal with 

a huge dataset and many frequencies. Within this framework, the parameter proliferation 

problem arises: if the coefficients of the lagged polynomial were not restricted, such that 𝐵 

were not function of 𝜃, then the number of parameters to estimate would be very high, and their 

interpretation may be unfeasible. For example, to capture the impact of daily data on a 

dependent variable sampled annually, then 365 coefficients would be required. It is clear that 

some sort of restriction upon the structure of the coefficients must be applied. As said, a first 

solution is to aggregate the highest frequency data in order to have the whole dataset sampled 

with the same (lowest) frequency, at a cost of not fully exploiting all available information. For 

this reason, the coefficients of the polynomial in 𝐿1 𝑚Τ
 are introduced by a known function 

𝐵ሺ𝐿1 𝑚Τ ; 𝜃ሻ of a few parameters summarized in a vector θ, and this function requires a 
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specification. Finally, 𝛽1 expresses the overall impact of lagged 𝑋𝑡
ሺ𝑚ሻ

 on 𝑌𝑡. In general, the 

MIDAS regression requires a nonlinear least squares estimation (NLS). 

A more explicit specification for the weighting function 𝐵ሺ𝐿1/𝑚; 𝜃ሻ is: 

𝐵ሺ𝐿1/𝑚; 𝜃ሻ = σ𝑗=0
𝐽

𝑐ሺ𝑗; 𝜃ሻ𝐿𝑚
𝑗

= σ𝑗=0
𝐽 𝜑ሺ𝑗; 𝜃ሻ

σ𝑗=1
𝐽 𝜑ሺ𝑗; 𝜃ሻ

𝐿𝑚
𝑗

 

with 𝐵ሺ1; 𝜃ሻ = σ𝑗=0
𝐽 𝑐ሺ𝑗; 𝜃ሻ = 1, where the lagged coefficients 𝜃 of 𝑐 need a parametrization. 

The smart and optimal parameterization of the lagged coefficients is one of the main key 

MIDAS features. Many types of parametrizations have been proposed in accordance with the 

number of coefficients and the function shaping: 

• the linear scheme: 

𝑐ሺ𝑗; 𝜃ሻ = 1/𝐽; 

• the hyperbolic scheme, like the normalized exponential Almon lag polynomial, 

expressed with an exponential function: 

𝑐ሺ𝑗; 𝜃ሻ =
𝑒𝜃1𝑗+⋯+𝜃𝑄𝑗𝑄

σ𝑗=1
𝐽 𝑒𝜃1𝑗+⋯+𝜃𝑄𝑗𝑄  

• the not normalized Almon lag polynomial specification of order 𝑃, where the sum of 

individual weights are not equal to 1:  

𝛽1𝑐ሺ𝑗; 𝜃 = [𝜃0, … , 𝜃𝑃]ሻ = σ𝑝=1
𝑃 𝜃𝑝𝑗𝑝 

or in matrix form: 

[
 
 
 
𝑐1

𝑐2
𝑐3

⋮
𝑐𝐽]

 
 
 

=

[
 
 
 
 
1
1
1

1
2
3

1
22

32
⋯

1
2𝑃

3𝑃

⋮ ⋱ ⋮
1 𝐽 𝐽2 ⋯ 𝐽𝑃 ]

 
 
 
 

[

𝜃0

𝜃1

⋮
𝜃𝑝

] 

where Almon lags can be computed via OLS estimation after having properly 

transformed high frequency data regressors (slope coefficients can then be computed by 

rescaling weights); 

• the normalized beta probability density function, unrestricted (𝑈𝑛) and restricted (𝑅) 

cases with non-zero ሺ𝑛𝑧ሻ and zero ሺ𝑧ሻ last lag (the best fit with a high number of 

MIDAS lags): 

𝑐𝑗
𝑈𝑛,𝑛𝑧 = 𝑐ሺ𝑗; 𝜃 = [𝜃1, 𝜃2, 𝜃3]ሻ =

𝑑𝑗
𝜃1−1

ሺ1 − 𝑑𝑗ሻ
𝜃2−1

σ𝑗=1
𝐽 𝑑𝑗

𝜃1−1
ሺ1 − 𝑑𝑗ሻ𝜃2−1

+ 𝜃3 

𝑐𝑗
𝑈𝑛,𝑧 = 𝑐ሺ𝑗; 𝜃 = [𝜃1, 𝜃2, 0]ሻ 

𝑐𝑗
𝑅,𝑛𝑧 = 𝑐ሺ𝑗; 𝜃 = [1,𝜃2, 𝜃3]ሻ 

𝑐𝑗
𝑅,𝑧 = 𝑐ሺ𝑗; 𝜃 = [1, 𝜃2, 0]ሻ 

with 𝑑𝑗 = 𝑗/ሺ𝐽 + 1ሻ; 

• the not normalized polynomial specification with step functions: 

𝛽1𝑐ሺ𝑗; 𝜃 = [𝜃1, … , 𝜃𝑃]ሻ = 𝜃1𝐼𝑗∈[𝛼0,𝛼1] + σ𝑝=2
𝑃 𝜃𝑝𝐼𝑗∈ሺ𝛼𝑝−1,𝛼𝑝] 

with 𝛼0 = 1 < 𝛼1 < ⋯ < 𝛼𝑃 = 𝐽 and 𝐼𝑗∈[𝛼𝑝−1,𝛼𝑝] = ൜
1 𝑎𝑠  𝛼𝑝−1 ≤ 𝑗 ≤𝛼𝑝

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
 

In any case, the shape of the weighting function can be derived by data: weights attached to 

different lags can be hump-shaped, strongly declining or moderately increasing for different 
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values of parameters, and this flexibility is a strength point of the MIDAS framework. If the 

parametrization is based on a simple linear distributed lag function, there are no restrictions on 

the MIDAS model, which becomes U-MIDAS model (Unrestricted MIDAS model): one 

estimates the individual unconstrained coefficients by using a simple regression program. It has 

been shown that U-MIDAS model works better for small values of 𝑚 (e.g. quarterly/monthly 

data). The linear lag polynomial is: 

𝑐ሺ𝐿ሻ𝓎𝜏 = 𝛿ሺ𝐿ሻ𝑥𝜏−1
𝑚 + 𝜖𝜏 

where {𝓎𝜏}𝜏 is the disaggregated process {𝑦𝑡}𝑡, while 𝑐ሺ𝐿ሻ = 1 − 𝑐1𝐿
1 − ⋯− 𝑐𝑝𝐿

𝑝  and 

𝛿ሺ𝐿ሻ = ሺ𝛿0 + 𝛿1𝐿
1 + ⋯+ 𝛿𝑑𝐿𝑑ሻ are the polynomials of order, respectively, 𝑝 and 𝑑. There is 

evidence that the U-MIDAS model fits quite well with data when the gap between lower 

frequency and higher frequency is not large (e.g. month to quarter). In fact, if frequency 

mismatch is small (e.g. quarterly to monthly), distributed lag function 𝐵ሺ𝐿1 𝑚Τ ; 𝜃ሻ can be 

removed, since the introduction of higher frequency variables does not increase massively the 

parameter space (as it does with daily variables). A general linear U-MIDAS model to 

implement in this case is: 

𝑦𝑡,𝜏 = 𝛽0,𝜏 + 𝛽1,𝜏𝑥𝑡,1 + 𝛽2,𝜏𝑥𝑡,2 + 𝛽3,𝜏𝑥𝑡,3 + 𝜀𝑡 

where the regressand is regressed at the quarterly frequency on the set of low-frequency 

regressors up to three months earlier. As seen, the big advantage of MIDAS model is the 

possibility to exploit the within-period information and, in the unrestricted framework, without 

dealing with the proliferation problem.  

The MIDAS model can be extended to the multivariate framework, in which 𝑛 explanatory 

variables are sampled regardless of frequencies: 

𝑦𝑡 = 𝛽0 + σ𝑖=0
𝑛 𝛽𝑖𝐵ሺ𝐿; 𝜃𝑖ሻ𝑋𝑡,𝑖

ሺ𝑚𝑖ሻ + 𝜀𝑡
ሺ𝑚ሻ

 

or in matrix form: 

𝑌 = 𝑋ሺ𝜃ሻ𝛽 + 𝜀 

with parameters vectors 𝛽 = ሺ𝛽0, 𝛽1, … , 𝛽𝑛ሻ′ and  𝜃 = ሺ𝜃1, … , 𝜃𝑛ሻ, the residual vector 𝜀 =

ሺ𝜀1, … , 𝜀𝑇ሻ′, and the 𝑇 × ሺ𝑛 + 1ሻ matrix of explanatory variable: 

𝑋ሺ𝜃ሻ = (

1 𝐵ሺ𝑚1ሻሺ𝐿; 𝜃1ሻ𝑥1,1
ሺ𝑚1ሻ ⋯ 𝐵ሺ𝑚𝑛ሻሺ𝐿; 𝜃𝑛ሻ𝑥1,𝑛

ሺ𝑚𝑛ሻ

⋮ ⋱ ⋮

1 𝐵ሺ𝑚1ሻሺ𝐿; 𝜃1ሻ𝑥𝑇,1
ሺ𝑚1ሻ ⋯ 𝐵ሺ𝑚𝑛ሻሺ𝐿; 𝜃𝑛ሻ𝑥𝑇,𝑛

ሺ𝑚𝑛ሻ
) 

The forecasting model, which depends on forecasting horizon ℎ, can be expressed as: 

𝑦̂𝑇+ℎ|𝑇 = 𝛽̂0 + 𝛽̂1𝐵ሺ𝐿1/𝑚; 𝜃ሻ𝑥𝑇
ሺ𝑚ሻ

 

As expected, MIDAS regression is a powerful tool in the hands of analysts, because it enables 

the interdependence analysis in case of variables with different frequencies, such as the high-

frequency returns with other macro-financial data observed at lower frequencies. As it has been 

proven, the regression resulting from the aggregation of all available data to common least 

frequencies will always be less efficient than a MIDAS regression that fully exploits the 

information from 𝑋𝑡
ሺ𝑚ሻ

, and this is the big advantage of MIDAS framework. Of course, this 

framework is perfectible, and many researchers improved it and adapted it according different 

needs and circumstances. For example, Engle and Rangel elaborated in 2008 the GARCH-

MIDAS models, that allowed to incorporate information on the macroeconomic environment 

into the long-run component. In 2012, Conrad and Loch used GARCH-MIDAS model to 

investigate the relationship between the long-term market risk and the macroeconomic 

environment, showing how macroeconomic variables reflect information on market risks.  
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There are many empirical studies that link mixed data frequency variables, especially in a 

predictive regression framework. For instance, in the macroeconomics, low frequency macro 

variables, such as GDP growth, observed annually or quarterly, may be regressed on high 

frequency financial variables, such as the volatility of stock returns, observed daily. These high 

frequency variables become leading indicators of economic cycle, and MIDAS models seem to 

be quite adequate in dealing with those. In financial economics, MIDAS models have been 

implemented to link high frequency risk measures with low frequency returns. A wide empirical 

literature on predictive regression found links between low frequency excess stock returns and 

high frequency volatility predictors. 

The real novelty item proposed by this thesis is the application of the quantile regression to a 

set of variables with different sampling frequencies. Therefore, this approach should combine 

the two techniques described above, giving rise to the MIDAS quantile regression. As said, 

quantile regression models the conditional quantile of the dependent variable, describing the 

relationship at different points in the conditional distribution of the variable of interest, and 

moving the focus from the conditional mean to the full distribution. In particular, previous 

within-period information, got by a set of low-frequency explanatory variables, is used to 

estimate current values of the high-frequency variable of interest, usually published by 

statistical office with a given lag. The MIDAS quantile regression model used in these cases 

has been described by Ghysels: 

𝒬𝜏ሺ𝑦𝑡|Ω𝑡ሻ = 𝛽𝜏,0 + 𝛽𝜏,1[𝐵ሺ𝐿1/𝑚; 𝜃ሻ𝑋𝑡
ሺ𝑚ሻ

] 

with quantile order 𝜏 ∈ ሺ0,1ሻ, sampling period of the low-frequency variable 𝑡 = 1, … , 𝑇, and 

weighting function 𝐵ሺ𝐿1/𝑚; 𝜃ሻ = σ 𝑏ሺ𝑘; 𝜃ሻ𝐿ሺ𝑘−1ሻ/𝑚𝐾
𝑘=1 , where 𝐾 is the order of the lag 

polynomial and 𝐿ሺ𝑘−1ሻ/𝑚𝑥𝑡
ሺ𝑚ሻ

= 𝑥𝑡−ሺ𝑘−1ሻ−𝑚

ሺ𝑚ሻ
. 

MIDAS quantile regression exhibits the parameters proliferation problem as well, since many 

high-frequency regressors produce different impacts on different quantiles over time, and this 

makes data transformations unfeasible for quantile forecasting. Some authors (Lima and Menf, 

2018, or Mazzi and Mitchell, 2019) proposed alternative models to overcome the problem (e.g. 

the penalized quantile regression or the Bayesian approach).  

In the next chapter, a MIDAS quantile regression model will be treated in order to build some 

early warning indicators. In particular, high frequency information, provided by daily stock 

returns, will be employed to predict conditional quantiles of low frequency information, like 

some macroeconomic indicators, following a MIDAS quantile model: 

𝒬𝜏ሺ𝑦𝑡|Ω𝑡ሻ = 𝛽𝜏,0 + 𝛽𝜏,1σ𝑑=0
𝐷 𝑤𝑑𝑟𝑡−1−𝑑

ሺ𝑚ሻ
 

 

 

3.3  A Nonparametric Test of Granger-Causality in Quantiles 
The third pillar for the building of the EWI is the nonparametric test of Granger causality in 

quantile, and in particular the test presented by Jeong, Härdle e Song (Econometric Theory, 

2012).  

While a parametric test assumes that data comes from a given parametric family of probability 

distributions (e.g. a normal distribution), parameterized by mean and standard deviation, the 

nonparametric test does not assume anything about the underlying distribution. Therefore, the 

parametric test is more accurate and has greater statistical power when the assumption of 
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normally distributed data is not violated, and in general when the underlying distribution is 

known. When the data are not normal, nonparametric tests can perform better.  

The Granger causality is a statistical concept useful to understand not whether the time series 

X causes the time series Y, but whether X is able to forecast Y, that is if past values of X contain 

information useful to predict current values of Y. There are many econometric tools for 

investigating co-movements and causality between changes in two or more time series, and this 

type of analysis can provide important information about risk spillovers among financial 

markets. For instance, the Granger causality in risk allows to survey whether past history of 

highly risky events on a market is able to predict other risky events occurring on other markets. 

To test this prediction ability of a time series 𝑋𝑡 on the time series 𝑌𝑡, the Granger causality test 

in the distribution tail can be performed: 

Η0 : Pr൫𝑌𝑡 < −𝑉𝑎𝑅𝑡ห𝐼𝑦; 𝑡−1൯ = Pr ሺ𝑌𝑡 < −𝑉𝑎𝑅𝑡|𝐼𝑦; 𝑡−1, 𝐼𝑥; 𝑡−1ሻ 

where 𝐼𝑦; 𝑡−1 is the information set available at time 𝑡 − 1 for 𝑌𝑡. Rejecting null hypothesis 

means that time series 𝑋𝑡 does Granger-cause the time series 𝑌𝑡 in risk at level 𝛼 with respect 

to 𝐼𝑡−1, and then information from past events in 𝑋𝑡 can be used to predict occurrence of risky 

events in 𝑌𝑡. Granger causality can be investigated in mean, in variance (for the detection of 

volatility spillovers among financial markets) or in terms of the entire conditional probability 

distribution. 𝑋𝑡 is said to Granger-causes 𝑌𝑡 in mean if: 

𝔼ሺ𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑝, 𝑋𝑡−1, … , 𝑋𝑡−𝑞ሻ ≠ 𝔼ሺ𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑝ሻ 

In particular, the Granger causality in conditional mean is mostly used in research, even though 

it has a relevant shortcoming: conditional mean is just one element used for an overall summary 

about the conditional distribution, while the causal relationship in tail area may be very different 

from that in the center of the distribution. For this reason, a Granger causality detected in tail 

quantiles may produce results different from a Granger causality detected in the center of the 

distribution. Recent literature has focused on the concept of Granger causality in quantiles, 

which allows to address flaws due to non-Gaussian distributions with asymmetry, non-linearity 

and fat tails. In these cases, information content provided by the quantiles about distributions 

is wider and more precise than the information provided by the mean. 𝑋𝑡 is said to Granger-

causes 𝑌𝑡 in quantile if: 

𝒬𝜏ሺ𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑝, 𝑋𝑡−1, … , 𝑋𝑡−𝑞ሻ ≠ 𝒬𝜏ሺ𝑌𝑡|𝑌𝑡−1, … , 𝑌𝑡−𝑝ሻ 

For example, a general important result of economic research, confirmed by strong empirical 

evidence from the point of view of the mean regression, is that, on average, people with more 

education are more likely to get higher earnings over their lifecycle; however, the impact of 

higher education is not constant over conditional income distribution since, from quantile 

regression, there is evidence that high education is significantly associated with higher earnings 

mainly for the upper tails of income. The Granger causality test in quantiles tries to understand 

whether education significantly Granger-causes income over different conditional quantiles. 

The big advantage of this test is that, since the conditional quantile is insensitive to outliers, a 

set of conditional quantiles can define more in detail and more precisely the whole distribution. 

The nonparametric test for Granger causality in quantile presented by Jeong, Härdle e Song 

aims to test conditional quantile restrictions through nonparametric estimation methods in 

dependent data situations. This procedure, described below, should not be confused with that 

presented by Hong, Liu, and Wang (Journal of Econometrics, 2007): their test determines if an 

extreme downside movement of a given time series, i.e. a tail event, has predictive content for 
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(or equivalently, can be considered a lagged indicator for) an extreme downside movement of 

another time series.  

Here a formalization of the nonparametric test for Granger-causality in quantile.  

Denote 𝑤𝑡 ≡ ሺ𝑦𝑡−1, … , 𝑦𝑡−𝑝ሻ, 𝑧𝑡 ≡ ሺ𝑦𝑡−1, … , 𝑦𝑡−𝑝, 𝑥𝑡−1, … , 𝑥𝑡−𝑞ሻ and 𝑣 = ሺ𝑤𝑡 , 𝑧𝑡ሻ; the 

conditional distribution function 𝑦𝑡 given 𝑧𝑡ሺ𝑤𝑡ሻ as 𝐹𝑦|𝑧ሺ𝑦𝑡|𝑧𝑡ሻ ∗ 𝐹𝑦|𝑤ሺ𝑦𝑡|𝑤𝑡ሻ, with 𝐹ሺ𝑦𝑡|𝑧𝑡ሻ 

absolutely continuous in 𝑦 for all 𝑣; the conditional quantile functions 𝒬𝜏ሺ𝑧𝑡ሻ ≡ 𝒬𝜏ሺ𝑦𝑡|𝑧𝑡ሻ and 

𝒬𝜏ሺ𝑤𝑡ሻ ≡ 𝒬𝜏ሺ𝑦𝑡|𝑤𝑡ሻ, whereby  Pr൫𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑧𝑡ሻ|𝑧𝑡ሻ = 𝜏൯ = 1 . Then, the hypotheses to be 

tested consist of quintile restrictions: 

Η0: Pr൫𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ = 𝜏൯ = 1 

Η1: Pr൫𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ = 𝜏൯ < 1 

Accepting the null hypotheses means that each variable 𝑥 does not Granger-cause 𝑦 in the 

specific 𝜏-th quantile at each specific moment. It is true iff 𝔼൫𝟏𝑦𝑡≤𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡
൯ = 𝜏, given 

𝟏𝑦𝑡≤𝒬𝜏ሺ𝑤𝑡ሻ = 𝜏 + 𝜀𝑡 with 𝔼ሺ𝜀𝑡|𝑧𝑡ሻ = 0. To consistently test Η0, given 𝑓𝑧ሺ𝑧𝑡ሻ the marginal 

density function of 𝑧𝑡, a proposed nonparametric test is the distance measure 𝐽: 

𝐽 = 𝔼ሺ[𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ − 𝜏]2 ∗ 𝑓𝑧ሺ𝑧𝑡ሻሻ 

whereby 𝐽 = 0 under Η0, and 𝐽 > 0 under Η1. Given 𝔼ሺ𝜀𝑡|𝑧𝑡ሻ = 𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ − 𝜏, the 

distance measure can be expressed as: 

𝐽 = 𝔼ሺ𝜀𝑡 ∗ 𝔼ሺ𝜀𝑡|𝑧𝑡ሻ ∗ 𝑓𝑧ሺ𝑧𝑡ሻሻ 

Estimation of each components of the test requires specific formulations based on the so-called 

kernel methods and kernel functions. Denoting the dimension of 𝑧 as 𝑚 = 𝑝 + 𝑞, the kernel 

function as 𝐾𝑡𝑠 = 𝐾ሺ
𝑧𝑡−𝑧𝑠

ℎ
ሻ with bandwidth ℎ and time dimension 𝑇, the estimated weighted 

conditional expectation 𝔼ሺ𝜀𝑡|𝑧𝑡ሻ ∗ 𝑓𝑧ሺ𝑧𝑡ሻ is: 

𝔼ሺ𝜀𝑡|𝑧𝑡ሻ ∗ 𝑓𝑧ሺ𝑧𝑡ሻ̂ =
σ 𝐾𝑡𝑠𝜀𝑠

𝑇
𝑠≠𝑡

ሺ𝑇 − 1ሻℎ𝑚
 

And then, the test statistic is: 

𝐽 =
σ σ 𝐾𝑡𝑠𝜀𝑡𝜀𝑠

𝑇
𝑠≠𝑡

𝑇
𝑡=1

𝑇ሺ𝑇 − 1ሻℎ𝑚
 

with 𝜀𝑡𝜀𝑠 = [𝟏𝑦𝑡≤𝒬𝜏ሺ𝑤𝑡ሻ − 𝜏][𝟏𝑦𝑠≤𝒬𝜏ሺ𝑤𝑠ሻ − 𝜏]. Furthermore, given the kernel function 𝐿𝑡𝑠 =

𝐿ሺ
𝑤𝑡−𝑤𝑠

𝑎
ሻ, it is possible to estimate all other components of the test: 

𝜀𝑡̂ = 𝟏𝑦𝑡≤𝒬̂𝜏ሺ𝑤𝑡ሻ
− 𝜏 

with: 

𝒬̂𝜏ሺ𝑤𝑡ሻ = 𝐹̂𝑦|𝑤ሺ𝜏|𝑤𝑡ሻ
−1 

where: 

𝐹̂𝑦|𝑤ሺ𝑦𝑡|𝑤𝑡ሻ =
σ 𝐿𝑡𝑠 ∗ 𝟏𝑦𝑠≤𝑦𝑡𝑠≠𝑡

σ 𝐿𝑡𝑠𝑠≠𝑡
 

The asymptotic properties of the test statistic are based on two basic assumptions: 

• process {𝑦𝑡 , 𝑥𝑡}𝑡=1
𝑇  is strictly stationary and absolutely regular with a geometric decay 

rate; 

• functions 𝑓𝑦 , 𝑓𝑧 and 𝑓𝑤  are all bounded and belong to the class of functions 𝔘𝜇
𝛼, 𝛼 > 0,   

𝜇 > 0, that are ሺ𝑑 − 1ሻ-times partially differentiable for 𝑑 − 1 ≤  𝜇 ≤ 𝑑; 

• error term 𝜀𝑡 is a martingale difference process with finite fourth moments; 
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• a set of technical conditions are required in order to have a uniform convergence rate of 

the nonparametric kernel estimator of conditional cumulative density function and 

conditional quantile with mixing data (for any detail, look at the paper by Jeong, Härdle 

e Song); 

• a set of technical conditions (e.g. the order 𝑘 and 𝑙 of kernel functions 𝐾ሺ∙ሻ and 𝐿ሺ∙ሻ 

must be nonnegative) are required in order to bound estimation bias. 

Assuming the compliance of all assumptions, and defining the stochastic process 𝐿𝑡 = ሺ𝜀𝑡, 𝑧𝑡ሻ
𝑇, 

the conditional variance of the error term 𝜎𝜀
2ሺ𝑧ሻ = 𝔼[𝜀𝑡

2|𝑧𝑡 = 𝑧] and the test 𝐽 =
σ σ 𝐾𝑡𝑠𝜀𝑡𝜀𝑠

𝑇
𝑠≠𝑡

𝑇
𝑡=1

𝑇ሺ𝑇−1ሻℎ𝑚 ,  

it is possible to get the following result: 

𝑇ℎ𝑚/2𝐽 ⟶ 𝑁ሺ0, 𝜎0
2ሻ in distribution 

with 𝜎0
2 = 2 ∗ ∫𝐾2ሺ𝑢ሻ𝑑𝑢 ∗𝔼ሺ𝜎𝜀

4ሺ𝑧ሻ ∗ 𝑓𝑧ሺ𝑧𝑡ሻሻ and its consistent estimator 𝜎̂0
2 = 2𝜏2ሺ1 −

𝜏ሻ2 1

𝑇ሺ𝑇−1ሻℎ𝑚
σ 𝐾𝑡𝑠

2
𝑠≠𝑡 . Under the null hypothesis 𝑇ℎ𝑚/2𝐽 ⟶ 𝑁ሺ0, 𝜎0

2ሻ in distribution, while 

under the alternative hypothesis 𝑇ℎ𝑚/2𝐽 ⟶ 𝑁ሺ𝜇, 𝜎1
2ሻ in distribution, with 𝜇 =

𝔼ሺ𝑓𝑦|𝑧
2 ሺ𝒬𝜏ሺ𝑧𝑡ሻ|𝑧𝑡ሻ ∗ 𝑙2ሺ𝑧ሻ ∗ 𝑓𝑧ሺ𝑧ሻሻ, 𝜎1

2 = 2 ∗ ∫𝐾2ሺ𝑢ሻ𝑑𝑢 ∗𝔼ሺ𝜎𝑣
4ሺ𝑧ሻ ∗ 𝑓𝑧ሺ𝑧𝑡ሻሻ, 𝜎𝑣

2ሺ𝑧ሻ =

 𝔼[𝑣𝑡
2|𝑧𝑡] and 𝑣𝑡 = 𝟏𝑦𝑡≤𝒬𝜏ሺ𝑤𝑡ሻ − 𝐹ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ. 

The power performance of the hypothesis test for different combinations of time series length 

𝑇, quantile order 𝜏 and quantile coefficient 𝛽𝜏, such that the higher 𝛽𝜏 ∈ [0,1] the stronger the 

causality in quantile of 𝑥𝑡 on 𝑦𝑡 , have been analyzed by authors. The power of a test expresses 

the probability to correctly reject the null hypothesis when the alternative hypothesis is true: 

the higher the power, the lower the probability of making a type II error (wrongly accepting the 

null hypothesis when it is false). There are three main results: 

• the larger 𝑇 given 𝜏 and 𝛽𝜏, the larger the power, since more data allow to get a more 

consistent evidence about causality; 

• the higher 𝛽𝜏 given 𝜏 and 𝑇, the larger the power, and then the stronger the causality in 

quantile of 𝑥𝑡 on 𝑦𝑡; 

• given 𝛽𝜏 and 𝑇, power of test is usually higher for quantile orders closer to the median, 

and lower for quantile orders closer to the extremes. 

 

 

3.4  Methodology for the Empirical Analysis 
The description of the methodology is a crucial step for the construction and the development 

of EWIs. In particular, by applying more methods and models with different characteristics it 

is possible to discover the best one, that one which fits better with the ultimate purpose of an 

EWI.  

As shown, the test is an extension of the Jeong’s nonparametric test for the Granger causality 

in quantiles, in which information from time series data sampled at different frequencies is fully 

exploited. This procedure will test the following hypotheses: 

Η0: Pr൫𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ = 𝜏൯ = 1 

Η1: Pr൫𝐹𝑦|𝑧ሺ𝒬𝜏ሺ𝑤𝑡ሻ|𝑧𝑡ሻ = 𝜏൯ < 1 

It has been proved that, under the null hypothesis 

𝑇ℎ𝑚/2𝐽𝑇 ⟶ 𝑁ሺ0, 𝜎0
2ሻ in distribution 
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where 𝜎0
2 can be estimated as 𝜎̂0

2 = 2𝜏2ሺ1 − 𝜏ሻ2 1

𝑇ሺ𝑇−1ሻℎ𝑚
σ 𝐾𝑡𝑠

2
𝑠≠𝑡 . Hence, the test 

implemented for the empirical analysis has the following extended form: 

𝑇ℎ𝑚/2𝐽𝑇/ 𝜎̂0 = √
𝑇

ሺ𝑇 − 1ሻ

σ σ 𝐾ሺ
𝑧𝑡 − 𝑧𝑠

ℎ ሻ[𝟏𝑦𝑡≤𝒬̂𝜏ሺ𝑤𝑡ሻ
− 𝜏][𝟏𝑦𝑠≤𝒬̂𝜏ሺ𝑤𝑠ሻ

− 𝜏]𝑇
𝑠≠𝑡

𝑇
𝑡=1

𝜏ሺ1 − 𝜏ሻ√2ඥσ 𝐾𝑡𝑠
2

𝑠≠𝑡

 

Since 𝑇ℎ𝑚/2𝐽  tends in distribution to 𝑁ሺ𝜇, 𝜎1
2ሻ under the alternative hypothesis, then 𝐽 will be 

zero if and only if Η0 is true: in this case, given the quantile order 𝜏, there is no Granger causality 

in quantiles between the two variables.   

The test creation in MATLAB, as shown in the Appendix B, requires the implementation of six 

steps. 

1. The first step is the simple calculation of the first factor of the test, 𝑤 = ඥ𝑇 ሺ𝑇 − 1ሻΤ . 

2. The second step is the creation of the error matrix 𝜀𝑡𝜀𝑠, that is the product 

[𝟏𝑦𝑡≤𝒬̂𝜏ሺ𝑤𝑡ሻ
− 𝜏][𝟏𝑦𝑠≤𝒬̂𝜏ሺ𝑤𝑠ሻ

− 𝜏] for each quantile order 𝜏 and each moment 𝑡, needed to 

identify those observed values of 𝑦 exceeding their estimated conditional quantiles. 𝟏 is 

an indicator function, equal to 1 when the underlying condition is true, and zero 

otherwise. In this case, it produces a vector of 𝑇 elements (zeros and ones) for each 

quantile order. The error matrix is a (𝑇 × 𝑇 × 𝑞) matrix. 

3. The third and the most complicated step is the construction of the kernel function 𝐾ሺ. ሻ. 

A kernel distribution is a nonparametric representation of the probability density 

function of a random variable, that is estimated as a “generalization” of the histogram 

density. But unlike histograms, that figure discrete objects, a kernel distribution groups 

each single distribution applied to each observed value in order to construct a unique 

smoothed continuous probability curve, and it is very useful when there is no parametric 

distribution that fits dataset and no specific distribution assumption can be done. While 

the kernel density estimator 𝐾 is the estimated pdf of the random variable, the kernel 𝑘 

is a smoothing weighting non-negative function which defines the shape of the curve 

used to generate the pdf. The most common used kernel functions are the uniform 

function, the Epanechnikov function, the Gaussian function, the triangle function and the 

quartic function. The smoothness of the resulting density distribution is controlled by a 

smoothing parameter, called bandwidth ℎ, whose value strongly affects the final result. 

Since the resulting density is strongly sensitive to the value of ℎ, this should be chosen 

so as to optimize the trade-off between estimator bias and estimator efficiency. There are 

many optimality criteria to compute ℎ, but the most used one is the minimization of the 

mean integrated squared error (or simply some rules-of-thumb accordingly derived, such 

as Silverman’s rule, suitable with a Gaussian function).  

In the test application, the kernel function is a weighting probability function based on 

the additional information that could be embedded by the high frequency observations 

(not used for the construction of the error matrix). In particular, a multivariate kernel 

distribution function, that is the estimated pdf of a vector of random variables, is 

implemented. Since multivariate framework is applied to a random vector, it requires the 

definition of a square diagonal bandwidth matrix, with main diagonal elements (ℎ1,

ℎ2, … , ℎ𝑇), and of a product kernel 𝐾ሺ. ሻ = 𝑘ሺ𝑧1ሻ𝑘ሺ𝑧2ሻ ⋯𝑘ሺ𝑧𝑇ሻ, where 𝑘ሺ. ሻ is a one-

dimensional kernel smoothing function. The kernel smoothing functions used for the test 

are the uniform function: 
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𝑘ሺ𝑧ሻ =
1

2
𝑰ሺ−1 ≤ 𝑧 ≤ 1ሻ 

and the Gaussian function: 

𝑘ሺ𝑧ሻ =
1

√2𝜋
𝑒

−𝑧2

2  

The bandwidths ℎ applied to inputs are computed from the Silverman’s rule of thumb 

for multivariate data, described in MATLAB documentation: 

ℎ𝑡 = 𝜎𝑡 (
4

ሺ𝑇 + 2ሻ𝑚
)

1
𝑇+4

 

for 𝑡 = 1,2,… , 𝑇, where 𝑚 is the number of lags of explanatory variable with respect to 

the dependent variable, and 𝜎𝑖 is the standard deviation of the explanatory variable in 

each period 𝑡. Given 𝐾ሺ
𝑧𝑡−𝑧𝑠

ℎ
ሻ, the last component to be defined is the input 𝑧𝑡 − 𝑧𝑠 on 

which the product kernel is applied. Four different computations have been 

implemented: in the first one, 𝑧𝑡 − 𝑧𝑠 is the difference among high frequency 

explanatory data collected over any two time periods; in the second one, the simple 

moving average of high frequency data has been implemented, instead of the pure 

observations; the third one is the exponentially weighted moving average with a window 

size of 𝑚 and decreasing coefficient 𝑙 = 0,95; the last one is the exponentially weighted 

moving average of variance, used in order to take into account the information provided 

by the variance of high frequency variables (i.e. the market risk). The formula for the 

computation of the exponentially weighted moving average 𝐸𝑊𝑀𝐴 is: 

𝐸𝑊𝑀𝐴𝑡 = 𝑙 ∗ 𝐸𝑊𝑀𝐴𝑡−1 + ሺ1 − 𝑙ሻ ∗ 𝑥𝑡 

At the end, the output required for the test is available: 𝑧𝑡 − 𝑧𝑠is divided by ℎ𝑡, then the 

Gaussian function 𝑘ሺ𝑧𝑡ሻ is applied to each value 
𝑧𝑡−𝑧𝑠

ℎ𝑡
, and the product along the time 

dimension among all 𝑘ሺ𝑧ሻ will give as output the kernel value 𝐾 needed for the test. 

4. The fourth step consists of the computation of the test numerator: it is the sum of all 

values given by the products between each kernel function value 𝐾 and the error matrix 

𝜀𝑡𝜀𝑠, for each  𝑡 ≠ 𝑠. 

5. The fifth step consists of the computation of the test denominator, which requires just 

the quantile order, its complement and the squared values of 𝐾: 𝜏ሺ1 − 𝜏ሻ√2ඥσ 𝐾𝑡𝑠
2

𝑠≠𝑡 . 

6. The ultimate step is the computation of the test statistic 𝑇ℎ𝑚/2𝐽𝑇/ 𝜎̂0 by assembling all 

the pieces: 𝑡𝑒𝑠𝑡 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 = 𝑤.∗ ሺ𝑡𝑒𝑠𝑡 𝑛𝑢𝑚. 𝑡𝑒𝑠𝑡 𝑑𝑒𝑛. ሻΤ . The resulting value is 

compared with the critical value of 1,96: as said, the test statistic tends to a Normal 

distribution as number of observations goes to infinity, and given a significance level  

𝛼=0,05, the critical value is 1,96. If the test statistic is lower than this critical value, then 

the null hypothesis of lack of Granger causality for that specific quantile is accepted. 

Finally, this procedure is repeated for each quantile order, and all values are represented 

in appropriate figures. 

The innovative point in the application of this test comes from the estimation of 𝒬̂𝜏ሺ𝑤𝑡ሻ, that is 

the set of estimated quantiles of the dependent variables conditional on the lagged high 

frequency explanatory variables at any moment. 𝒬̂𝜏ሺ𝑤𝑡ሻ is estimated through the MIDAS 

quantile regression, applied to the following model: 

𝒬𝜏ሺ𝑦𝑡ሻ = 𝛽𝜏,0 + 𝛽𝜏,1[𝐵ሺ𝐿1/𝑚; 𝜃ሻ𝑋𝑡
ሺ𝑚ሻ

] + 𝑒𝑡 
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The implementation of an optimization problem based on an explanatory variable weighted in 

accordance with the MIDAS approach, and in particular the search of a minimizer x of a 

nonlinear constrained multivariate function, allows the estimation of each parameter (intercepts 

and slopes), and then the estimation of the conditional quantiles of 𝑦𝑡, used for the test. In the 

MIDAS quantile regression, there are basically two relevant points to be clarified under a 

computational point of view: the definition of the optimization problem for the quantile 

regression, and the definition of the MIDAS weights to be applied to 𝑋.  

As said, the sample 𝜏-th quantiles are identified as those points 𝜉 of the domain of the function 

σ𝑖𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ at which its values are minimized: 

𝒬̂𝜏ሺ𝑦ሻ = arg min𝜉 σ𝑖 𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ 

in which the quantile loss function is defined as:  

𝜌𝜏ሺ𝑢ሻ = 𝑢ሺ𝜏 − 𝐼𝑢<0ሻ 

By replacing 𝜉 with the regression function 𝑥𝑖
′𝛽𝜏, where 𝑥𝑖 is a vector of 𝐾 regressors, it is 

possible to minimize the total "loss" of residuals defined by 𝜌(⋅). 𝑢 is just the model residuals, 

namely the difference between the observations 𝑦𝑖 and the fitted values 𝑥𝑖
′𝛽𝜏. Therefore, 

quantiles can be written as solutions to the optimization problem: 

𝒬̂𝜏ሺ𝑦ሻ = argmin𝜉∈ℝ σ𝑖=1
𝑛 𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ 

whereby, for some 𝜏 ∈ (0, 1), we have to find 𝑦̂ = 𝑥𝛽̂ to minimize the expected loss. 

Computationally, this procedure can be carried out on MATLAB with the functionalities 

provided by “fmincon”, that is a nonlinear programming solver which allows to find the 

minimum of a nonlinear multivariable function under a set of constraints, such as bounds, linear 

equality or non-linear inequality. It is very useful for the optimization of ratios and trade-offs 

through the setting of a criterion function, or objective function. To do that, an anonymous 

function has been used: this is a function not stored in a program file but associated to variables 

whose data type is function_handle. Therefore, the first step is to define the objective function 

in a specific M-file:  
function [fval,condQuantile] = objFun(params,y,X,q,smoother) 

in which input ‘params’ contains relevant elements, such as ‘intercept’ and ‘slope’, which 

allow to compute the conditional quantiles: 
condQuantile = intercept + slope .* (X * weights). 

On the basis of the estimated conditional quantiles, the loss is defined as: 
loss = y - condQuantile 

and so even the asymmetric loss function, needed for the implementation of regression: 
fval = loss' * (q - (loss<0)). 

Of course, there are a set of bounds, optimization options and smoothers to take into account, 

and that can be found in the Appendix B. The core part of the code is given by the numeric 

minimization: 
estParams = fmincon(@(params) objFun(params, EstY, EstX, q, smoother),... 

This method allows to get the required parameters that satisfies the optimization problem: 

estimated slopes and intercepts, in ‘estParams’, are those ‘params’ which minimize the 

constrained objective function ‘objFun’ through the usage of ‘fmincon’.  Upper bounds and 

lower bounds are previously set, and the very initial parameters are estimated by OLS. 

The second problem to deal is about the definition of the MIDAS weights to be applied to 𝑋: 
condQuantile = intercept + slope .* (X * weights) 

where weights are obtained through a function specifically created, ‘midasBetaWeights’: 
function weights = midasBetaWeights(nlag,param1,param2). 
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Inputs of this function are quite simple to describe: ‘nlag’ is the number of lags of the 

explanatory variable used to explain the low frequency dependent variable detected for the 

subsequent period; ‘param1’ (or ‘k1’) and ‘param2’ (or ‘k2’) are the first and the second 

parameter used in the one-parameter Beta polynomial, respectively. As a consequence, there is 

a specific weight attached to each lag of the independent variable. After having subtracted from 

an array of ones a linearly spaced vector 𝜓 between 0 and 1 (excluding these extremes), with 

nlag evenly spaced points, obtained values are raised to the parameter (k2-1), if k1=1, and then 

multiplied by the same spaced vector to the power of (k1-1), whenever k1≠1. Weights are 

finally divided by the sum of all weights: 
weights = weights./nansum(weights). 

Analytically, MIDAS weights 𝑤𝑘  show the following direct proportionalities: 

𝑤𝑘 ∝ ሺ1 − 𝜓ሻሺk2−1ሻ  𝑖𝑓  k1 = 1 

𝑤𝑘 ∝ ሺ1 − 𝜓ሻሺk2−1ሻ ∗ ሺ𝜓ሻሺk1−1ሻ  𝑖𝑓  k1 ≠ 1 

Appendix B contains the details of this function. The following figure shows the output of 

function ‘midasBetaWeights’ applied in the quantile regression between the industrial 

production index and daily stock returns of the main countries. Almost anywhere, weights 

attached to independent variables are strongly decreasing as lag increases. 

 

As widely discussed, final purpose of this thesis is to create an EWI, that is a test for the 

detection of systemic risk in an economy. Other than the description of models and tools used 

in the analysis, the selection and the specification of suitable variables and dataset are a basic 

part of the methodology. Hence, it is crucial to identify that set of variables that can be useful 

to anticipate and predict to some extent incoming risks in the economic system. In order to 

achieve this objective, there exists a stylized fact that comes to our help: in the financial 

markets, the most operators carry out transactions trying to anticipate outcomes from real 

economy and to raise more or less rational expectations about changes in financial variables. A 

financial crisis caused by endogenous systemic mechanisms will always produce some 

consequences on the real economy, i.e. on the credit supply of banks, the saving and investment 

decisions of firms and households, the buying decisions of consumers, the prices fixed by 

sellers, the quantities of goods produced by producers, and the levels of income, wealth and 

wellbeing perceived by the society. It goes without saying that an increase of systemic risk in 

Figure 3.2: MIDAS Beta weights attached to each lag 
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the financial system, that can be promptly detected by early warning indicators based on the 

evolution of specific financial variables, can be a caveat of an incoming heavier crisis, in which 

real variables are going to be strongly affected. The analysis will be performed evaluating a set 

of relationships between a high frequency variable, reflecting the market sentiment, the 

expectations, the financial stability and the possible increases of some relevant risks, and a low 

frequency variable, that reflects the macroeconomic state, in order to capture the materialization 

of the systemic risks. In particular, there are four relevant sources of systemic risk that will be 

examined. 

1. The stock market risk: the systemic impact stemming from stock price variations, stock 

financial risk, changes in the Value-at-Risk and sectorial risk (financial sector and 

industrial sector) will be firstly evaluated.  

2. The geopolitical risk, of which a big part can be approximated by changes in the crude 

oil prices, is another important source of systemic risk. 

3. The currency risk, represented by fluctuations in the exchange rates, allows to get a wide 

view about the systemic risk generated at international level. 

4. The sovereign risk, which shows a more national relevance, is the last source of systemic 

risk to be analyzed, looking at changes in the Credit Default Swap premia.   

The first relation refers to the stock market risk. Indeed, since it is considered forward looking, 

the stock market provides the most common leading indicators on future economic activity, 

widely used in the literature. While the increase of systemic risk can be analyzed starting from 

the evolution of stock prices and returns, the materialization of the same systemic risk into an 

adverse event can be measured by a macroeconomic indicator linked to the productive activity, 

such as an industrial production index. The first application of the test will be based on the 

relationship between daily stock returns 𝑟 as predictive variable, and the changes in the monthly 

Industrial Production Index 𝐼𝑃𝐼, as the affected variable: 

𝒬𝜏ሺ𝐼𝑃𝐼𝑡ሻ = 𝛽𝜏,0 + 𝛽𝜏,1𝑍𝑡−1ሺkሻ 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑡−1−𝑗 

In the model above, the conditional quantiles of 𝐼𝑃𝐼, 𝒬𝜏ሺ𝐼𝑃𝐼𝑡ሻ, for each order 𝜏 and for each 

month 𝑡, are obtained through a linear quantile regression on the set 𝑍𝑡−1 of lagged variables, 

that are function of the Beta polynomial parameters k; 𝑍𝑡−1 is the set of lagged daily stock 

returns 𝑟𝑡−1−𝑗, with lag 𝑗 up to 𝐽 = 22, weighted by MIDAS weights 𝑤𝑘,𝑗. In other words, each 

country’s 𝐼𝑃𝐼, published by national statistical institutes on the 15th of each month, is regressed-

in-quantile on the 22 previous daily stock returns, occurred on the stock market of the same 

country (they are 22 because each month has on average 22 observations, since financial 

markets are closed on weekends and on holidays). Furthermore, each 𝐼𝑃𝐼 change is regressed 

on the daily returns of the previous month, and not on the 22 daily returns immediately 

preceding the date of publication (the 15th): this time horizon of 15 days (about 10 daily 

observations of 𝑟) is needed in order to take into account the delays in the publication of 

statistical bulletin, and make the estimates less biased (in other words, when a statistical 

bulletin, published on the 15th of current tth month, refers to an output of the previous (t-1)th 

month, then lagged high frequency regressor should start 15 days before the publication date). 

Stock returns (and returns of all other variables used in this analysis) are computed as simple 

percentage changes, excluding other financial sources of income from the underlying assets: 

𝑟𝑡 = (
𝑃𝑡

𝑃𝑡−1
− 1) ∗ 100 
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There are many studies that try to examine the relationship between current stock returns and 

future production, based on the assumption of strong predictive ability of stock markets. Indeed, 

whereas variations in 𝐼𝑃𝐼 are a good proxy of incoming changes in the overall economic 

activity, variations in the stock returns often anticipate the same variations in 𝐼𝑃𝐼. The 

underlying economic logic is easy: an increase in the industrial production of an economy is a 

symptom of an ongoing expansive phase of the economic cycle, in which most firms invest and 

sell much more, accounting revenues that are continuously increasing. Under these 

circumstances, generated cash flows increase and are expected to increase, and so also the 

profitability. Since market operators discount all the relevant information about productive 

sectors, they will anticipate higher outcome of future 𝐼𝑃𝐼 in their stock prices’ evaluations, and 

this is automatically and instantly reflected in current stock prices and returns, which go up. 

This process is probably more evident before an incoming crisis, that is a recessive phase: if, 

as a result of some negative events, market operators expect a reduction of future cash flows to 

the industrial sectors, and accordingly a reduction in the expected profitability, then they will 

adjust downwards their evaluation on stock value, causing an immediate lowering of stock 

returns. Therefore, the correlation between future industrial production and current stock 

returns is expected to be positive.  

Obviously, some flaws about the usage of this correlation for the construction of an EWI should 

be remarked: first of all, it is a correlation, not a univocal causal relationship, and variables may 

determine each other; moreover, if the services and the primary activities compose the largest 

part of GDP, then 𝐼𝑃𝐼 may not be a good proxy of the overall macroeconomic state, and may 

not be useful to totally capture the presence of systemic risk, which can be generated by other 

sectors; of course, this procedure cannot take into account increase of systemic risk caused by 

completely unpredictable exogenous source (e.g. a sudden pandemic of coronavirus disease), 

and by those factors other than expectations on macroeconomic state affecting stock market 

movements; finally, one must be careful to different measurement criteria of variables, like 𝐼𝑃𝐼, 

since it is not standardized across countries. In general, advanced economies best suits for the 

application of this test, since they are highly monetarized and have a strong industrial sector 

and many highly capitalized companies listed on the stock markets: in this case, the correlation 

between industrial production and stock market is more likely to be stronger. Anyway, it should 

be reminded that the regression is a quantile regression, and the test does note detect the 

causality in mean, but the causality in quantile: therefore, evidence from correlations in mean 

are not the object of this study. 

By the same logic as above, it is interesting to evaluate the relationship of a risk measure on the 

quantiles of the production index. For this purpose, the daily Value at Risk of stock returns used 

as regressor can be quite explicative: 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑉𝑎𝑅𝑡−1−𝑗 

In the Appendix A, the daily Value-at-Risk of stock returns is represented for each country. 

Because of lack of intra-daily information about stock returns, daily VaR has been estimated 

through the variance-covariance method applied with conditional volatilities inferred from a 

GARCH (1,1) model with Student-t innovations. Four basic steps have been taken. 

1. First of all, each time series of daily stock returns were demeaned, in order to have a 

set of zero mean data. 
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2. Secondly, the parameters of a regression model with GARCH time series errors were 

estimated by using the maximum likelihood criterion, so as to fit the model to the 

response data (i.e. the return time series). In MATLAB: 
Model = garch('GARCHLags',1,'ARCHLags',1,'Distribution','t'); 

[EstMdl, estParamCov, logL] = estimate(Model, Returns). 

3. Given the fully specified conditional variance model, each daily conditional variance 

is inferred from the response data. Daily conditional volatilities are then computed. 
CondVar = infer(EstMdl, Returns); 

CondVol = sqrt(CondVar). 

4. Finally, daily Value-at-Risk with a 95% confidence level is computed through the 

parametric variance-covariance method, which is based on the assumption of normally 

distributed stock returns with zero mean: 

𝑉𝑎𝑅𝑡,0.05 = −1,645 ∗ 𝜎𝑡  

The Generalized Autoregressive Conditional Heteroskedasticity process is a common approach 

used to estimate returns’ volatility in financial markets, that are characterized by 

heteroskedasticity and volatility clustering, precisely. GARCH process allows to model the 

change in variance over time as a function of the lagged residual errors from a mean process 

(or innovations, that is the stochastic part of the process) which is supposed to have a Student’s 

t distribution, and the autoregressive component given by the lagged error variance terms. 

Therefore, a GARCH model has two key components: a GARCH polynomial with degree 𝑝, 

composed of 𝑝 lagged conditional variances, and an ARCH polynomial with degree 𝑞, 

composed of 𝑞 lagged squared innovations. 𝑝 and 𝑞 are the maximum nonzero lags of each 

respective polynomial. In this case, the model is a GARCH (1,1): 

𝜀𝑡|𝜓𝑡−1~𝑁ሺ0, 𝜎𝑡
2ሻ 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  

A differentiation among sectors of the stock market may be useful to identify the true origin of 

the systemic risk, and to obtain an EWI based on a stronger and more specific relation. Indeed, 

the common stock market index measures the overall market performance, which is calculated 

on the set of many sectors and industries. Albeit there exists a correlation among stocks and 

sectors of a stock market, the market sentiment originated in a specific sector could become 

crucial for the anticipation of the systemic risk. The test will be also applied in order to consider 

the relevance of two leading sectors within a stock market: the financial sector and the industrial 

sector. Hence, the quantile models will consider the industrial stock returns 𝑟𝑖 and the financial 

stock returns 𝑟𝑓, as follows: 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑖𝑡−1−𝑗 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑓𝑡−1−𝑗 

A stronger correlation is expected to occur between industrial stock returns and Industrial 

Production Index, since value investors do take into account the evolution of industrial output 

as a relevant factor of profitability for their sectorial investments. 

Another fundamental relationship to which to apply the test of Granger causality in quantile, 

and which may allow to promptly identify an increasing systemic risk, refers to the impact of 

financial market risk on the macroeconomic stability. Indeed, financial market risk is a source 

of systemic risk, and may be able to anticipate it. The common measure for financial market 

risk, used within this framework, is the variance of demeaned stock returns, which convey very 

useful information about the current financial stability, the current expectations on future 
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macroeconomic state and the discounting of an increasing systemic risk as a factor related to 

the business cycle. Using the same notation as before, the MIDAS quantile model becomes: 

𝒬𝜏ሺ𝐼𝑃𝐼𝑡ሻ = 𝛽𝜏,0 + 𝛽𝜏,1𝑍𝑡−1ሺkሻ 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑡−1−𝑗

2  

Variance of returns measures the variability of demeaned stock returns, and helps to evaluate 

the financial risk in asset allocation processes. In the Appendix A, the exponentially weighted 

moving variances of daily returns are showed for each country. These charts are useful to 

identify the most turbulent periods on each stock markets, and the most volatile markets.  

The high variability in stock returns seems to show a countercyclical behavior: during 

recessions, volatility increases much above its overall mean, while during expansions it is 

slightly lower. What really matters is to assess whether variance of stock returns may be useful 

to anticipate the business cycle: in fact, the literature confirms the existence of a correlation 

between current financial volatility and future real macroeconomic variables, such as the same 

Industrial Production Index, even if this predicting power is not likely to be stable and equally 

strong over time. Anyway, there is no doubt that stock market variability is able to convey 

information about the overall macroeconomic environment: in accordance with the efficient 

market hypothesis, any relevant information, included that about future trends of real economy 

(e.g. the production), is discounted by rational market operators during the stock evaluation 

phase, and its uncertainty is necessarily reflected in the variance of returns. There are four 

reasons why the stock market volatility might anticipate the economic activity. 

1. There exists a component of procyclicality, since the stock price volatility may directly 

affect the macroeconomic environment: an increase in stock volatility makes riskier the 

value of collateral provided by firms; this widening of market frictions reduces the 

operators’ availability to provide funds and to lend, causing a stoppage of financial 

markets, and therefore a slowdown in the economic activity. 

2. The increase of the perceived risk, due to negative events or incoming crisis, makes 

market operators more risk averse: it is reflected in the risk premia, and then in the asset 

prices, which fluctuate more. 

3. The increase of perceived risk provides a disincentive to invest and to commit money 

to longer term projects, and this may cause a slowdown of economic activities. 

4. Finally, there are some behavioral explanations, like representativeness and anchoring, 

whereby stock market movements create some beliefs from firms and households about 

the general state of an economy, and this strengthens the mutual interaction between 

financial markets and real economy. Furthermore, the participants’ preference for 

speculative trading or for long-term investments strongly depends on the type of stock 

market and its riskiness: for instance, swing trading and short-term positions are 

relatively prevailing in the riskier markets, such as emergent markets and derivatives 

markets. If this is the case, the correlation between stock market prices and 

macroeconomic variables will be much more significant in advanced economies. 

A useful variable that embeds relevant information exploitable to detect systemic risk is the 

price of crude oil, which has been considered in the literature as a leading indicator of changes 

in economic phases. The quantile model will include 𝐼𝑃𝐼 changes and changes in the crude oil 

price (WTI and Brent) 𝑟𝑜: 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑜𝑡−1−𝑗 
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The market sentiment and the relative balance between global demand and global supply of oil 

are the main determinants of oil price movements, and these movements cause a set of 

consequences and different impacts on the national economies. In general, demand and supply 

of oil are strongly affected by geopolitical issues and events of global significance: that’s why 

oil price changes are useful to capture increases of geopolitical risk, and then of systemic risk.  

There is not a unique direction: past research shows that oil price changes produce both negative 

and positive effects on macroeconomic variables depending on the type of economy. In 

particular, in oil importing advanced countries, a price increase tends to cause a slowdown of 

economic growth, an increase in inflation and unemployment and an overall reduction in the 

value of the financial assets; in oil importing emerging countries, in addition to above 

mentioned negative effects, a severe overall impoverishment of households and small producers 

may cause a heavy reduction in the levels of investments, consumption and well-being, other 

than an increase in the probability of capital flight, massive debt defaults and speculative 

attacks; oil exporting countries are the main beneficiary of an oil price increase, because of 

higher revenues got by oil industries, which may result in higher national income if the global 

demand is inelastic. Therefore, oil price increase implies a wealth transfer from importing to 

exporting countries, and always causes some costly resource reallocation. Historically, 

increases of oil prices has been followed by recessions and debt defaults, because of higher 

costs for households and firms, which must face declining cash flows and lower income. As 

early as in 1983, the economist J. D. Hamilton showed that, since WWII, all recessions (but 

one) occurred in U.S. has been preceded by an increase in oil price, and this confirmed the 

existence of a Granger-causality between oil prices and output. Same evidence was found for 

the 2008 financial crisis: the acceleration in oil prices during the years priors to 2008 was a 

signal of increased systemic risk, which materialized itself as the house bubble burst and the 

global economy fell into a heavy recession. Hence, the oil price is a good detector of systemic 

risk at global level, since it embeds market sentiments on global economic stability.  

Of course, there are some flaws: as said, oil price changes produce different impact on each 

country, and this makes the test results neither universal nor unambiguous. Moreover, the 

reliability of the test is function of the strength of the correlation between oil price and industrial 

production. Since oil volumes is going to decline over next decades, it is likely that oil price 

will become less relevant for global economy and global financial patterns. 

Another source of systemic risk is represented by the foreign exchange market. The exchange 

rate variations generate the so-called currency risk, which may produce heavy negative 

consequences in many economies, despite the attempts to implement and preserve a fixed 

exchange rate regime: unavoidable global shocks or nefarious public policies may be the cause 

of detrimental capital outflows, speculative attacks and currency crisis. In particular, there 

exists a non-linear significant relationship between exchange rates and industrial production of 

a country: this impact, become stronger with the globalization process, occurs mainly through 

the trade channel, and subsequent variations of prices. It is widely acknowledged that the 

depreciation of currency tends to be expansionary, while its appreciation tends to be 

contractionary. Anyway, the evidence is not unique and unambiguous, rather it is as 

complicated as the reality: short-run and long-run effects of positive and negative changes of 

exchange rate on industrial production can be distinguished, with different impact on different 

industrial sectors, and different elasticities of import and export, depending on the type of 

examined economy, its degree of openness, the management of the exchange rate regime and 

the extent of exchange rate variations. All of this without taking into account the role of 
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financial flows, and the fact that there exist some endogeneity problems, such as simultaneity 

bias. However, the existence of non-linear effects of exchange rates on the industrial 

production, because of impacts on imported and exported quantities, can be tested with our 

nonparametric test, and used as EWI. The model to be implemented will be:    

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽 𝑤𝑘,𝑗𝑟𝑒𝑡−1−𝑗 

where 𝑟𝑒 are the lagged changes of the exchange rate for each country, expressed in terms of 

dollars. 

A last important source of systemic risk is the country risk, that is the uncertainty faced by 

investors when dealing with a specific country, and in particular the sovereign risk, that is the 

risk to lose money because of the default on sovereign debt. The institutional investors, which 

buy Treasury bonds issued by the government, tend to ask higher sovereign risk premia, 

reflected in the interest rate, whenever the fiscal sustainability seems to be compromised. 

Changes in the sovereign risk premia could be caused by dangerous fiscal policies, and may 

trigger adverse loops and heavy macroeconomic implications, through the banking channel and 

the public channel: the reduction in the value of Treasury bonds held by banks as safe assets 

and the increase in the interests paid by taxpayers are a signal of an increase in the systemic 

risk due to public system, that can finally result in an economic downturn. It is evident that 

changes in sovereign risk premia are somehow reflected in the whole financial system, and then 

in the domestic private economic system. The tricky challenge is given by the existence of 

simultaneity: on the one hand, pre-existing weaknesses of economic fundamentals gradually 

exacerbate the fiscal health, and this causes increase in the risk premium; on the other hand, 

higher risk premia asked on public bonds in turn worsen credit conditions offered by financial 

operators, and this brings to a reduction in the firms’ investments and a slowdown in the 

economic activity. There is much empirical evidence on the negative effects produced by higher 

sovereign risk: higher borrowing costs, higher risk of private capital outflows, reduction in 

private investments, lower equity prices, and finally lower industrial production. Of course, it 

is interesting to evaluate the impact of a change in the sovereign risk on different quantiles of 

the industrial production, and to detect signals of incoming distress. In order to do that, changes 

in the Credit Default Swap premium issued on government’s debts, 𝑟𝑝, are considered the 

regressors of the model: 

𝑍𝑡−1ሺkሻ = σ𝑗=0
𝐽

𝑤𝑘,𝑗𝑟𝑝𝑡−1−𝑗 

Indeed, the CDS spread is a good measure of the sovereign risk perceived by operators, and 

may anticipate the incoming of an economic crisis, promptly signaling a higher systemic risk. 
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Chapter 4 

Test Application: An Empirical Analysis  
 

 

After having described the theoretical framework and the main tools, and therefore the 

nonparametric test to use as Early Warning Indicator, the core part of this thesis is going to be 

presented: the practical implementation and application of the test under an empirical point of 

view. The nonparametric test for causality in quantiles needed for signals detection related to 

systemic risk is applied by means of the programming platform MATLAB, and the accurately 

selected dataset provided by the financial data platform Thomson Reuters Eikon. As already 

specified, the test is an extension of the nonparametric Granger causality-in-quantile test, 

proposed by Jeong, Hardle and Song (Econometric Theory, 2012), based on conditional 

quantile estimates of the dependent variable obtained by a MIDAS (Mixed Data Sampling) 

quantile regression.  

This analytical test could be useful to monitor the evolution of systemic risks and to identify 

incoming troubles with timeliness. Of course, information provided by an EWI should always 

be considered within a probabilistic framework, with all its own limitations and flaws, 

beginning with the fact that the future can never be foreseen with total precision. This is just a 

starting point, to be improved and to be integrated with other tools, and then to take with a grain 

of salt. 

This chapter and following Appendices will define all the elements required for a valid and 

useful empirical analysis: the dataset about countries and markets, the definition of the 

variables, the covered timespan, the definition of systemic distress under an analytical point of 

view and the main empirical findings. In the last part, conclusions will be drawn, about the 

presented work and about future possible extensions. 

 

 

4.1  Empirical Analysis: Results  
The execution of the methodology and its application with real-world data are the crucial step 

to get empirical evidence and reach a conclusion. The results of the empirical analysis are 

described and graphically presented in this paragraph, while the dataset description is reported 

in the Appendix A. 

As widely explained, the common linear framework, which models the conditional mean of a 

normally distributed response variable as a linear combination of predictor variables, is not very 

useful when there exists the possibility of nonlinear dependence among variables. Indeed, as 

showed in the following figure, linear regression between the mean monthly stock returns and 

the Industrial Production Index changes leads to unreliable results, because of a null goodness 

of fit, which proves that the regression fails to accurately model the data. 
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Misspecification problem makes any indicator and model built on those data not valid for the 

causality detection. Given an evidence of nonlinearity, the nonparametric causality-in-quantile 

test gives the most robust and reliable results, especially against outliers, breaks and jumps, 

because it evaluates each quantile of the distribution, and not only its center. As reported in the 

descriptive tables of Appendix A, both response and independent variables exhibit non-normal 

characteristics: negative values of the skewness point to higher probability of large decrease, 

while kurtosis much higher than three point to higher peaks and fatter tails. Therefore, IPI 

returns have a fat-tailed left-skewed distribution, that is a non-normal distribution which 

justifies the use of nonparametric models. The quantile regression model can be used when 

some conditions of linear regression, such as normality and linearity, are not met, and when the 

analyst is interested not in what affects the expected value of response variable, but in what 

affects its whole quantile distribution. MIDAS quantile regression allows to estimate 

conditional quantiles of industrial production in the presence of high frequency (daily) 

explanatory variables, such as stock returns. The output argument reports the results of a 

specific approach: the smoothed asymmetric loss function minimization. It is characterized by: 

• no use of specific analytic gradient in MLE; 

• no use of Global Optimization Toolbox; 

• the use of a starting smoother, that is the average absolute residuals, that allows to 

smooth the non-differentiable objective function; 

• the use of FMINCON options for numerical optimization. 

Following tables show the results of a first application of MIDAS quantile regression on the 

dataset about Eurozone and UK, at the 5th quantile order. 

 

 

 

 

 

 

 

EUR 

Figure 4.1: Simple linear regression lines 
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Since the quantile regression is based on the minimization of an asymmetric loss function, each 

minimized function value is reported. For each coefficient (intercept, slope and the parameter 

used in the one-parameter Beta polynomial, k2), the standard error and the statistical 

significance are listed. Therefore, for Eurozone at 5th quantile order, the estimated quantile 

model is: 

𝒬0.05ሺ𝐼𝑃𝐼𝑡ሻ = −1,205 + 1,353 ∗ 𝑍𝑡−1ሺ0,96ሻ 

with 𝛽0;0.05 = −1,205 and 𝛽1;0.05 = 1,353. 

The interpretation of coefficient is quite simple, analogous to that of OLS coefficients: the 

estimated 5th percentile of European IPI change is equal to -1,205% whenever stock return rates 

were null (it is the unconditional quantile), and increases by 1,353 basis percentage points 

whenever stock return rates increased by 1% during the previous month. These relationships 

seem to be strong because the standard deviations of each parameter are very low, and the p-

values are very close to zero: coefficients at quantile order q=0,05 are significantly different 

from zero, and the relations are stable, for both Eurozone and United Kingdom. The standard 

errors of coefficients are the standard deviation of simulated parameters, obtained through a 

bootstrapping with the estimated residuals. 

In order to implement the nonparametric test, the function created on MATLAB to perform the 

quantile regression automatically computes the conditional quantiles for each quantile order, 

from 0,01 up to 0,99. An illustration is showed below: the quantile coefficients are estimated 

from the quantile model applied to IPI changes of Unites States, for the 5th percentile, the 95th 

percentile and the median (q=0,5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

UK 

Table 4.1: MIDAS quantile regression coefficients for Eurozone and UK, q=0,05 

US 

Table 4.2: MIDAS quantile regression coefficients for US, q=0,05; q=0,50; q=0,95 
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The unconditional th-quantile, that is the intercept, increases with the order quantile, by 

definition; the slope is more impacting for the extreme estimated quantiles, and closer to zero 

for the median. The direction is not unique: in US data, estimated quantiles of IPI changes 

increase with stock return rates for higher quantile orders, and decreases for lower quantile 

orders. It means that, when there is a heavy fall in stock returns during a given month, the 

estimated quantile distribution of IPI change for the following month is expected to be more 

asymmetric, defined over a wider range of values and with a longer left tail. All the coefficients 

are statistically significant. Hereinafter, results from regression will be figured in terms of 

estimated quantiles of IPI changes, which is the basic variable needed for the nonparametric 

test. The following figures plot the monthly observations of IPI change, together with the 5th 

percentile for both US and Eurozone. 

 

 

It is evident the different degree of statistical dispersion of observations between the two 

graphs: in US, monthly variations in IPI are more concentrated on a range of values between    

-1% and +1%, with very few outliers. This is reflected in a flatter red line representing the 

estimated conditional quantiles at q=0,05. Contrarily, a wider and more volatile picture 

characterizes the Eurozone: conditional quantiles are more sensible to the market performance, 

and IPI changes cover a wider range of values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The median of distribution of European IPI returns, conditional on daily stock returns of MSCI 

EMU Index, is plotted in the figure above. Of course, the evolution of estimated median is 

US EUR 

Figure 4.2: IPI changes (%) and conditional quantiles (q=0,05) of US and Eurozone, 1995-2019 

EUR 

Figure 4.3: IPI changes (%) and conditional median of Eurozone, 1995-2019 
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different from the evolution of estimated mean, but it fluctuates just above zero, similarly to 

the expected value of returns. In any case, the strongest oscillation occurs in correspondence of 

the 2008 financial crisis, whatever the quantile order. 

The following charts plot observed monthly IPI changes and estimated conditional quantiles at 

q=0,05 for each country. 

Figure 4.4: IPI changes (%) and conditional quantiles (q=0,05) for all countries, 1995-2019 
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It is interesting to take a look at every relevant conditional quantile for US and Eurozone, in 

order to understand the estimated evolution of the whole conditional distribution: the 1th 

percentile, the 10th percentile, the median, the 90th percentile and the 99th percentile. 

 

 

It can be noted that the evolution of the first estimated quantile of IPI change, at q=0,01, is 

much more volatile in US than in the Eurozone, while all other conditional quantiles are more 

volatile in Eurozone. This reflects the higher dispersion in the European data about IPI change, 

and the different impacts of stock return rates on the industrial production. Moreover, it is 

evident the presence of a longer left tail in the IPI change distribution: the longer distance 

between the first estimated percentile and all other relevant estimated percentiles is a common 

characteristic of each country, as shown in the following charts. 

EUR US 

Figure 4.5: IPI changes (%) and conditional quantiles (relevant q) for US and Eurozone 
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Final step consists of the application of the causality-in-quantiles test, which is justified by the 

fat-tailed non-normal distributions of variables of interest. Indeed, nonparametric causality-in-

quantiles test takes into account all quantiles of the distribution, not only the center of the 

distribution as the most common tests do: it is evident that, in many phenomena, the behavior 

in the tails is different from that of the rest of the distribution. 

Here we are going to test the Granger causality from stock returns to IPI returns quantiles of 

each country. The following tables show the test statistics and the p-values of relevant quantile 

orders for US (left side) and the results about the 5th percentile of each country (right side).  

 

Figure 4.6: IPI changes (%) and conditional quantiles (relevant q) for all countries 

Table 4.3: Results of causality test, for US and other countries (at q=0,05) 
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The reading of these tables is easy: stock returns significantly affect (or rather significantly 

correlate with) specific quantiles of the monthly industrial production whenever the test statistic 

is higher than 1,96 (or equivalently, the p-value is less than 0,05). Therefore, it is clear that US 

stock returns Granger cause IPI change at the 10th, the 20th, the 30th, and the 90th percentile, 

while they remain not useful to predict the 40th, the 50th, the 60th, the 70th and the 80th percentile. 

Furthermore, stock returns of domestic stock markets seem to be relevant to predict the 5th 

percentile in UK, Italy, Spain, Japan and Argentina.  

For an immediate understanding and visualization of Granger causality, all the results of the 

test will be graphically presented in the following figures. The vertical axis shows the test 

statistic J, the horizontal axis shows the quantile orders from 0,01 up to 0,99, and the flat red 

line represents the 5% critical value, that is 1,96. Therefore, the null hypothesis that stock return 

does not Granger cause IPI changes for a given quantile order is rejected whenever the value J 

is higher than 1,96, that is whenever the p-value is lower than 0,05.  

 

Graphically, it is possible to effectively identify and immediately evaluate relevant quantiles of 

the IPI distribution Granger-caused by stock returns movements. 

Given a critical value of 1,96 the causality-in-quantile test applied to US data does reject the 

null hypothesis roughly within the quantile range of 0,05 to 0,35 and the range of 0,80 to 0,95, 

while there is no Granger causality within the range of 0,35 to 0,80. In the Eurozone, the null 

hypothesis is rejected roughly within the quantile range [0,70; 0,95]: this means that a fall in 

the stock market returns Granger causes a significant movement in the upper quantiles of the 

IPI returns distribution, and therefore stock returns have a strong predictive power for those 

quantiles only. In any case, there is no predictive power for central quantiles, like the median: 

a confirmation of this lack of correlation is given by the null goodness of fit in the linear 

regression models, which try to estimate the expected value (that is a central measure just like 

the median) of the variable of interest (i.e. IPI returns). This means that a stock market crush 

does not necessarily imply a proportionate fall in the production, even though its probability 

distribution undergoes relevant changes, maintaining the same expected mean as before. This 

lack in the detection of an impact in the central tendency can be due to: 

US EUR 

Figure 4.7: Nonparametric Granger-causality test for all quantiles, stock returns on IPI 
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• errors in the evaluation of the overall economic performance of stocks (behavioral 

explanations, panics, bubbles, wrong evaluations of relevant information like a shock 

or new public policies); 

• recovery time of the crash in the stock market (it often happens that a sudden crash is 

followed by a fast recovery, even within the same month, and hence no change occurs 

in the industrial production); 

• other factors, such as reverse causality, expectations, time framing.  

An important conclusion for US data is that extreme reductions in industrial production are 

quite significantly predicted by changes in stock returns, and in general the noncausality part is 

longer on the central positions of the distribution.  

The next figure shows the results for all other countries. Shapes of the blue lines are very 

uneven, asymmetrical and different from country to country, but there is a clear characteristic 

common to each chart: causality is not significant, or it is at least much weaker, on the central 

quantiles with respect to external quantiles, where the relationship with stock returns tends to 

be stronger for each country. Hence, given many dissimilarities, another important conclusion 

is that the relationship on the tails, both the left and the right one, is relevant: extreme changes 

in industrial production are significantly anticipated by stock returns, while the relation with 

central tendencies is unclear and more ambiguous, and it requires further deepening.   

The left tail of the distribution of IPI returns, which corresponds to the probability of significant 

IPI decreases, is represented by lower quantiles, and, as showed by graphs on test statistics, it 

is the most relevant part of the distribution in almost every country: there exists a significant 

Granger causality in IPI return distribution of UK, Italy, Spain, Japan, Argentina, Brazil and 

South Africa roughly within the quantile range [0,05; 0,30]. At the same time, upper quantiles 

of IPI returns are significantly Granger-caused by stock returns in Germany, Spain and 

Argentina. 
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Looking at chart of Italy and UK, since the test statistic exceeds the critical value (red line) 

roughly when 0,05 ≤ q ≤ 0,22, then it stands to reason that a relevant change in total stock 

returns may reflect a change in the perception of systemic risk, and then an increase in the 

probability to deal with lower negative IPI returns (which corresponds to lower quantiles).  

The evaluation of a risk measure, like Value at Risk, on the quantiles of the production index 

provides even more interesting results. The daily Value at Risk of stock returns, estimated 

through the variance-covariance method and a GARCH volatility model, is used as the 

explicative variable instead of the same stock returns. Charts representing VaR of daily returns, 

reported in Appendix A, highlight the perfect correspondence of VaR with an extreme lower 

quantile of the distribution (as explained, the VaR is a conditional quantile). 

The next figures present results of testing whether daily Value at Risk of stock returns may 

predict IPI returns at the various quantiles. Unlike the previous figures, which showed very 

dissimilar graphs, in the case of VaR it seems that a common pattern among countries could be 

found. Indeed, the evidence of causality seems to exhibit a reverse hump-shaped pattern across 

quantiles in almost every country: the conclusion of a higher impact on extreme quantiles of 

IPI distribution, and a null impact on central positions, is confirmed again.  

In US, the test statistic exceeds the critical value roughly when q < 0,35 and 0,85 ≤ q ≤0,95 

respectively: there is no Granger causality for 0,35 ≤ q ≤0,85 and for very extreme q, even if 

the test statistic is very close to the threshold for almost the entire distribution. A very similar 

pattern is showed by UK, Germany, Spain, Japan, Argentina and South Africa. The Eurozone 

IPI is mostly affected on the left tail, while Italy IPI is mostly affected on the right tail of the 

distribution.  

 

Figure 4.8: Nonparametric Granger-causality test, stock returns on IPI, all countries 
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Figure 4.9: Nonparametric Granger-causality test, VaR on IPI, all countries 
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The next figures present results of testing whether a Granger causality can be detected in 

different sectors of a stock market: industrial sector and financial sector.   

Figure 4.10: Nonparametric Granger-causality test, stock returns of industrial sector 
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Charts for each country are various and different from each other, and it is not easy to identify 

any common patterns and to draw any conclusions. In general, there are not remarkable 

differences in Granger-causality detection between the two sectors in the Eurozone, UK, 

Germany, Italy and Spain. About other countries, the tail of IPI returns impacted by stock 

Figure 4.11: Nonparametric Granger-causality test, stock returns of financial sector 
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returns changes in accordance with the sector: for instance, industrial stock returns in US 

Granger cause IPI change in the upper quantiles of the distribution, while the financial stock 

returns Granger cause the distribution in the lower quantiles.  

Results of the next relationship refer to the impact of market risk on the industrial production.  

Moving variance of daily returns, that allows to identify the most turbulent periods on stock 

markets, is showed for each country in the Appendix A. As said, volatility increases much 

above its overall mean during recession phases, and it is slightly lower during expansive phases. 

A correlation between current stock return volatility and real macroeconomic variables, such 

as IPI, is not likely to be stable and equally strong over time, but it may still have some 

predicting power. The results from MIDAS quantile regression, showed below for US and 

Eurozone, clearly suggest that significant impacts on the IPI returns might occur at the very 

least quantiles of the distribution. 

 

 

Every conditional quantile over time seems to be equally spaced from each other, but the first 

one, that is the conditional quantile at quantile order q=0,01. Moreover, the most curves in 

correspondence of each quantile order show very similar fluctuations and equal trends: this 

means that returns variance does not correlate with some particular quantile of the IPI change 

distribution, and it is not useful to make predictions. Therefore, as we can see from illustrations 

above, daily volatility in stock market is not relevant to explain changes in the distribution of 

the IPI returns, except for its very extreme positions only. This is true for US and Eurozone at 

least: only deep changes in IPI returns could be partially predicted by stock market volatility, 

perhaps during turbulent periods, financial crisis and under persistent uncertainty. 

Anyway, as showed in the next figure, results from nonparametric Granger-causality test are 

not consistent with the theory, and are very different than as expected. This may be due to some 

lack or error in the construction of the test for this type of variable, or maybe to a different 

interpretation. 

 

 

US EUR 

Figure 4.12: IPI changes (%) and quantiles conditional on market risk, US and Eurozone 
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Figure 4.13: Nonparametric Granger-causality test, market risk on IPI, all countries 
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The next figure present results of the Granger causality-in-quantile test between the IPI and the 

oil price. For US, IPI change is regressed on returns of WTI price, while for all other countries 

it is regressed on returns of Brent price. Further explanations about data are given in the 

Appendix A. 

Figure 4.14: Nonparametric Granger-causality test, oil price on IPI, all countries 
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In this case, interpretation of charts is as interesting as puzzling. In US, a Granger causality is 

detected around lower quantiles, roughly within the quantile range [0,05; 0,25], while there is 

no Granger causality for q < 0,05 and for q > 0,25. Moreover, there is an inexplicable low peak 

within the significant quantile range, roughly on q=0,13, for which no Granger causality exists. 

On the other side, at least over the last 25 years (the timespan of the dataset) in Europe, 

variations in the oil price did not anticipate at all changes in IPI distribution, whatever the 

quantile order: probably, the US economy tends to be more sensible to the performance of the 

petroleum industry than European economy as a whole. In any case, even in all other countries, 

the quantile range in which a Granger causality is detected tends to be quite narrow or too small 

to be somehow significant: in UK, in Germany, in Italy, in Japan, in Argentina, in South Africa. 

Spain and Brazil show the most relevant significance in extreme quintiles, while in UK oil price 

tends to affect changes in the central positions of IPI distribution. 

Results of the next relationship refer to the impact of currency risk, proxied by variations in 

exchange rates, on the industrial production. Exchange rate and exchange rate variations are 

graphically reported in the Appendix A. Even though big exchange rate variations may be cause 

and consequence of capital outflows and currency crisis, there is no linear and stable 

relationship between exchange rates and industrial production, that is affected mainly through 

the trade channel. Results are very different, depending on the country and the currency 

involved, the type of underlying economy and the quantiles of the distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results from MIDAS quantile regression on the Eurozone are showed in the graph above. 

The estimated conditional quantiles of IPI distribution seem to be more sensible to variations 

of the exchange rate USD/EUR at its lowest quantile order than at higher quantile orders. A fall 

in the European industrial production may occur after an appreciation of euro, but it is necessary 

to understand how significant this relationship is. 

The next figure present results of the Granger causality-in-quantile test between the IPI returns 

and the respective exchange rates, USD to national currency. It is evident that in the Eurozone 

there is no Granger causality-in-quantile, whatever the quantile order. Essentially, currency 

risk, given by the fluctuations in the value of the euro, is not a source of systemic risk, and this 

is probably due to the strength of European economy and the credibility of the ECB. In all other 

analyzed countries, a Granger causality is detected mainly for upper quantile orders: exchange 

EUR 

Figure 4.15: IPI changes (%) and quantiles conditional on exchange rate, Eurozone 
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rate variations Granger cause IPI change roughly for 0,70 ≤ q ≤ 0,90 in UK, for 0,70 ≤ q ≤ 0,99 

in Argentina, for 0,60 ≤ q ≤ 0,85 in Brazil, for 0,80 ≤ q ≤ 0,95 in South Africa. In Japan alone, 

the Granger causality is detected for lower quantile orders. It is interesting the case of 

Argentina, that is a country known to be financially and monetary instable and periodically hit 

by some currency crisis: the test rejects the null hypothesis almost for every quantile order, with 

the exception of very central quantiles of IPI distribution.  

The next figure present results of the Granger causality-in-quantile test between the IPI change 

and the Credit Default Swap spread change, obtained from CDS contracts on public bonds with 

maturity of 5 years. The detailed description of this variable is given in the Appendix A. In this 

case, the variations in CDS premium is the variable of interest since it should reflect variations 

in the sovereign risk. In fact, changes in sovereign risk premia are somehow reflected in the 

financial system, and then in the domestic private economic system, and for this reason the 

CDS spread may signal a higher systemic risk. 

Actual test results are as expected, in one way or another. No Granger-causality is detected in 

US, in UK, in Germany, in Brazil and in South Africa, and this is an evidence that, at least in 

those countries, the sovereign risk has not contributed in increasing the systemic risk over the 

last 25 years. On the other side, CDS spread change seems to Granger-cause some quantiles of 

IPI return distribution in Italy, Spain and Argentina: null hypothesis is rejected for higher 

quantile orders in Italy and Argentina, and for more central quantile orders in Spain. 

Figure 4.16: Nonparametric Granger-causality test, exchange rate on IPI, all countries 
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4.2  Conclusion 
The ultimate purpose of this thesis was to implement a new test procedure to evaluate the 

presence of systemic risk within the financial markets. In order to pursue this goal, the essay 

has been divided into two main macrostructures, as the same thesis title suggests: the first one 

includes Chapter 1 and Chapter 2, and deals with systemic risk, measurement and early warning 

indicators in general; the second one includes Chapter 3 and Chapter 4, and deals with the 

MIDAS quantile regression approach used to implement the nonparametric test. 

Chapter 1 provided an overview of the systemic risk in every basic aspect: its definition, its 

origin and the relevant literature. The leading concepts to keep in mind for the definition of 

Figure 4.17: Nonparametric Granger-causality test, CDS premium on IPI, all countries 
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systemic risk are essentially two: the probability of an unfavorable event, that is the economic 

shock, and the possible set of consequent negative impacts, that is the propagation dynamic, 

which in turn puts in trouble the whole financial system. Therefore, the systemic risk is defined 

as the probability that an entire market collapses as a consequence of the materialization of 

some specific risk combined with a strongly interconnected system. As widely explained, there 

are many possible sources of systemic risk, but all of them can be traced back to the 4 Ls: from 

alterations of losses, leverage or liquidity may stem a shock, while the degree of linkage among 

institutions expresses the potential of systemic involvement through a propagation dynamic. 

Moreover, the concepts of externality and contagion, which can derive, for instance, from a 

default or from the asset price variability, are strictly linked to the concept of propagation 

dynamic. The interdependence among institutions in the financial chain is evident if we look at 

the payments system and at the direct loans. The magnitude of a shock in the financial system 

strongly depends on the reactions of financial institutions, that counteract to the expectations 

of incoming distress, and with their choices may mitigate or amplify the contagion. The last 

paragraph of the first Chapter described the main contributions and the main conclusions 

concerning systemic risk in the literature of the past decades. In fact, a very consistent progress 

in the literature took place over the last decades because of a deeper understanding of financial 

dynamics, a wider use of more complicated and complete econometric tools and the necessity 

to provide explanations on relatively recent global phenomena and events. 

Chapter 2 presented a description of the most important tools to measure systemic risk, by 

providing a categorization of them. Indeed, the monitoring and the correct measurement of 

systemic risk has always played a central role for the institutions and all financial actors: it is 

crucial for institutions and authorities to perform unbiased evaluations through the use of 

trustworthy measures, in order to make optimal decisions for own business and to pursue public 

mandates, such as financial stability and consumer protection. The systemic risk assessment 

requires the analysis of three basic aspects: risks arising from the asset side of balance sheets, 

risks arising from the liability side and risks deriving from interactions between the two sides. 

Financial risk management aims to handle exposures to a set of risks linked to financial and 

business operations: default risk, funding risk, liquidity risk, business risk, market risk (that 

includes the equity price risk, the interest rate risk, the exchange rate risk, the commodity price 

risk). After having generally described the main characteristics of each risk, a general 

classification of all measures of systemic risk, as defined by Bisias, Flood, Lo, Valavanis 

(2012), has been reported. The proposed classification of systemic risk measures is based on 

four criteria, that reflect four different perspectives in the usage of them: the supervisory 

perspective, the research perspective, the required datatypes and the reference time horizon. 

Each category contains sub-sections of measures. For instance, among probability distribution 

measures, Value-at-Risk, Expected Shortfall, Conditional VaR, Co-Risk and Mahalanobis 

distance have been presented. Other subcategories are also described, such as illiquidity 

measures, network measures, default measures, contingent claim-based measures, 

macroeconomic measures, forward-looking measures and stress tests. All these measures allow 

the implementation of Early Warning System, whose purpose is not to predict the exact timing 

of a crisis, but to estimate the actual probability of adverse events to occur within a specific 

time horizon, and then to quickly signal warnings about probable incoming distress for the 

institutions. An efficient signal emerges whenever a threshold is crossed in the periods 

immediately preceding the crisis. Among variables used for the detection of systemic risk, there 

are the credit-to-GDP ratio gap, the house price gap, the Debt Service Ratio (DSR). 
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Chapter 3 described the theoretical framework of the main tools needed for the empirical 

analysis: Mixed Frequency Data Sampling regression model (introduced by Eric Ghysels et al. 

in “The MIDAS Touch: Mixed Data Sampling Regression Models) and quantile regression 

model (described in “Regression Quantiles” by Koenker and Bassett). The implementation of 

Early Warning Indicators for systemic risk was done by performing a quantile regression on a 

MIDAS model, and then by applying the nonparametric test of Granger causality-in-quantiles 

proposed by Jeong, Hardle and Song (Econometric Theory, 2012).  

Quintile regression requires three basic assumptions: the zero conditional quantile assumption, 

the linearity of the model, and large samples with independent observations. There is no 

assumption on the distribution since quantile regression models the conditional quantiles of the 

response variable, and therefore it is robust to outliers, differently from linear regression. The 

𝜏-th regression quantile coefficients β are estimated by solving an optimization problem on the 

conditional quantile function through the least absolute deviations method (which minimizes 

the sum of absolute errors). Regression quantile coefficients own the following properties: scale 

equivariance, shift equivariance, equivariance to reparameterization of design, equivariance to 

monotone transformations and the subgradient optimality condition. The interpretation of 

coefficients is quite simple: while the mean regression helps to understand how the conditional 

mean of y is affected by covariates X, quantile regression helps to identify an impact of 

covariates on y at each quantile of its conditional distribution. In general, the quantile regression 

is a valid option whenever the conditional mean fails to fully and reliably capture the data 

pattern: in case of skewed data and asymmetric distribution, in case of multimodal data and 

data with outliers, in case of heteroskedasticity. 

In the MIDAS models, the dependent variable, sampled at lower frequencies, is regressed on 

distributed lags of the covariates, sampled at higher frequencies. Hence, MIDAS models are 

parameterized reduced form regression models for time series that involve data sampled at 

different frequencies, where explanatory variables have higher frequency. The parametrization 

of lag coefficients requires the usage of a parameter vector function (Almon lag function, 

Almon exponential lag function, Beta polynomial function) and a suitable information criterion 

(Akaike, Schwarz or Hannan-Quinn). The smart and optimal parameterization of the lagged 

coefficients is one of the main key MIDAS features. Many types of parametrizations have been 

proposed in accordance with the number of coefficients and the function shaping. In general, 

the MIDAS regression requires a nonlinear least squares estimation. The real novelty item 

proposed by this thesis is the application of the quantile regression to a set of variables with 

different sampling frequencies: therefore, this approach should combine the two models 

described above, giving rise to the MIDAS quantile regression. 

After having estimated the conditional quantiles of the response variable, the nonparametric 

test of Granger causality in quantile was applied in order to identify Granger causality in various 

conditional quantiles of the dependent variable distribution. The tested hypotheses consisted of 

a quintile restriction: accepting the null hypotheses means that the set of lagged independent 

variables does not Granger-cause the dependent variable in the specific τ-th quantile at each 

given moment. Granger causality in quantiles is designed to deal with non-Gaussian 

distributions, with asymmetry, non-linearity and fat tails: in these cases, information content 

provided by the quantiles about distributions is more precise than the information provided only 

by the mean. 

Chapter 4 showed the empirical analysis, with a detailed presentation of the main results. First 

of all, the nonparametric test was created in MATLAB on the basis of the test procedure 
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introduced by Jeong, Hardle and Song (Econometric Theory, 2012): under the null hypothesis, 

the test statistic tends in distribution to 𝑁ሺ0, 𝜎0
2ሻ, and then it is zero if and only if the null 

hypothesis is true, that is if there is no Granger causality in quantiles between the two variables 

given a quantile order τ. In this kernel-based test, the causality detection required the estimation 

of 𝒬̂𝜏ሺ𝑤𝑡ሻ, that is the set of quantiles of the dependent variables, estimated through the MIDAS 

quantile regression, conditional on the high frequency lagged explanatory variables. Parameters 

are estimated as solutions to an optimization problem, for which the sample 𝜏-th quantiles are 

identified as those points 𝜉 of the domain of the function σ𝑖𝜌𝜏ሺ𝑦𝑖 − 𝜉ሻ at which its values are 

minimized. In MATLAB, the functionalities provided by “fmincon” together with a 

function_handle was used. Explanatory variables were weighted according to the MIDAS 

approach: the parametrization of lag coefficients made use of a Beta polynomial function, with 

parameters k1 and k2 and a specific weight attached to each lag. 

In the empirical analysis, the selection of suitable variables useful to anticipate increasing risks 

was based on the assumption that the most financial operators carry out transactions trying to 

anticipate outcomes from real economy and to raise more or less rational expectations about 

changes in financial variables. The analysis will be performed evaluating a set of relationships 

for more countries between a low frequency variable, reflecting the market expectations, and a 

high frequency variable, that reflects the macroeconomic state such as the industrial production. 

Examined sources of systemic risk are stock market risk (stock price variations, stock return 

volatility, daily Value-at-Risk, sectorial risk), geopolitical risk (oil price variations), currency 

risk (exchange rate variations) and sovereign risk (CDS premium variations). Main conclusions 

of the empirical analysis are listed below.  

Extreme reductions in industrial production are quite significantly Granger caused by changes 

in stock returns, while the noncausality part is longer on the central positions of the distribution. 

The relationship on the tails, both the left and the right one, is relevant: extreme changes in 

industrial production are significantly anticipated by stock returns, while the relation with 

central tendencies is unclear and more ambiguous, and it requires further deepening. 

Granger causality between VaR and industrial production seems to exhibit a reverse hump-

shaped pattern across quantiles, with a higher impact on extreme quantiles of IPI distribution, 

and a null impact on central positions. 

Granger causality detection within both financial sector and industrial sector of the stock market 

is difficult to analyze, given the heterogeneity of results. 

Results from Granger causality test on the impact of the stock return variance are very different 

than as expected, and no conclusion can be drawn.  

US economy tends to be more sensible to the performance of the petroleum industry than 

European economy as a whole. In any case, even in all other countries, the quantile range in 

which a Granger causality is detected tends to be quite narrow or too small to be somehow 

relevant. 

No Granger causality due to exchange rate is detected in the Eurozone, whatever the quantile 

order. In all other analyzed countries, a Granger causality is detected mainly for upper quantile 

orders, especially for UK data, for Argentina data and for Brazil data.  

Sovereign risk has not been a source of systemic risk over the last 25 years at least in US, in 

UK, in Germany, in Brazil and in South Africa. On the other side, CDS spread change seems 

to Granger cause some external quantiles of IPI return distribution for Italy, Spain and 

Argentina. 
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The main finding is that some relationships present nonlinear characteristics which invalidate 

any linear specification or any test based on linearity assumption. The nonparametric causality-

in-quantiles test allows to overcome this problem by highlighting the causal effects on specific 

parts of the conditional distribution of the variable of interest. The strength of Granger causality 

may differ across the upper and lower quantiles of the conditional distribution, and for this 

reason, it should be considered the entire conditional distribution of the variations of a response 

variable, not only the center of the distribution. The same systemic risk should be detected by 

testing the significance on more external quantiles, instead of analyzing the mean of the 

conditional distribution.  

However, information provided by the EWI should always be considered within a probabilistic 

framework, since the future can never be foreseen with full precision. The proposed test is just 

a starting point, to be improved and to be integrated. In particular, further studies may focus on 

two relevant aspects of the EWI, remained unsolved. 

The first one refers to its reliability. The reliability of a test is its ability to issue signals with 

timeliness and relatively limited out-of-sample forecast errors. It can be tested by comparing 

its forecasting performance against other models through an out-of-sample validation, that is 

by using the known sample data to get the model parameters, and then by using the same model 

to make predictions about unknown data, independently from the sample. Besides, in the 

implementation of the test, other more reliable kernel functions, such as the Epanechnikov 

function, and other bandwidths, like that computed with the leave-one-out least squares cross 

validation (proposed by Racine and Li, 2004), may improve the results. 

The second aspect to be deepened refers to the strength and reliability of the MIDAS quantile 

regression analysis. In particular, econometric tools should be employed in order to investigate 

a regularity and a robustness of the relationships used in the empirical analysis. The direction 

of beta coefficients should be stable and robust, even across quantiles. Furthermore, the results 

should be more accurate by including the lagged dependent variables among the covariates in 

the MIDAS quantile model specification, instead of considering the equity-related part only.  

The causality test with conditional quantiles based on the MIDAS quantile model without the 

lagged dependent variables provides results strictly linked to the information obtained by the 

higher frequency data only. In this case, the rejection of the null hypothesis may be due to the 

lack of the lagged dependent variable to estimate the conditional quantile. The solution would 

be to estimate the conditional quantiles applying the MIDAS quantile regression on a sort of 

autoregressive distributed lag model with mixed frequency data (e.g. an ADL (1, 22), with one-

period-lagged value for IPI and the usual 22 lagged daily stock returns) in this case, the 

regression equation used to predict current values of the dependent variable is based on both 

the past values of low frequency explanatory variables and the lagged value of the response 

variable. Moreover, a further test can be applied in order to detect the relevance of each 

component of the ADL model on the final results: by comparing the results of the nonparametric 

test obtained from conditional quantiles estimated through the lagged dependent variable only 

with the results obtained from the complete ADL model, one can assess whether and how much 

both information sources, lagged dependent variable and independent variables, are relevant to 

predict the response variable. 
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Appendix A 

Data Selection and Descriptive Analysis  
 

 

In this appendix, figures and tables for the descriptive analysis of the dataset will be showed. 

All data have been taken on the platform Eikon Thomson Reuters, before being elaborated with 

MATLAB. For the most variables, return rates (percentage changes), cumulative returns and 

related descriptive statistics are showed. Return rates of each variable are computed as simple 

percentage changes, excluding other financial sources of income from the underlying assets: 

𝑟𝑡 = (
𝑃𝑡

𝑃𝑡−1
− 1) ∗ 100 

Here the list and the description of variables used to build the Early Warning Indicators. Every 

time series has a time span of about 25 years, from 1995 until the end of 2019, except for the 

CDS premia, which start in 2008.  

• The Industrial Production Index (IPI) is a monthly economic indicator that measures the 

real output of secondary sectors of a country, relative to a base year. These indices are 

computed by national statistical offices, and for this reason they are not homogeneous 

and standardized measures, but vary across countries. Typically, they are Fisher indices 

with the weights based on periodic estimates of value added, and the value in the base 

year (e.g. 2012) arbitrarily set at 100. Their periodic variations express changes in the 

production volumes. Chosen IPIs are referred to the same countries of each stock market 

index but, as showed by figures, just ten of them are “comparable” (i.e. covering the 

whole time-span, purified by seasonality, with a base value of 100 and with similar 

composition of the examined industrial output), and then exploitable for the analysis: 

IPI USA, IPI EMU (European Monetary Union), IPI UK, IPI Germany, IPI Italy, IPI 

Spain, IPI Japan, IPI Argentine, IPI Brazil, IPI South Africa. For the analysis, the 

growth of industrial production is considered. The broadest index type is used, including 

manufacturing, energy and construction sectors. 

• The real Gross Domestic Product at constant market prices, expressed in $, may be 

useful to make up for the lack of IPI, and especially to fill the countries’ missing data. 

Anyway, it is a good alternative to IPI, since it is the most wide and important 

macroeconomic variable used to measure the market value of all the ultimate goods and 

services produced in a country over a given period. Easy to understand the reason why 

GDP and IPI do show a strong correlation, especially in industrialized and widely 

monetarized countries. Moreover, GDP is published quarterly by national statistical 

institutes, and therefore operators in the financial markets, like the stock market, have a 

larger timespan to discount all relevant information about the trends and the 

macroeconomic state. Missing countries in the dataset are Australia, Argentina, Brazil, 

Russia, India and China. The most valuable information for the analysis is given by the 

countries’ economic growth, computed as the percentage change of real GDP in each 

quarter. 

• The stock market indices, and in particular the time series of stock prices and stock 

returns, have been selected from the same provider, MSCI. The selected stock market 
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indices are: MSCI USA for United States, MSCI EMU for European Economic and 

Monetary Union, MSCI UK, MSCI Germany, MSCI Italy, MSCI Spain, MSCI Greece, 

MSCI Japan, MSCI Australia, MSCI Argentina, MSCI Brazil, MSCI Russia, MSCI 

India, MSCI China, MSCI South Africa (the first indices cover advanced economies, 

while the last 5 indices cover BRICS countries). Each MSCI Index measures the 

performance of the large and mid cap segments of the respective stock market, covering 

approximately 85% of the respective free float-adjusted market capitalization. In the 

implementation of the test, all indices have been used but those from countries without 

an acceptable production index. 

• The sectorial analysis is performed through the decomposed parts of the FTSE price 

indices of each country: financial sector and industrial sector. They are market-

capitalization weighted index representing the performance of large and mid cap stocks 

in financial sector and industrial sector, respectively. For example, industrials and 

financials have a relevant position within the FTSE USA Index: 98 and 130 

constituencies each, out of a total of 609, and 10% and 14% respectively as weights on 

the total index. Dataset is not complete for all countries: Greece, Argentina and Russia 

have missing observations, and for this reason they have been excluded. 

• The oil prices used in the test are the West Texas Intermediate spot crude oil price (or 

WTI) and the Brent crude oil price. These prices are global benchmark for oil pricing, 

and mainly differ in place of extraction and production (Texas and other U.S. countries 

for the first one, the North Sea of Northwest Europe for the second one), lightness and 

sweetness (WTI is sweeter and lighter), main trading market (the New York Mercantile 

Exchange, or NYMEX, for the first one, and the Intercontinental Exchange, in London, 

for the second one) and global relevance (WTI price is the benchmark for US markets, 

while Brent price is the international benchmark used by OPEC, and for this reason it 

seems to be more sensible to geopolitical issues). Although the transport costs of Brent 

oil are typically lower, its price is typically higher than the WTI price, but the difference 

is very small. 

• The exchange rates convey very useful information about currency risk, and then about 

a component of systemic risk which has proven in the past to be very relevant and 

disruptive for many economies. Indeed, even if many countries try to keep their 

currency value pegged to another stronger currency, it is not uncommon that some 

global shocks or some nefarious public policies may cause detrimental capital outflows, 

speculative attacks and currency crisis, which bring to an economic downturn. These 

shocks can be clearly seen on the figures representing variations of exchange rates, 

where outliers and strong changes highlight some currency devaluation or public 

intervention. Dataset on exchange rates provides the time series for national currency 

prices expressed in terms of dollars. Being the dollar the reference currency, data on 

U.S. currency value have been excluded. Moreover, since Italy, Germany, Greece and 

Spain share the same currency, they are not listed, and just the conversion euros-to-

dollar is figured. Australia is the last missing country. 

• The Credit Default Swap premium (or spread) is the annual payment made by the CDS 

buyer to the CDS seller in order to have protection against the default risk of a reference 

entity over the length of the contract. The premium is expressed in basis points (that is 

the percentage of the debt’s face value), and it is linked to the default risk on the public 
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debt issued by each national government. The spread, based on contracts issued in $, is 

a good measure of the sovereign risk perceived by operators. For example, a CDS spread 

of 80 basis points (0,8%) on the Italian Treasury bonds means that, in order to get 

protection against default risk of a public bond with $10 million par value, the CDS 

buyer must pay $80.000 a year. The CDS maturity refers to the initial length of a 

contract upon its beginning, and in general the higher the maturity, the higher the 

riskiness undertaken by the CDS seller, and the higher the premium paid by the CDS 

buyer. The CDS premium used for the analysis refers to contracts with a maturity of 5 

years. Missing countries are Greece, Japan, Australia and India. Variations in CDS 

premium are the variable of interest, since they should reflect variations in the sovereign 

risk. 
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A.1: Industrial Production Indices 
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A.2: Industrial Production Index - Change 
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A.3: Descriptive Statistic of IPI Change 

A.4: Relevant Quantiles of IPI Change 



 

 128 

 

 

A.5: Frequencies of IPI Returns for each Country 
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A.6: Real GDP at Constant Market Price ($, Quarterly Data) 

A.7: GDP Growth Rates (%) 
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A.8: Descriptive Statistic of GDP Growth Rates 

Change 
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A.9: Stock Market Indices 

A.10: Monthly Returns (%) of each Index 
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A.11: Descriptive Statistic of Daily Returns (%) 

A.12: Descriptive Statistic of Monthly Returns (%) 

A.13: Relevant Quantiles of Daily Returns (%) 
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A.14: Cumulative Stock Returns (%) and Price Index Evolution 
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A.16: Value at Risk and Expected Shortfall of Daily Returns 

(%) 

A.15: Frequencies of Daily Returns for each Country 
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A.17: Value-at-Risk of Daily Returns (%, alpha=0.05) 



 

 136 

 

 

A.18: Moving Variance of Daily Returns (%) 
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A.19: Price Indices - Industrial Sector 

A.20: Monthly Returns (%) – Industrial Sector 

A.21: Descriptive Statistic of Daily Returns (%) – Industrial Sector 
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A.22: Price Indices - Financial Sector 

A.23: Monthly Returns (%) – Financial Sector 

A.24: Descriptive Statistic of Daily Returns (%) – Financial Sector 
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A.26: Returns on Oil Price (%) 

A.27: Descriptive Statistic of Oil Price 

A.28: Descriptive Statistic of Returns on Oil Price 

A.25: Oil Prices 
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A.29: Exchange Rates for each Country, in terms of $ 

A.30: Variations of Exchange Rates (%) 

A.31: Descriptive Statistic of Exchange Rates 
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A.32: CDS Spread of each Country (b.p., in $) 

A.33: CDS Premium Change (%) 
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A.34: Descriptive Statistic of CDS Premium 

A.35: Descriptive Statistic of CDS Premium Change 
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Appendix B 

MATLAB Codes 
 

 

In this appendix, the implemented codes are reported. In particular, there are two main blocks 

of codes: the first one describes the function used to perform the MIDAS quantile regression 

on the dataset; the second one describes the function used to implement the nonparametric test. 

Function for the MIDAS quantile regression has been created starting from an analogous 

function written by Eric Ghysels et al., and specifically adjusted in accordance with the 

purposes of this thesis. Function for the test is the precise implementation of the mathematical 

formula described in the previous sections. 

 
% MIDAS QUANTILE REGRESSION  

function [estParams, EstY, EstYdate, EstX, EstXdate, CondQuantile, fval, 

resid, yLowFreqSim, se] = MidasQuantsimple (Y, Ydates, X, Xdates, q, Xlag, 

horizon, estStart, estEnd) 

  

% Description: 

% MIDAS quantile regression estimates the conditional quantile of n-period 

% Y, given a conditioning variable (predictor) X sampled at higher  

% frequency, with MIDAS weights; basic model is: 

%                Yt = b0 + b1*[B(L(1/m))*Xt,m] + et 

% 

% Input Arguments: 

%   Y           T-by-1 observation data for the low frequency variable,  

%               inscluding NaN, from a full time series (double) 

%                

% Ydates        T-by-1 dates (including Saturdays, Sundays and holidays) 

%               (cell, format ['01/15/1995'], mm/dd/yyyy) 

%  

%   X           T2-by-1 time series with T2>T; it is the high frequency  

%               conditioning variable (predictor), which have the same 

%               timespan of Y but much more high frequency observations 

%               (double) 

%             

% Xdates        T2-by-1 dates of high frequency variable 

%               (including Saturdays, Sundays and holidays) 

%               (cell,mm/dd/yyyy) 

%    

%   q           A scalar between zero and one that specifies the orders 

%               (i.e., alpha or tau) of the quantile 

%   

%  Xlag         A scalar integer that specifies the number of lags for the 

%               high frequency predictor, to which MIDAS weights are 

%               assigned (e.g., for regression of monthly data (y) on daily 

%               data (x), the number of lags may be 30, or 22 trading days) 

%  

% horizon       Number of (high frequency) lags from which lagged high 

%               frequency regressor starts (e.g., when a statistical 

%               bulletin of i-th month is published every 15th of following 

%               (i+1)-th month, then horizon should be 15) 

%                

%  estStart     Start date for parameter estimation  

%               (char, format yyyy-mm-dd,'1995-01-15') 

%  
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%  estEnd       Terminal date for parameter estimation  

%               (char, format '1995-01-15') 

%              

%  

% Output Arguments: 

% Note: each output variable reports the results of a specific approach: no 

% gradient, no search, yes smoother (a non-negative scalar that specifies  

% how to smooth the non-differentiable objective function; default is  

% average absolute residuals), yes options. 

% 

%  EstParams    Estimated parameters for [intercept; slope; k], 

%               where intercept and slope are the coefficients of the 

%               quantile regression, and k is the parameter in the 

%               MIDAS Beta polynomial 

%  

%   EstY        Modified output variable employed for the regression 

%   

%  EstYdate     Serial dates for the output variables 

% 

%   EstX        Modified explanatory variable employed for the regression 

%  

%  EstXdate     Serial dates for the explanatory variables 

% 

% CondQuantile  Estimated conditional quantiles. This is the fitted value  

%               of Y, given by the right-hand-side of the quantile  

%               regression model 

%                

%   fVal        Value of the non-differentiable loss function: 

%               fval = loss'*(q-(loss<0)), where loss = Y-CondQuantile 

% 

%   Resid       Residuals: residual = EstY-CondQuantile 

% 

%   YSim        Simulations of low frequency variable:  

%               ySim = condQuantile+resid 

%  

%  StandError   Standard error of each parameter [intercept; slope; k] 

% 

%  Figures representing data and estimated quantiles;  

%  Tables showing main regression outputs: coefficients, standard errors 

%  and p values of slope, intercept and parameter k. 

  

% CODES FOR FUNCTION 

% Set Data 

mask = ~isnan(Y); 

DataY = Y(mask); 

DataYdate = Ydates(mask); 

DataY = DataY(:); 

DataYdate = DataYdate(:); 

  

maskx = ~isnan(X); 

DataX = X(maskx); 

DataXdate = Xdates(maskx); 

DataX = DataX(:); 

DataXdate = DataXdate(:); 

  

DataYdateVec = datevec(DataYdate); 

DataYdateNum = datenum(DataYdateVec); 

DataXdateVec = datevec(DataXdate); 

DataXdateNum = datenum(DataXdateVec); 

estStart = datenum(estStart); 

estEnd = datenum(estEnd); 

  

% Minimum and maximum dates that data support 

minDateY = DataYdateNum(1,:); 
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minDateX = DataXdateNum(max(1,Xlag+horizon),:); 

if minDateY > minDateX 

    minDate = minDateY; 

else 

    minDate = minDateX; 

end 

  

maxDateY = DataYdateNum(end,:); 

maxDateX = DataXdateNum(end,:); 

if maxDateY > maxDateX 

    maxDate = maxDateX; 

else 

    maxDate = maxDateY; 

end 

  

% Check and set default sample period 

if estStart < minDate 

    estStart = minDate; 

end 

if estEnd > maxDate 

   estEnd = maxDate; 

end 

  

% Construct Y data 

tol = 1e-10; 

locStart = find(DataYdateNum >= estStart-tol, 1); 

locEnd = find(DataYdateNum >= estEnd-tol, 1); 

EstY = DataY(locStart:locEnd); 

EstYdate = DataYdateNum(locStart:locEnd); 

nobs = locEnd - locStart + 1; 

  

% Construct lagged X data 

EstX = zeros(nobs,Xlag); 

EstXdate = zeros(nobs,Xlag); 

for t = 1:nobs 

    loc = find(DataXdateNum >= EstYdate(t)-tol, 1); 

    if isempty(loc) 

        loc = length(DataXdateNum); 

    end 

    if loc-horizon > size(DataX,1)         

        nobs = t - 1; 

        EstY = EstY(1:nobs,:); 

        EstYdate = EstYdate(1:nobs,:); 

        EstLagY = EstLagY(1:nobs,:); 

        EstLagYdate = EstLagYdate(1:nobs,:); 

        EstX = EstX(1:nobs,:); 

        EstXdate = EstXdate(1:nobs,:); 

        maxDate = EstYdate(end); 

        break 

    else         

        EstX(t,:) = DataX(loc-horizon:-1:loc-horizon-Xlag+1); 

        EstXdate(t,:) = DataXdateNum(loc-horizon:-1:loc-horizon-Xlag+1); 

    end     

end  

  

% ESTIMATION 

% Initial parameters estimated by OLS  

k0 = 5; 

X0 = [ones(nobs,1), EstX * midasBetaWeights(Xlag,1,k0)']; 

OLS = X0 \ EstY; 

params0 = [OLS;k0];     

resid0 = EstY - X0 * OLS; 

  

% Setting for numerical optimization 
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smoother = mean(abs(resid0)); % Smoother function 

lb = [-Inf;-Inf;0];          % Low Bounds  

ub = [Inf;Inf;100];          % Upper Bounds 

  

% Optimization options 

     options = optimoptions('fmincon','Algorithm','interior-

point','Display','off'); 

  

% Numeric minimization 

% minimize non-differentiable function by Newton method, finite-difference, 

no gradient, no search, yes smoother, yes options 

estParams = fmincon(@(params) objFun(params, EstY, EstX, q, smoother), 

params0, [], [], [], [], lb, ub, [], options);       

  

% Conditional quantiles 

% no gradient, no search, yes smoother, yes options 

[fval,CondQuantile] = objFun(estParams,EstY,EstX,q,0);  

  

% Bootstrap standard errors 

nsim = 100; 

ind = randi(nobs,[nobs,1]); 

resid = EstY - CondQuantile; 

for i = 1:nsim       %  with bootstrap standard error method: 'Residual' 

    yLowFreqSim = CondQuantile + resid(ind); 

    paramSim(:,i) = fminsearch(@(params)objFun(params, yLowFreqSim, EstX, 

q, smoother), estParams); 

end 

se = std(paramSim,0,2); 

zstat = estParams./se; 

pval = 0.5 * erfc(0.7071 * abs(zstat)) * 2; 

pval(pval<1e-6) = 0; 

  

% PLOTTING 

% Display the estimation results 

columnNames = {'Coeff','StdErr','tStat','Prob'}; 

rowNames = {'Intercept';'Slope';'k2'}; 

fprintf('Method: Smoothed Asymmetric loss function minimization\n'); 

fprintf('Minimized function value: %10.6g\n',fval); 

fprintf('Quantile order: %10.6g\n',q); 

Table2 = table(estParams, se, zstat, pval, 'RowNames', 

rowNames,'VariableNames', columnNames); 

disp(Table2); 

  

% plot quantiles 

figure 

hold on 

plot(EstYdate, CondQuantile, 'LineWidth',0.7); 

dateaxis; 

scatter(EstYdate,EstY,'MarkerEdgeColor',[0 0 1]); 

legend('Estimated conditional quantiles','Observations'); 

xlabel('t'); 

ylabel('Y'); 

title(sprintf('Conditional Quantiles, q=%2.6g', q)); 

hold off 

  

end 

  

% LOCAL FUNCTIONS 

%------------------------------------------------------------------------- 

% 1) Objective function 

function [fval,condQuantile] = objFun(params,y,X,q,smoother) 

  

% Allocate parameters 

intercept = params(1); 
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slope = params(2); 

k2 = params(3); 

  

% Compute MIDAS weights 

nlag = size(X,2); 

k1 = 1; 

weights = midasBetaWeights(nlag,k1,k2)'; 

  

% Conditional quantile 

condQuantile = intercept + slope .* (X * weights); 

  

% Asymmetric loss function 

loss = y - condQuantile; 

if smoother == 0 

    % Non-differentiable loss function     

    fval = loss' * (q - (loss<0)); 

else 

    % Piecewise linear-quadratic smoothing loss function 

    maskSmall = loss < (q-1)*smoother; 

    maskBig = loss > q*smoother; 

    maskMedian = ~maskSmall & ~maskBig; 

    fvalSmall = -0.5*(q-1)^2*smoother + (q-1)*loss(maskSmall); 

    fvalBig = -0.5*q^2*smoother + q*loss(maskBig); 

    fvalMedian = 0.5/smoother .* loss(maskMedian).^2; 

    fval = sum(fvalSmall) + sum(fvalBig) + sum(fvalMedian);     

end 

  

end 

  

%------------------------------------------------------------------------- 

% 2) MIDAS beta polynomial weights 

function weights = midasBetaWeights(nlag,param1,param2) 

  

seq = linspace(eps,1-eps,nlag); 

if param1 == 1     

    weights = (1-seq).^(param2-1);     

else 

    weights = (1-seq).^(param2-1) .* seq.^(param1-1);     

end 

weights = weights ./ nansum(weights); 

  

end 
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% NONPARAMETRIC GRANGER-CAUSALITY IN QUANTILES TEST  

function [JJ] = Jtest(Y,X,Qy,qq) 

  

% Input Arguments: 

%    Y     Tx1 vector of dependent variables (e.g. monthly observations) 

% 

%    X     mxT matrix, with m lags of explanatory variable (e.g. absolute 

%          returns) and T periodic samples (e.g. 22 daily obs. for 12  

%          months); T must be equal to the number of observations of Y  

%          (sampled at lower frequency); time sequence goes from 

%          (1,1)->(22,1)->(1,2)->(22,2)-> and so on. 

%  

%    Qy    conditional quantiles of Y given X, obtained after running a 

%          MIDAS quantile regression between X and Y; it is a Txq matrix  

%          (usually q=99, that is 99 quantile orders, from 0.01 to 0.99 ) 

% 

%    qq    1xq vector which specifies each quantile order (it should 

%          be equally spaced) 

% 

% 

% Output Arguments: 

%    JJ    8xq matrix representing Jeong test values for each quantile 

%          order of qq; 

%          there are 8 rows, i.e. 8 different combinations of methods:  

%                    2 Kernel functions used (Gaussian and Uniform) x 

%                    4 types of inputs for the Kernel function (absolute 

%                    data; simple moving average; exponential moving 

%                    average; exponential moving variance) x 

%                    1 bandwidth (source: MATLAB documentation) 

% 

% Figures representing the combinations; they allow the immediate 

% visualization of the results, by identifying those quantiles orders in  

% which x is statistically significant, at significance level of 0.05  

% (t>1.96), to Granger-cause Y; 

% Tables showing the test statistic and the p value for the following  

% quantiles orders: q=0.01, q=0.10, q=0.20, q=0.30, q=0.40, q=0.50, q=0.60,  

% q=0.70. q=0.80. q=0.99. q=0.99. 

  

  

% CODES FOR FUNCTION 

% 0.1) Quantile orders 

q = size(qq,2); 

  

% 0.2) Time horizon 

T = size(Y,1); 

  

% 0.3) Lags 

m = size(X,1); 

  

% 1) First factor of the test 

W = sqrt(T/(T-1)); 

  

% 2) Product of epsilons (errormat) for each quantile order 

onet = []; 

for i = 1:q 

    for t = 1:T 

        if Y(t,1)-Qy(t,i)<0   

            onet(t,i) = 1; 

        elseif Y(t,1)-Qy(t,i)==0 

            onet(t,i) = 1; 

        else 

            onet(t,i) = 0; 

        end 

    end 
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end 

  

theta = ones(size(onet,1),size(onet,2)); 

for i = 1:q 

    for t = 1:T 

        theta(t,i) = theta(t,i)*qq(1,i);  % vector of quantile order 

    end 

end 

  

epsilont = onet-theta;                    % espilon at time t 

errormat = ones(size(epsilont,1),size(epsilont,1),size(qq,2)); 

for i = 1:q 

    errormat(:,:,i) = epsilont(:,i)*epsilont(:,i)'; % errors matrix 

end 

  

% 3.1) Kernel functions: Zt-Zs (4 methods) 

% First method: X as Z 

X11 = X(:); 

Xmean = mean(X11); 

  

In1 = []; 

ZtZs1 = []; 

for i = 1:T 

    In1 = X(:,i); 

    for j = 1:T 

        ZtZs1(:,j,i) = X(:,j)-In1; 

    end 

end 

  

% Second method: Simple Moving Average of X 

MAS = movavg(X11,'simple',m);    

MAS = reshape(MAS,m,T); 

MAS1 = MAS(:); 

MAS11 = MAS(m,:); 

  

In2 = []; 

ZtZs2 = []; 

for i = 1:T 

    In2 = MAS(:,i); 

    for j = 1:T 

        ZtZs2(:,j,i) = MAS(:,j)-In2; 

    end 

end 

  

% Third method: Exponential Moving Average of X, 'manual'  

% (fix weighting decreasing coefficient lambda = 0.95)  

MAEm0 = Xmean;     

MAEm1 = zeros(size(X11,1),1);     

lambda = 0.95;                    

for j = 1:size(X11,1)      

    MAEm1(j,:) = lambda*MAEm0+(1-lambda)*X11(j,:);   

    MAEm0 = MAEm1(j,:); 

end  

MAEm = reshape(MAEm1,m,T); 

MAEm11 = MAEm(m,:); 

  

In3 = []; 

ZtZs3 = []; 

for i = 1:T 

    In3 = MAEm(:,i); 

    for j = 1:T 

        ZtZs3(:,j,i) = MAEm(:,j)-In3; 

    end 

end 
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% Fourth method: Exponential Moving Average of Variances, 'manual' 

MAEV0 = var(X11); 

MAEV1 = zeros(size(X11,1),1);   

for j = 1:size(X11,1)       

    MAEV1(j,1) = lambda*MAEV0+(1-lambda)*(X11(j,:).^2); 

    MAEV0 = MAEV1(j,1); 

end 

MAEV = reshape(MAEV1,m,T); 

MAEV11 = MAEV(m,:); 

  

In4 = []; 

ZtZs4 = []; 

for i = 1:T 

    In4 = MAEV(:,i); 

    for j = 1:T 

        ZtZs4(:,j,i) = MAEV(:,j)-In4; 

    end 

end 

  

% 3.2) Kernel function: Bandwidth h (from MATLAB doc, 'mvksdensity') 

w = (4/((T+2)*m))^(1/(T+4)); % h for method 1 

for i = 1:size(X,2) 

    se1(:,i) = std(X(:,i)); 

end 

h1 = (se1.*w); 

  

for i = 1:size(X,2)          % h for method 2 

    se2(:,i) = std(MAS(:,i)); 

end 

h2 = (se2.*w); 

  

for i = 1:size(X,2)          % h for method 3 

    se3(:,i) = std(MAEm(:,i)); 

end 

h3 = (se3.*w); 

  

for i = 1:size(X,2)          % h for method 4 

    se4(:,i) = std(MAEV(:,i)); 

end 

h4 = (se4.*w); 

  

% 3.3) Kernel function: ZtZs/h  

for s = 1:size(ZtZs1,3)     %inputs of method 1 

    for i = 1:size(ZtZs1,2) 

        for j = 1:size(ZtZs1,1) 

            inp11(j,i,s) = ZtZs1(j,i,s)./h1(1,i); 

        end 

    end 

end 

  

for s = 1:size(ZtZs1,3)     %inputs of method 2 

    for i = 1:size(ZtZs1,2) 

        for j = 1:size(ZtZs1,1) 

            inp21(j,i,s) = ZtZs2(j,i,s)./h2(1,i); 

        end 

    end 

end 

  

for s = 1:size(ZtZs1,3)     %inputs of method 3 

    for i = 1:size(ZtZs1,2) 

        for j = 1:size(ZtZs1,1) 

            inp31(j,i,s) = ZtZs3(j,i,s)./h3(1,i); 

        end 
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    end 

end 

  

for s = 1:size(ZtZs1,3)     %inputs of method 4 

    for i = 1:size(ZtZs1,2) 

        for j = 1:size(ZtZs1,1) 

            inp41(j,i,s)=  ZtZs4(j,i,s)./h4(1,i); 

        end 

    end 

end 

  

% 3.4) Kernel function: k(ZtZs/h)  (2 functions) 

for j = 1:size(inp11,3)       % gaussian (=1) 

    [k111(:,:,j)] = gaussian(inp11(:,:,j)); 

end 

  

for j = 1:size(inp21,3)        

    [k211(:,:,j)] = gaussian(inp21(:,:,j)); 

end 

  

for j = 1:size(inp31,3)        

    [k311(:,:,j)] = gaussian(inp31(:,:,j)); 

end 

  

for j = 1:size(inp41,3)        

    [k411(:,:,j)] = gaussian(inp41(:,:,j)); 

end 

  

for j = 1:size(inp11,3)       % uniform (=2) 

    [k112(:,:,j)] = uniform(inp11(:,:,j)); 

end 

  

for j = 1:size(inp21,3)        

    [k212(:,:,j)] = uniform(inp21(:,:,j)); 

end 

  

for j = 1:size(inp31,3)        

    [k312(:,:,j)] = uniform(inp31(:,:,j)); 

end 

  

for j = 1:size(inp41,3)        

    [k412(:,:,j)] = uniform(inp41(:,:,j)); 

end 

  

% 3.5) Kernel function: K(ZtZs/h)  (product kernel) 

for i=1:size(k111,3)                     %ZtZs1 

    pK111(:,:,i)=prod(k111(:,:,i),1);    %function1 

end                                      

pK111=squeeze(pK111); 

  

for i=1:size(k112,3)                     %ZtZs1 

    pK112(:,:,i)=prod(k112(:,:,i),1);    %function2 

end                                      

pK112=squeeze(pK112); 

  

for i=1:size(k211,3)                     %ZtZs2 

    pK211(:,:,i)=prod(k211(:,:,i),1);    %function1 

end                                      

pK211=squeeze(pK211); 

  

for i=1:size(k212,3)                      

    pK212(:,:,i)=prod(k212(:,:,i),1);    %function2 

end                                      

pK212=squeeze(pK212); 
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for i=1:size(k311,3)                     %ZtZs3 

    pK311(:,:,i)=prod(k311(:,:,i),1);    %function1 

end                                      

pK311=squeeze(pK311); 

  

for i=1:size(k312,3)                      

    pK312(:,:,i)=prod(k312(:,:,i),1);    %function2 

end                                      

pK312=squeeze(pK312); 

  

for i=1:size(k411,3)                     %ZtZs4 

    pK411(:,:,i)=prod(k411(:,:,i),1);    %function1 

end                                      

pK411=squeeze(pK411); 

  

for i=1:size(k412,3)                      

    pK412(:,:,i)=prod(k412(:,:,i),1);    %function2 

end                                      

pK412=squeeze(pK412); 

  

% 4.1) Numerator of the test: Product 

for i=1:size(errormat,3)           %ZtZs1 

    kee111(:,:,i)=pK111.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3) 

    kee112(:,:,i)=pK112.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3)           %ZtZs2 

    kee211(:,:,i)=pK211.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3) 

    kee212(:,:,i)=pK212.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3)           %ZtZs3 

    kee311(:,:,i)=pK311.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3) 

    kee312(:,:,i)=pK312.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3)           %ZtZs4 

    kee411(:,:,i)=pK411.*errormat(:,:,i); 

end 

  

for i=1:size(errormat,3) 

    kee412(:,:,i)=pK412.*errormat(:,:,i); 

end 

  

% 4.2) Numerator of the test: Sum of products 

for i=1:size(kee111,3)                %ZtZs1             

    kee111(:,:,i)=kee111(:,:,i)-diag(diag(kee111(:,:,i)));                

    skee111(:,i)=sum(kee111(:,:,i),'all'); 

end 

  

for i=1:size(kee112,3) 

    kee112(:,:,i)=kee112(:,:,i)-diag(diag(kee112(:,:,i)));                

    skee112(:,i)=sum(kee112(:,:,i),'all'); 

end 
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for i=1:size(kee211,3)                %ZtZs2            

    kee211(:,:,i)=kee211(:,:,i)-diag(diag(kee211(:,:,i)));                

    skee211(:,i)=sum(kee211(:,:,i),'all'); 

end 

  

for i=1:size(kee212,3) 

    kee212(:,:,i)=kee212(:,:,i)-diag(diag(kee212(:,:,i)));                

    skee212(:,i)=sum(kee212(:,:,i),'all'); 

end 

  

for i=1:size(kee311,3)                %ZtZs3            

    kee311(:,:,i)=kee311(:,:,i)-diag(diag(kee311(:,:,i)));                

    skee311(:,i)=sum(kee311(:,:,i),'all'); 

end 

  

for i=1:size(kee312,3) 

    kee312(:,:,i)=kee312(:,:,i)-diag(diag(kee312(:,:,i)));                

    skee312(:,i)=sum(kee312(:,:,i),'all'); 

end 

  

for i=1:size(kee411,3)                %ZtZs4             

    kee411(:,:,i)=kee411(:,:,i)-diag(diag(kee411(:,:,i)));                

    skee411(:,i)=sum(kee411(:,:,i),'all'); 

end 

  

for i=1:size(kee412,3) 

    kee412(:,:,i)=kee412(:,:,i)-diag(diag(kee412(:,:,i)));                

    skee412(:,i)=sum(kee412(:,:,i),'all'); 

end 

  

% 5) Denominator of the test 

a=ones(1,size(qq,2))-qq; 

b=a.*qq; 

c=sqrt(2); 

d=c.*b;          % first factor, common to all 

  

dpK111=sqrt(sum(pK111.^2-diag(diag(pK111.^2)),'all')).*d;%ZtZs 1 

dpK112=sqrt(sum(pK112.^2-diag(diag(pK112.^2)),'all')).*d; 

  

dpK211=sqrt(sum(pK211.^2-diag(diag(pK211.^2)),'all')).*d;%ZtZs 2 

dpK212=sqrt(sum(pK212.^2-diag(diag(pK212.^2)),'all')).*d; 

  

dpK311=sqrt(sum(pK311.^2-diag(diag(pK311.^2)),'all')).*d;%ZtZs 3 

dpK312=sqrt(sum(pK312.^2-diag(diag(pK312.^2)),'all')).*d; 

  

dpK411=sqrt(sum(pK411.^2-diag(diag(pK411.^2)),'all')).*d;%ZtZs 4 

dpK412=sqrt(sum(pK412.^2-diag(diag(pK412.^2)),'all')).*d; 

  

% 6) J TEST RESULTS 

J111=W.*(skee111./dpK111); %ZtZs1 

J112=W.*(skee112./dpK112);  

  

J211=W.*(skee211./dpK211); %ZtZs2 

J212=W.*(skee212./dpK212);  

  

J311=W.*(skee311./dpK311); %ZtZs3 

J312=W.*(skee312./dpK312);  

  

J411=W.*(skee411./dpK411); %ZtZs4 

J412=W.*(skee412./dpK412);  

  

% Correction of approximated J 

for i=1:size(qq,2)      %ZtZs1 
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    if J111(1,i)<=0 

       J111(1,i)=0; 

    else 

       J111(1,i)=J111(1,i); 

    end 

end 

  

for i=1:size(qq,2) 

    if J112(1,i)<=0 

       J112(1,i)=0; 

    else 

       J112(1,i)=J112(1,i); 

    end 

end 

  

for i=1:size(qq,2)      %ZtZs2 

    if J211(1,i)<=0 

       J211(1,i)=0; 

    else 

       J211(1,i)=J211(1,i); 

    end 

end 

  

for i=1:size(qq,2) 

    if J212(1,i)<=0 

       J212(1,i)=0; 

    else 

       J212(1,i)=J212(1,i); 

    end 

end 

  

for i=1:size(qq,2)      %ZtZs3 

    if J311(1,i)<=0 

       J311(1,i)=0; 

    else 

       J311(1,i)=J311(1,i); 

    end 

end 

  

for i=1:size(qq,2) 

    if J312(1,i)<=0 

       J312(1,i)=0; 

    else 

       J312(1,i)=J312(1,i); 

    end 

end 

  

for i=1:size(qq,2)      %ZtZs4 

    if J411(1,i)<=0 

       J411(1,i)=0; 

    else 

       J411(1,i)=J411(1,i); 

    end 

end 

  

for i=1:size(qq,2) 

    if J412(1,i)<=0 

       J412(1,i)=0; 

    else 

       J412(1,i)=J412(1,i); 

    end 

end 

  

% Figures 
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figure   %ZtZs1 

plot(qq,J111,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J111'); 

xlabel('q'); 

hold off 

  

figure 

plot(qq,J112,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J112'); 

xlabel('q'); 

hold off 

  

figure   %ZtZs2 

plot(qq,J211,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J211'); 

xlabel('q'); 

hold off 

  

figure 

plot(qq,J212,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J212'); 

xlabel('q'); 

hold off 

  

figure   %ZtZs3 

plot(qq,J311,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J311'); 

xlabel('q'); 

hold off 

  

figure 

plot(qq,J312,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J312'); 

xlabel('q'); 

hold off 

  

figure   %ZtZs4 

plot(qq,J411,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J411'); 

xlabel('q'); 

hold off 

  

figure 
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plot(qq,J412,'b'); 

hold on 

ylim([0 inf]); 

yline(1.96,'r'); 

ylabel('J412'); 

xlabel('q'); 

hold off 

  

% Ultimate function Output 

JJ = cat(1,J111,J112,J211,J212,J311,J312,J411,J412); 

  

% Display the final results: test statistic and p value 

Test = [J211(1,1); J211(1,10); J211(1,20); J211(1,30); J211(1,40); 

J211(1,50); J211(1,60); J211(1,70); J211(1,80); J211(1,90); J211(1,99)]; 

pval = (1-tcdf(Test, T-1)); 

  

columnNames = {'Test_stat','p_value'}; 

rowNames = 

{'Q1';'Q10';'Q20';'Q30';'Q40';'Q50';'Q60';'Q70';'Q80';'Q90';'Q99'}; 

fprintf('Nonlinear Granger causality test\n'); 

Table = table(Test, pval,'RowNames',rowNames,'VariableNames',columnNames); 

disp(Table); 

  

end 

  

%---------------------------------------------- 

%% Kernel functions 

% Gaussian function 

function [k] = gaussian(X) 

a = X.^2; 

b = (-1/2).*a; 

c = exp(b); 

k = c./(sqrt(2*pi)); 

end 

  

% Uniform function 

function [k] = uniform(X) 

c = zeros(size(X,1),size(X,2)); 

for i = 1:size(X,2) 

    for j = 1:size(X,1) 

        if X(j,i)>=-1 && X(j,i)<=1 

            c(j,i) = 1; 

        else 

            c(j,i) = 0; 

        end 

    end 

end 

k = (1/2).*c; 

end 
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