67,029 research outputs found

    Practical Network Coding in Sensor Networks: Quo Vadis?

    Get PDF
    Abstract. Network coding is a novel concept for improving network ca-pacity. This additional capacity may be used to increase throughput or reliability. Also in wireless networks, network coding has been proposed as a method for improving communication. We present our experience from two studies of applying network coding in realistic wireless sen-sor networks scenarios. As we show, network coding is not as useful in practical deployments as earlier theoretical work suggested. We discuss limitations and future opportunities for network coding in sensor net-works. 1 Network Coding in Wireless Sensor Networks Network Coding was introduced by Ahlswede et al. [1], proving that it can in-crease multicast capacity. Since then, it has been investigated in several different networked scenarios which demand different traffic characteristics. Most previous research has focused on theoretical aspects of applying network coding to sensor networks. There are, however, also more practical examples of applying networ

    Network coding for wireless communication networks

    Get PDF
    This special issue includes a collection of 19 outstanding research papers which cover a diversity of topics on the application of network coding in wireless communication networks.published_or_final_versio

    Energy-delay tradeoff in wireless network coding

    Get PDF
    A queueing model for wireless communication network in which network coding is employed is introduced. It is shown that networks with coding are closely related to queueing networks with positive and negative customers. Analytical upper and lower bounds on the energy consumption and the delay are obtained using a Markov reward approach. The tradeoff between minimizing energy consumption and minimizing delay is investigated. Exact expressions are given for the minimum energy consumption and the minimum delay attainable in a network

    NB-JNCD Coding and Iterative Joint Decoding Scheme for a Reliable communication in Wireless sensor Networks with results

    Get PDF
    Privacy threat is a very serious issue in multi-hop wireless networks (MWNs) since open wireless channels are vulnerable to malicious attacks. A distributed random linear network coding approach for transmission and compression of information in general multisource multicast networks. Network nodes independently and randomly select linear mappings from inputs onto output links over some field. Network coding has the potential to thwart traffic analysis attacks since the coding/mixing operation is encouraged at intermediate nodes. However, the simple deployment of network coding cannot achieve the goal once enough packets are collected by the adversaries. This paper proposes non-binary joint network-channel coding for reliable communication in wireless networks. NB-JNCC seamlessly combines non-binary channel coding and random linear network coding, and uses an iterative two-tier coding scheme that weproposed to jointly exploit redundancy inside packets and across packets for error recovery

    Wireless Broadcast with Network Coding: Energy Efficiency, Optimality and Coding Gain in Lossless Wireless Networks

    Get PDF
    We consider broadcasting in multi-hop wireless networks, in which one source transmits information to all the nodes in the networks. We focus on energy efficiency, or minimizing the total number of transmissions. Our main result is the proof that, from the energy-efficiency perspective, network coding may essentially operate in an optimal way in the core of the network for uniform wireless networks in Euclidean spaces with idealized communication. In such networks, one corollary is that network coding is expected to outperform routing. We prove that the asymptotic network coding gain is comprised between 1.642 and 1.684 for networks of the plane, and comprised between 1.432 and 2.035 for networks in 3-dimensional space

    New Coding/Decoding Techniques for Wireless Communication Systems

    Get PDF
    Wireless communication encompasses cellular telephony systems (mobile communication), wireless sensor networks, satellite communication systems and many other applications. Studies relevant to wireless communication deal with maintaining reliable and efficient exchange of information between the transmitter and receiver over a wireless channel. The most practical approach to facilitate reliable communication is using channel coding. In this dissertation we propose novel coding and decoding approaches for practical wireless systems. These approaches include variable-rate convolutional encoder, modified turbo decoder for local content in Single-Frequency Networks, and blind encoder parameter estimation for turbo codes. On the other hand, energy efficiency is major performance issue in wireless sensor networks. In this dissertation, we propose a novel hexagonal-tessellation based clustering and cluster-head selection scheme to maximize the lifetime of a wireless sensor network. For each proposed approach, the system performance evaluation is also provided. In this dissertation the reliability performance is expressed in terms of bit-error-rate (BER), and the energy efficiency is expressed in terms of network lifetime

    Design and Reliability Performance Evaluation of Network Coding Schemes for Lossy Wireless Networks

    Get PDF
    This thesis investigates lossy wireless networks, which are wireless communication networks consisting of lossy wireless links, where the packet transmission via a lossy wireless link is successful with a certain value of probability. In particular, this thesis analyses all-to-all broadcast in lossy wireless networks, where every node has a native packet to transmit to all other nodes in the network. A challenge of all-to-all broadcast in lossy wireless networks is the reliability, which is defined as the probability that every node in the network successfully obtains a copy of the native packets of all other nodes. In this thesis, two novel network coding schemes are proposed, which are the neighbour network coding scheme and the random neighbour network coding scheme. In the two proposed network coding schemes, a node may perform a bit-wise exclusive or (XOR) operation to combine the native packet of itself and the native packet of its neighbour, called the coding neighbour, into an XOR coded packet. The reliability of all-to-all broadcast under both the proposed network coding schemes is investigated analytically using Markov chains. It is shown that the reliability of all-to-all broadcast can be improved considerably by employing the proposed network coding schemes, compared with non-coded networks with the same link conditions, i.e. same probabilities of successful packet transmission via wireless channels. Further, the proposed schemes take the link conditions of each node into account to maximise the reliability of a given network. To be more precise, the first scheme proposes the optimal coding neighbour selection method while the second scheme introduces a tuning parameter to control the probability that a node performs network coding at each transmission. The observation that channel condition can have a significant impact on the performance of network coding schemes is expected to be applicable to other network coding schemes for lossy wireless networks
    corecore