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Abstract: We consider broadcasting in multi-hop wireless networks, in which
one source transmits information to all the nodes in the networks. We focus on
energy efficiency, or minimizing the total number of transmissions.

Our main result is the proof that, from the energy-efficiency perspective,
network coding may essentially operate in an optimal way in the core of the
network for uniform wireless networks in Euclidean spaces with idealized com-
munication.

In such networks, one corollary is that network coding is expected to outper-
form routing. We prove that the asymptotic network coding gain is comprised
between 1.642 and 1.684 for networks of the plane, and comprised between 1.432
and 2.035 for networks in 3-dimensional space.

Key-words: wireless networks, network coding, broadcasting, multi-hop, min-
cut, hypergraph, connected dominating set



Diffusion sans-fil par codage réseau:
Économie d’énergie, optimalité et gain de
codage dans les réseaux sans fil sans perte

Résumé : Nous nous intéressons à la diffusion dans les réseaux ad-hoc multi-
sauts, où une source transmet de l’information à tous les nœuds du réseau.
Nous nous concentrons sur l’économie d’énergie, c’est-à-dire la minimisation du
nombre de transmissions.

Notre résultat principal est la preuve que, du point de vue de l’économie
dénergie, le codage réseau peut opérer essentiellement de manière optimale dans
le cœur du réseau, pour des réseaux sans fil uniformes dans les espaces euclidiens
avec des transmissions idéalisées (sans perte).

Dans de tels réseaux, le corollaire est que le codage réseau peut avoir de
meilleures performances que le routage. Nous prouvons que le gain asymptotique
du codage réseau est compris entre 1.642 et 1.684 pour des réseaux du plan, et
compris entre 1.432 et 2.035 pour des réseaux dans un espace de dimension 3.

Mots-clés : réseaux sans fil, codage de réseau, diffusion, multi-sauts, coupe
minimale, hypergraphe, ensemble dominant connecté
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1 Introduction

Seminal work from Ahlswede, Cai, Li and Yeung [24] has introduced the idea of
network coding, whereby intermediate nodes are mixing information from differ-
ent flows (different bits or different packets), and has illustrated some capacity
gains.

In multi-hop wireless networks, one of natural applications of network cod-
ing is to reduce the number of transmissions required to transmit some amount
of information to the same destinations. This achieves energy efficiency for net-
works where the cost of wireless communication is a critical design factor. We
focus on one specific form of communication: broadcasting information from
one source to all the nodes in a wireless multi-hop network. Such communi-
cation is commonly used in wireless networks, for instance, for management,
information dissemination, multimedia content distribution, or as a simplified
form of multicast. Energy efficient broadcast may be formulated as:

• With one broadcast source, minimize the total number of (re)transmissions
used to allow all nodes in the network to get the information.

The issue of efficient multicast or broadcast has been studied with network
coding; in fact, for single-source multicast or broadcast, and with our network
model assumptions (see section 2.1), there exist general methods to determine
optimal network coding parameters and simultaneously quantify its energy ef-
ficiency (see Lun et al. [21] or Wu et al. [31]). Fragouli et al. [14] give insights
for all-to-all broadcast and illustrate how gains could be obtained compared to
routing.

While the single-source methods may be applied to specific instances of
networks and will compute a precise quantification of the energy efficiency of
broadcast with optimal parameters, they might not necessarily yield an estimate
beforehand without performing the computation. This article seeks and provides
some answers for the following questions:

• How efficient is broadcast with network coding, in general? Is it
beneficial to use network coding over routing?

For instance, in wired networks, Edmond’s Theorem [13] shows that network
coding offers no capacity gains for single-source broadcast. But in wireless
networks and for energy efficiency, the nature of the problem changes: using a
microscopic view, every transmission will reach several neighbors of the emitter.
Therefore energy efficiency seeks not only to limit the number of nodes that
transmit; the objective also consists of maximizing the number of receivers for
which one transmission is useful (innovative).

There is not a universal answer to the previous general questions, and we
focus on simplified but representative classes of wireless networks: networks of
the Euclidian space, where nodes are uniformly distributed. Wireless commu-
nication is modeled with hypergraphs.

Energy efficiency of network coding
Starting with the case where nodes are organized on a grid, our main finding
is that, asymptotically, network coding may operate in an “optimal” manner in
the core of the network for a strong definition of “optimality” that considers the
microscopic viewpoint: every transmission is innovative for every receiver (local
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4 Adjih & Cho

optimality). This definition implies a upper bound for energy efficiency. When
the area of the network grows indefinitely, the core of the network comprises
the majority of nodes and, as a result, we are able to show that network coding
achieves this bound asymptotically, hence optimality.

A consequence is for more general networks where the nodes are not dis-
tributed regularly on a grid but randomly; on the condition that the density
increases, the results of optimality are extended.

Comparison with routing
By observing that, on the other hand, routing cannot achieve optimality in the
microscopic view, we answer the question of the gain of network coding: we
prove bounds for the gain of network coding of 1.642 and 1.684 when both the
area and the density of the network converge toward infinity for networks of the
plane ; and bounds of 1.432 and 2.035 for networks of the euclidean space of
dimension 3.

Bottleneck around and destination
In extensions of our results, we prove that if the source or if one of the destination
are enlarged to set of nodes, the max-flow between there areas will be increased.

The rest of this paper is organized as follows: section 2 provides background
material; section 3.4 describes the methods for network coding, as well as main
performance results relative to local optimality; section 3.3 discusses energy
efficiency in comparison with routing; section 6 indicates how results could be
extended; and section 7 concludes the document.

2 Background

2.1 Network Model

2.1.1 Adaptable Source

We assume that one source is present with an infinite number of packets to
transmit to the whole network, and that its data rate may be arbitrarily selected.

A practical example of such a source would be a management node in a sensor
network that broadcasts a software update: the duration of the broadcast may
be arbitrarily selected in order to preserve the battery lifetime of the nodes.

2.1.2 Topology

Our assumptions are consistent with some commonly found in the literature of
broadcast or connected dominating set (see for instance, those in Fragouli et
al. [14] or in Yu and Chong [32]).

We consider multi-hop wireless networks with a number of nodes, without
mobility.

Precisely, the considered wireless networks are:� Random unit disk graphs with nodes uniformly distributed (Fig. 1(a)) on
the plane (or, in general, of Euclidean space R

n)� Unit disk graphs with nodes organized on a lattice (Fig. 1(b))
The primary model for the wireless networks that is considered is the unit

disk graph model [4], where two nodes are neighbors whenever their distance
is lower than a fixed radio range (see Fig. 1(a) for the principle of unit disk
graphs).

INRIA
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�

(a) Random unit disk graph

�

(b) Lattice unit disk graph

Figure 1: Network model and selected rates

The communication model is idealized: every transmission is perfectly re-
ceived by the neighbors of the emitter, hence wireless transmissions are without
loss, collisions, or interferences. Additionally, the network is a packet network
and the source is assumed to have identically sized packets.

As discussed in section 2.3.2, because the source is adaptable and because
the goal is energy efficiency and not capacity maximization, the ideal communi-
cation model does not introduce significant deviations from the behavior of real
networks.

2.2 Rate Selection

Several results permit to reformulate the problem of energy efficient multicast
of a single source, and they may be found, for instance, in the synthesis of Lun
et al. [10, 11]. They can be informally described as follows:� consider any network coding method (deterministic, opportunistic, ran-

dom, etc.) over a long duration� compute the average rate of the node (packets transmitted per unit of
time).

Then, essentially:� only the average rate of each node has to be considered to have an bound
of maximum possible source broadcast rate with the network coding.� one will achieve asymptotically this bound using the simple method of
random linear coding of Ho et al. [18, 19], where each node additionally
retransmits with a rate equal to the computed average rate (as described
in Appendix A).

These results are asymptotic as time converge toward infinity. This is valid for
the performance in terms of achieved broadcast capacity, but not, for instance,
decoding delay, CPU cost, or other metrics.

It follows that the only relevant characterization of any network coding
method is its average rates. Hence, the only issue is to choose a set of rates for
the nodes that will yield good performance: a rate selection.1

1rate selection is a specific case of the subgraph selection in [21]: in the present case, the
nodes have only one hyperarc
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6 Adjih & Cho

Once the rate selection is decided, the maximal performance may be com-
puted by purely graph-theoretic methods. Given any rate selection, one can pre-
cisely compute a maximal achievable broadcast rate for the source (section 2.5).
Essentially, the source may arbitrarily approach this rate and at the same time
successfully broadcast all its packets in the long run.

Notice that the rate of one node is not related to the rate of the physical
transmission on the wireless medium, as we are below capacity in a packet
network (see section 2.3.2); it is simply related to the average delay between
two packets’ transmissions.

2.3 Energy Efficiency

2.3.1 Metric for Energy Cost

The goal is to operate in an energy efficient way, which is formulated as follows.
Consider a network at a given time (t), and then consider the number of source
packets that have been successfully broadcast to the entire network (Np(t)) and
the number of transmissions that have been made by all nodes in the network
(Nt(t)). The number of transmissions per broadcast is the ratio between the

two (that is:
Np(t)
Nt(t)

). Energy efficiency corresponds to minimizing this energy

cost when the time converge toward infinity.
In the remainder of the article, we will assume that every node has a fixed

(average) retransmission rate for reasons detailed later. This defines the rate
selection. The metric for evaluating energy efficiency is the number of transmis-
sions per broadcast. For one source, we count:� the number of retransmissions from every node, per unit time, directly

given by selected rate.� the number of packets successfully broadcasted from the source to the
entire network per unit time.

By dividing the number of retransmissions by the number of packets suc-
cessfully broadcasted, the metric for the cost per broadcast is obtained. It is
denoted as Ecost.

Ecost ,
total transmission rate of all nodes

broadcast source rate
(1)

The “maximal achievable broadcast rate of the source” (section 2.5) is the
rate to use in the previous equation Eq. 1 as “broadcast source rate”.

Although it may seem limiting to exclusively consider average rate, it is not,
as described in the following section 2.2. Any network coding method may be
converted into a method, at least as energy efficient, using random linear coding
with fixed node rates.

2.3.2 Energy Efficiency and Ideal Communication

The previous expression of the energy efficiency metric Eq. 1 shows that it is
invariant when the average rate of the source and of the nodes is scaled by the
same amount.

As a result, because we have assumed an adaptable source in a packet net-
work, it is always possible to operate largely below network capacity by de-
creasing the source rate sufficiently. Then, the limiting characteristics of wire-
less communication, including half-duplex, limited capacity, and interferences,

INRIA
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disappear for the problem of energy efficiency. In practice, once the rates are
decided, one may, for instance, scale them approprietely and coordinate the
access of the wireless media with a collision-free TDMA system.

2.3.3 Local Optimality for Energy Efficiency

In (linear) network coding terms, packet is innovative if it will be ultimately
decoded into a source packet (otherwise it is not needed or useful at all).

Consider now a microscopic view of the network. When one node u trans-
mits, its transmission will reach its neighbors simultaneously. When using net-
work coding, one coded packet is transmitted by u; this packet will be innovative
for a subset of the nodes.

From the local point of view, we can define one metric for the efficiency of
the transmission (local efficiency) as the proportion of the neighbors for which
the transmission is innovative. Then we define as locally optimal a transmission
that is innovative for all its neighbors (and has maximal local efficiency).

2.3.4 Global Optimality for Energy Efficiency

Turning back to the problem of energy efficiency as it is stated in section 2.3, we
define global optimality as operating with the most efficient network coding algo-
rithm, the one which minimizes the cost Ecost in Eq. 1. With our assumptions,
the globally optimal rate selection may be computed for the linear program from
Lun et al. [21].

2.3.5 A Bound for Global Efficiency

Global and local optimality are naturally linked, as the globally optimal rate
selection will tend to have transmissions that are locally efficient. Generally,
even with the globally optimal rate selection, all the individual transmissions
are not locally optimal.

Nevertheless, assuming local optimality of every transmission yields a bound
for energy efficiency. Indeed, assume that every node has at most Mmax neigh-
bors; one single transmission is innovative for at most Mmax nodes, assuming
local optimality. Hence, in order to broadcast one packet to all N nodes, at least
Ebound = N

Mmax
transmissions are necessary. One metric for energy efficiency

can be equivalently written as the ratio to this bound: Effbound , Ebound

Ecost
.

Effbound always verifies Effbound ≤ 1. A rate selection with Effbound = 1 will
be locally optimal in every node, hence necessarily globally optimal. In general
such a rate selection does not exist.2.

A common theme is this article is that the proposed rate selections will be
asymptotically optimal, in the sense that Effbound → 1 (for size and/or density
of the network). As a result, asymptotically, they are on average locally optimal
and they must be globally optimal as well.

2Indeed, in a multi-hop wireless network, for instance, every retransmission from the neigh-
bors of the source will be noninnovative for the source itself.

RR n° 7011



8 Adjih & Cho

2.4 Notations and Definitions

We will use the following general notation in the rest of the article, also illus-
trated in Fig. 2(a):

(a) Definition

Figure 2: Notations

Some of the notations are more specifically targeted to networks of nodes
organized on a lattice. Assume that V is included in a larger set V̂ (for a

lattice, V ⊂ V̂ = Z
n). We use the following notations for concepts related to

neighborhood:� N (X): open set of neighbors of X ∈ V ; N (X) ⊂ V̂� N [X ]: closed set of neighbors of X ∈ V , that is nodes and their neighbors
N [X ] , N (X) ∪ X� inner(X): the nodes that have only neighbors in X , that is: inner(X) ,

{x | x ∈ X and N (x) ⊂ X}� border(X): nodes that are on the border of X , that is: border(X) ,

X \ inner(X)� |X |: the number of elements in the set X when it is finite
For a lattice in the unit disk model, the set of neighbors of a node is the

same as the neighborhood of the origin node with a translation. And we denote:� R: the (closed) set of neighbors of the origin node� MR: the number of neighbors of the origin node,
MR , |R| − 1� L: the integer lattice, L , Z

n for n integer > 2� B , border(V) will be called the border of the network.
We also introduce some requirements for lattice networks:

Requirement 1. Assumptions on the network:

V is a connected network (2)

R is a symmetric set (if x ∈ R then − x ∈ R) (3)

border(V) is a connected area (4)

INRIA
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The requirements are met when V is a lattice unit graph network (with R as
a unit disk neighborhood) and is, for instance, the subset of the infinite lattice
inside a rectangle, as represented in Fig. 1(b).

As long as the symmetry of R is verified (Eq. 3 of requirement 1), we have
the following properties for any partition X, Y of the integer lattice L:

N (X) = border(Y ) (5)

N (inner(X)) ⊂ X (6)

These properties derive almost immediatly from the definitions, and they are
proved with many others in [28] (because in fact N (X) and inner(X) are two
basic operators of mathematical morphology) — for instance, Eq. 6 is identical
to a result on the opening in (II-23) p52 of [28].

Finally, we define the notion of dominating set as a dominating set X of a
set Y is a subset of Y , such as Y ⊂ N (X). A connected dominating set (CDS)
X of a set Y is a dominating set X where the subgraph X ⊂ V is connected.

2.5 Network Coding: Maximum Achievable Broadcast Rate
of the Source

In the network coding literature, several results are for multicast; they apply to
the topic of this article, broadcast, since broadcast is a special case of multicast.

A central result for network coding in wireless networks gives the maximum
achievable multicast rate for a single source. It is the rate limit for the source,
which ensures that every destination may decode the received packets.

This broadcast capacity is given by the min-cut from the source to each
individual destination of the network, viewed as a hypergraph for wireless net-
works [10, 11].

Let us consider the source s and one of the multicast destinations t ∈ V .
The definition of an s-t cut is a partition of the set of nodes V in two sets S, T
such as s ∈ S and t ∈ T . Let Q(s, t) be the set of such s-t cuts : (S, T ) ∈ Q(s, t).

We denote ∆S, the set of nodes of S that are neighbors of at least one node
of T ; the capacity of the cut C(S) is defined as the maximum rate between the
nodes in S and the nodes in T :

∆S , {v ∈ S : N (v) ∩ T 6= ∅}
and C(S) ,

∑
v∈∆S Cv

(7)

In other terms, the idea is to cut the network into two parts and check the
total rate transmitted from nodes in the part including the source to nodes of
the other part.

The min-cut between s and t is the cut of Q(s, t) with the minimum ca-
pacity. Let us denote Cmin(s, t) as its capacity. From [10, 11], the maximum
achievable source rate is given by the minimum of capacity of the min-cut of
every destination, Cmin(s), with:

Cmin(s, t) , min(S,T )∈Q(s,t) C(S)

and Cmin(s) , mint∈V\{s} Cmin(s, t)
(8)

RR n° 7011



10 Adjih & Cho

2.6 Related Work

Some results exist about the expected value of the maximum broadcast rate
with network coding on some classes of wireline networks (with links between
pairs of nodes). For instance Ramamoorthy et al. [1] explored the multicast
capacity of networks where a source is two hops from the destinations, through
a one network of relay nodes. Aly et al. [27] studied some classes of networks
in the plane. From their results [1, 27], one intuition is that most nodes have
similar neighborhoods, the approach of setting an identical rate deserves to be
explored.

For unit disk graphs, and when every node is a source, Fragouli et al. [14,
15] have previously shown the version of our Th. 1 in the simple case of the
torus lattice where nodes have four neighbors and specific topologies such as
circular topologies. In these cases their algorithms operate optimally. Their
additional theoretic arguments offer pessimistic guarantees of proper functioning
with network coding when rates, hence costs, are higher by a factor of three
compared to the bound that is reached asymptotically in this article. Hence,
they are not sufficient to tightly compare network coding and routing and,
indeed, their results of the heuristics, and their analysis, make the case for even
better performance than the pessimistic bound.

In previous work, the authors had established Th. 1 in [6] with the method
IREN/IRON. The current article is a version derived from [3] that uses the more
efficient methods RAUDS and MARAUDS, and gives both lower and upper
bounds for the comparison with coding.

3 Our Approach: Efficient Rate Selections

The objective is ultimately to gain insights on the energy efficiency of network
coding by considering general classes of networks: networks with nodes orga-
nized on a lattice or with nodes randomly distributed.

Consider one instance of such networks: as mentioned in section 2.2, the
search for an efficient network coding method on this network is reduced to the
search for an efficient a rate selection – deciding the average transmission rate
of each node. Then the energy efficiency is computed from the rates and from
the topology of the network as shown in Eq. 1 (from the total of the rates and
from the maximum broadcast source rate).

Our approach is to construct rate selections, which essentially set the same
rate on every node (or a subset of nodes). The rate selections are constructed
in such a manner that we are able to give a proof of the energy efficiency of the
methods, a cornerstone of this article.

The rate selection methods are the following:� “IREN/IRON”: Increased Rate for Exceptional Nodes/Identical Rate for
Other Nodes. This rate selection is for lattice networks.� “RAUDS”: Rate Adjustment Using Dominating Sets. This rate selection
is a refinement of the previous method, and is more efficient in the border
of the network. It is an intermediate step for the following.

INRIA



WBNC: Energy Efficiency, Optimality and Coding Gain in Lossless Net. 11� “MARAUDS”: Mapping And Rate Adjustment Using Dominating Sets.
This rate selection is the adaptation RAUDS for random unit disk graph
networks.

Our starting point is lattice networks such as the one represented in Fig. 1(b)
that satisfy the requirement 1 (section 2.4). For a given instance of a lattice net-
work, the rate selections are not the most energy efficient – the optimal one may
be computed from the linear program from Lun et al. [21] (without capacity con-
straints because of ideal communication, see section 2.3.2). Nevertheless, they
possess one major property: they imply an energy efficient functioning in the
core of the network, which is, in fact, locally optimal (defined in section 2.3.3).
In each case, we are able to prove that, under some asymptotic conditions, the
average efficiency converges to one: global optimality results.

In the next sections, we describe each rate selection method, and formulate
and prove theorems that establish their performances as well as local and global
optimality. The last one, MARAUDS, will be used to obtain an asymptotic
result for random unit disk graphs, and for a comparison with routing.

3.1 The Rate Selection IREN/IRON for Lattice Networks

IREN/IRON is the first rate selection that is proposed. Our approach is to
select an identical rate for all nodes, assume local optimality, and improve this
rate selection:

1. Assume that every node has an identical retransmission rate, arbitrarily,
1 (e.g., one packet per unit of time)

2. Then every node with MR neighbors can receive MR coded packets per
unit of time. Assume local optimality: all of them are innovative.

3. Then the source should inject at least MR packets per unit of time.
4. An issue is the nodes of near the border because they have fewer neighbors,

and in general other nodes with less neighbors, therefore some adjustment
is required. A rate equal to the source rate (MR) is chosen.

Precisely, IREN/IRON selects a rate of each node as follows:

(a) Rate selection
IREN/IRON

(b) Rate selection RAUDS

Figure 3:� IREN (Increased Rate for Exceptional Nodes): the rate of transmission is
set to MR for the source node and any node v in the border of the network
B – defined in section 2.4 (the “exceptional” nodes).

RR n° 7011



12 Adjih & Cho� IRON (Identical Rate for Other Nodes): other nodes transmit coded pack-
ets with a rate of 1.

Notice that these rates can be globally scaled by the same amount (see sec-
tion 2.3.2).

An example is shown on Fig. 3(a), where the larger dots represent the nodes
in the border of the network B with rate MR.

3.2 Maximum Source Broadcast Rate and Local Optimal-
ity of IREN/IRON

3.2.1 Maximum Source Broadcast Rate

A central question for the evaluation of the energy efficiency of IREN/IRON,
as seen from Eq. 1, is the maximum broadcast rate of the source.

The actual maximum source broadcast rate is also an assessment of whether
the assumption of local optimality in section 3.1 is verified. By construction,
the rate selection aims at ensuring a fixed maximum broadcast rate equal to
MR. The essence of our main result is the proof that it succeeds:

Theorem 1. Assume a rate selection IREN/IRON on a network of nodes V
included in the integer lattice Z

n verifying the requirements (2),(3),(4), then the
maximum source broadcast rate is greater or equal to MR.
It is exactly MR when at least one node is not a neighbor of the source nor any
node in the border B.

3.2.2 Proof of Th. 1

In this section, we prove the achievable broadcast rate of network coding in
Th. 1. The proof relies on fundamental properties of discrete sets of the Eu-
clidean space Eq. 20 and further derived results in appendix B.

We consider the set of nodes V , which is a subset of the integer lattice L.
The maximum broadcast rate from the source is computed with graph-theoretic
methods as the capacity of min-cut of this network (which is a hypergraph), as
indicated in section 2.5. This is done by computing the capacity of the min-
cut of the source to any destination. The slight difference with the standard
framework is the lack of capacity limitations: the rates of each (hyper)arc are
not the maximum capacity of the links, but the rates chosen by the rate selection
(IREN/IRON). The results still apply.

Consider a source s and a destination t ∈ V \ {s}. Let (S, T ) be a s− t−cut
of V . The capacity of the cut is C(S), and is given by Eq. 7. The following
remark links it with the size of some subsets:

Lemma 1. C(S) ≥ |∆S|

Proof. C(S) is given by Eq. 7: C(S) ,
∑

v∈∆S Cv which implies C(S) ≥
|∆S|minv∈V Cv.

Since with IREN/IRON, Cv ≥ 1, we have the lemma.

The next step is to bound the size of ∆S using results from Th. 10. This is
the following lemma:

INRIA
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(b) Case B ⊂ T
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(c) Last case

Figure 4:

Lemma 2. With IREN/IRON, the capacity of one cut C(S) in a lattice graph
verifies : C(S) ≥ MR.

Proof. Recall that S and T are a partition of V .
We distinguish three cases, represented on Fig. 4, depending on whether the

nodes of the border B are all included in one set S or T or not:

• First case: B ⊂ S (see Fig. 4(a)).
This is the same as writing: T ∩ border(V) = ∅ since B = border(V). We

can apply the Th. 10 by substituting T for X and V for Y , and we get from
Eq. 31: N (T ) ⊂ V and |N (T )| ≥ MR.

Since N (T ) is the set of neighbors of T , and thus includes only nodes of S
or points of L outside V , the fact that N (T ) ⊂ V , implies that N (T ) ⊂ S.

Because of the symmetry of the neighborhood (Eq. 3), all such nodes of S
from N (T ) have neighbors in T , hence by definition of ∆S, they are in ∆S.
Therefore, here, we have: N (T ) ⊂ ∆S (in fact, actually, N (T ) = ∆S)

We can now show the lemma in the current case:

C(S) ≥ |∆S| (due to lemma 1)

C(S) ≥ |N (T )| since N (T ) ⊂ ∆S

C(S) ≥ MR since |N (T )| ≥ MR

• Second case: B ⊂ T (see Fig. 4(b)).
We can apply the Th. 10 by substituting S for X and V for Y ; and we get

from Eq. 31: N (S) ⊂ V . It implies that every node in border(S) has one or
several neighbors in L \ S, which must be, in fact, in V hence in T . It follows
from the definition of ∆S that border(S) ⊂ ∆S (in reality, border(S) = ∆S
even).

We also get from Eq. 30: |border(S)| ≥ MR or else border(S) = S.� If border(S) = S, this implies that the source is in ∆S. We have:

C(S) =
∑

v∈∆S

Cv from Eq. 7

≥ Cs since s ∈ ∆S

≥ MR since Cs = MR
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14 Adjih & Cho� Otherwise we have:

|border(S)| ≥ MR

|∆S| ≥ MR because border(S) ⊂ ∆S

C(S) ≥ MR because of lemma 1

And the lemma is proven in the second case.
• Third case: both T and S have nodes in B, that is: T ∩ B 6= ∅ and

S ∩ B 6= ∅ (see Fig. 4(c)).
Consider one node u ∈ S ∩ B and one node v ∈ T ∩ B. From Eq. 4 in

requirement 1, B is a connected set, hence there exists one path from u to v
consisting of nodes of B. Starting from u ∈ S, and following the path, ultimately
one node v′ ∈ T will be found as the immediate successor of one node u′ ∈ S.
Such u′ ∈ ∆S, and we have:
C(S) ≥ Cu′

C(S) ≥ MR because u′ ∈ B and such nodes have rate Cu′ = MR

Hence the lemma is proven also in this case.

Proof of Th. 1

Proof: 1. From lemma 2, for a fixed source s and destination t, the capacity of
cut s − t−cut, C(S), verifies C(S) ≥ MR, hence the min-cut itself Cmin(s, t) ≥
MR (from Eq. 8). It follows the same result for the broadcast min-cut Cmin(s) ≥
MR, hence the property that the maximum source broadcast rate is greater or
equal to MR.

For the last statement of Th. 1: in the case where there exists at least one
node t0 which is not neighbor of the source nor of any node in the border B.
In this case, consider the cut S0 = V \ {t0} and T0 = {t0}. Then ∆S0 is the
set of neighbors N (t0) of t0, and verifies |∆S0| ≤ MR. Since none of these
neighbors is an “exceptional node” (source or border node), with IREN/IRON,
they have a rate equal to 1. Hence we have C(S0) ≤ MR, thus Cmin(s) ≤ MR

and therefore with the opposite inequality that was previously established, we
have exactly Cmin(s) = MR which yields the theorem.

3.3 Energy Efficiency of IREN/IRON and Network Cod-
ing

3.3.1 Local Optimality of IREN/IRON

To have an understanding of the impact of the previous results with respect to
energy efficiency, consider a network organized as a lattice with a rate selection
IREN/IRON.

Consider the set of nodes that are sufficiently far from the border and the
source, so that all their neighbors will have a rate equal to 1. They have MR

neighbors. Now consider a node u which respects itself the same conditions as
well as all its neighbors. Informally, we will call such a node a core node 3, and
we will refer to their set as the core of the network.

For the network, Th. 1 states that the maximum source broadcast rate is
MR. Notice that every rate is an integer, and now if the network also operates

3It is at least two-hops away from the border nodes and from the source: formally, it is in
the set inner(inner(inner(V))) \ N (N (s)), non empty if V is inside a sufficiently large square.
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synchronously (as defined in [23]), one can apply the results of Jafarisiavoshani
et al. [23] (their Th. 1): the core node u will receive innovative packets from
the source at a rate exactly MR, after a transition phase, provided that linear
network coding is done with a sufficiently large field size.

Since in a synchronous operating mode the node u will also receive exactly
MR packets per unit of time (one from each neighbor), it follows that every one
of them will be innovative after the transition phase, exactly as hypothesized
when constructing IREN/IRON.

Conversely, consider now the perspective of one sender v part of the core of
the network ; like u, all its neighbors are receiving exclusively innovative packets
after a transition period. Therefore after this transition period, conversely, every
of transmissions of v will be innovative for all its receivers, its neighbors. In other
words, the transmissions of the node v are locally optimal.

At this point, note that on the lattice, no node may have more than MR

neighbors: in the bound from section 2.3.5, we have Mmax = MR, and if the
network was including only core nodes, global optimality would result. The
non-optimality of IREN/IRON (global optimality) originates from the cost of
nodes in the border, the source, and the neighbors of these nodes.

In this section, for simplicity in the explanation, we relied on results of [23],
but the presented property of local efficiency is still asymptotically true, in
general, for the rate selection IREN/IRON with random linear coding (as in
Appendix A) and any field size (see [11]). Indeed, with random linear coding,
from the fact that the maximum broadcast rate is MR, we can deduce that the
average value of the local efficiency will converge toward 1 in the core of the
network — when the source rate approaches the maximum broadcast source
rate and time increases. Is is a different formulation of a similar result of local
optimality.

3.3.2 Global Optimality of IREN/IRON and Network Coding

In the previous section, it was shown how the network operates locally optimally
in the core of the network. As the size of the network increases, the relative
weight of the core increases, and, asymptotically, a global optimality results.

The reasoning is formalized with the following theorem:

Theorem 2. Consider the sequence of networks (VL) that are the subsets, of
the infinite lattice, included in a square of length L, in a unit disk graph model
with fixed range r.
We have: when L → ∞, the relative energy efficiency of the networks converges
to 1, Effbound → 1. In other words, assymptotically, it is globally optimal.

Proof: 2. Consider such a lattice network inside a L×L square. Assume that
L ≥ 2r. The number of nodes in the border B is 4r(L − r).

In that case, the energy efficiency from Eq. 1 is:

Ecost =
total transmission rate of all nodes

broadcast source rate

=
L2 + (MR − 1)(4r(L − r))

MR
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The bound from local optimality section 2.3.5 is here Ebound = L2

MR
. Hence

the relative energy efficiency:

Effbound =
Ebound

Ecost
= 1 + O(

1

L
)

and the theorem is proven.

3.4 The Rate Selection RAUDS for Lattice Networks

In this section, the rate selection RAUDS (Rate Adjustment Using Dominating
Sets) is described. Precisely, it is a specific version of the family of rate selections
RAUDS proposed in [3]. It is similar to IREN/IRON except that its energy cost
is lower on the border of the network. The motivation is that the rate selection
on lattices will be used for random networks in section 3.5, for networks where
the density increases, and where MR increases, the cost of IREN/IRON would
prove too high.

Precisely, RAUDS is defined as follows: the nodes in the border B are iden-
tified. A connected dominating set D is built to cover these nodes (for instance,
with one of the connected dominating set algorithms in [17]).

RAUDS selects a rate of each node as follows:� The rate of transmission is set to MR for the source node, and nodes in
the connected dominating set D.� Other nodes have a rate equal to 1.

An example is shown in Fig. 3(b), where the larger dots represent the nodes
of the CDS with rate MR.

3.4.1 Maximum Broadcast Rate of RAUDS

We have the same theorem as for IREN/IRON (which also implies local opti-
mality in the core of the network):

Theorem 3. Assume a rate selection RAUDS on a network of nodes V included
in the integer lattice L = Z

n verifying the requirements (2),(3),(4). Then the
maximum source broadcast rate is greater or equal to MR.
It is exactly MR when at least one node is not a neighbor of the source or any
node in the border B.

Proof: 3. The only difference with the proofs of IREN/IRON is for lemma 2,
which need to be re-established: consider a source s and a destination t ∈ V \{s}
and let (S, T ) be a s − t−cut of V.

As in the previous proof of lemma 2, there are three cases represented on
Fig. 4, depending on whether or not the nodes in the border B are all included
in one set S or T .

• First and second cases: B ⊂ S (see Fig. 4(a)) and B ⊂ T (see Fig. 4(b)).
The proof in section 3.2.2 still applies in these cases.

• Third case: both T and S have points in B, that is: T ∩ B 6= ∅ and
S ∩ B 6= ∅ (see Fig. 4(c)).
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Unlike previously, there are three possibilities, this time, depending on whether
or not the nodes in the connected dominating set D are all included in one set
S or T .

— First possibility: D ⊂ S
Since T ∩ B 6= ∅, consider one node u of this subset: by definition of a

(connected) dominating set, it must be neighbor of one node v in D. Since
D ⊂ S, v ∈ S and v has a rate MR by construction of RAUDS. The transmission
v → u with rate MR ensures that the capacity of the cut verifies C(S) ≥ MR.

— Second possibility: D ⊂ T
In this case, consider S as a subset of the infinite lattice L, and denote X

its interior, X , inner(S), and Y the complementary set of X in L: Y , L\X.
We can apply Th. 9 to X and Y , and we have: |border(Y )| ≥ MR (from Eq. 31).
From Eq. 5, border(Y ) = N (X), therefore: |N (X)| ≥ MR.

Denote Sb , N (X) = N (inner(S)). The previous result is that |Sb| ≥ MR.
We will show that in fact all nodes in Sb are in border(S) and, in turn, in ∆S:

Consider one node u ∈ Sb. Since u ∈ N (inner(S)), we have u 6∈ inner(S)
(by definition of N ). Additionally, from Eq. 6, we have Sb ⊂ S, hence u ∈ S.
Because border(S) and inner(S) are a partition of S, the previous results imply:
u ∈ border(S). Hence, Sb ⊂ border(S).

Consider any node v ∈ border(S): by definition of border(S), the node v
must be in S and be neighbor of a node w outside S. w 6∈ S, therefore it is
either a node w in T or a point w outside of V.� If w ∈ T , then by definition of ∆S, we have v ∈ ∆S.� If w is a point outside V, by definition of the border of V, we must have

v ∈ border(V) (that is B); Here we can introduce the hypothesis of the
second possibility, that is, D ⊂ T : because v is in B, it must be neighbor
of at least one node of the dominating set D, and therefore of a node of
T . Again, by definition of ∆S, we have v ∈ ∆S

In all cases: v ∈ ∆S, hence this proves that border(S) ⊂ ∆S.
We can combine all the previously established properties:

C(S) ≥ |∆S| from lemma 1

≥ |border(S)| because border(S) ⊂ ∆S

≥ |Sb| because Sb ⊂ border(S)

≥ MR because |Sb| ≥ MR

— Third possibility: D includes both nodes from S and in T . In this case,
because D connected, a path can be found between nodes of S ∩ D and T ∩ D,
and therefore there exist two neighbors u and v in S ∩D and T ∩D respectively.
In that case, the transmissions u → v contribute to the capacity of the cut with
an amount MR, hence again C(S) ≥ MR.

As a result lemma 2 is restablished, and the theorem follows as for IREN/IRON.

Notice that the maximum broadcast rate of RAUDS is the same as IREN/IRON
but its energy cost is always lower (because the CDS is strictly included in the
B). Therefore, the results of the local and global optimality of IREN/IRON are
valid for RAUDS as well.
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3.5 The Rate Selection MARAUDS for Lattice Networks

In this section, we describe the rate selection MARAUDS, an extension of the
rate selection RAUDS of section 3.4 for networks in the plane.

Consider an arbitrary network which is a random unit disk graph (see
Fig. 1(a)). Denote Vreal the set of the nodes on a random unit disk graph.
The rate selection for a random unit disk graph extends RAUDS by considering
mapping between a network and a virtual lattice.

3.5.1 Construction of a Virtual Lattice

• Choose some fixed lattice spacing ρ with 0 < ρ < 1
2r and denote the rescaled

lattice as Lρ , {ρx | x ∈ Z
n}

• Choose a quantity δ verifying 1√
2
ρ < δ < 1

2r

• Select a mapping λ from the nodes of the real network Vreal to the points of
the virtual lattice (as seen, for example, in Fig. 5); λ : Vreal → Lρ, which verifies
for any x ∈ Vreal:

Property 1. ‖λ(x) − x‖ ≤ δ

Such a mapping always exists, for instance, at least the mapping of nodes of
Vreal to the closest node of Lρ.

Figure 5: Mapping to a virtual lattice

The virtual lattice, denoted V , is then defined as the set of nodes of λ to
which a node of Vreal is mapped – formally V , λ(Vreal).

3.5.2 Rate Selection with Virtual Lattice

Define R as a ball, the set of points on the lattice within range r′ of the origin,
with r′ , r−2δ (alternatively, R can be also selected as an arbitrary symmetrical
subset of this ball).

It is now possible to apply RAUDS to select rates of nodes in the virtual

network V ⊂ Lρ, with the R chosen. Let C
(lat)
v be a selected rate for nodes in

the virtual lattice. Then, the rate selection for the initial network Vreal is:� For every point of the virtual lattice τ ∈ V , choose one unique v ∈ Vreal

mapped to that point and assign the rate Cv = C
(lat)
τ

This is only possible if the following requirement is met:

Requirement 2.

For every point of the virtual lattice τ ∈ V, there exists at least one node v ∈ Vreal

mapped to that point.

Notice that the probability that requirement is met increases with the den-
sity.
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3.5.3 Maximum Broadcast Rate of MARAUDS

The results for the maximum broadcast rate of MARAUDS are extended, and
we have the following theorem:

Theorem 4. If requirement 2 is met, the maximum broadcast rate of the ex-
tended MARAUDS for random unit disk graphs ≥ |R| − 1.

Proof: 4. For s ∈ Vreal, t ∈ Vreal, consider a cut (S, T )of the graph Vreal.
Denote s′ = λ(s) and t′ = λ(t).

An induced cut (S′, T ′) of the V ⊂ Lρ, the virtual lattice, is constructed as
follows:� For any point of the lattice τ ∈ V, the rate is C

(lat)
τ .� S′ is the set of the points of V such as only nodes of S are mapped to

them:
S′ , {τ : λ−1(τ) ⊂ S} (9)� T ′ is the set of the rest of points of V.

Now, if s′ ∈ T ′, this implies that the source s is mapped to the same node
s′ as at least one other node v ∈ T . This implies that the node is neighbor of
the source, hence, the capacity of the cut C(S) is at least the rate of the source,
which is sufficient to establish the theorem in this case.

Then the only case that need to be considered is the case where s′ ∈ S′.
Notice that t′ ∈ T ′ ; that all the points of the lattice, to which both nodes from S
and T are mapped, these points are in T ′. Therefore S′, T ′ is indeed a partition
and a s′ − t′ cut.

By Th. 3, we know that the capacity of the cut S′, T ′ is lower bounded by
MR = |R| − 1: C′(S′) ≥ |R| − 1

Consider the expression of the capacity of the cut (S′, T ′): From Eq. 7:

C′(S′) =
∑

v∈∆S′ C
(lat)
v

where ∆S′ are the points of S′, neighbors of points of T ′ (from Eq. 7).
Consider two points in u′ ∈ ∆S′ and one associated neighbor v′ ∈ T ′. Now

consider any two nodes of Vreal that are mapped to those points: u ∈ S and
v ∈ T , such as λ(u) = u′ and λ(v) = v′. Such nodes exist by construction.

We have:

‖u − v‖ ≤ ‖u − u′‖ + ‖u′ − v′‖ + ‖v′ − v‖ (10)

≤ ‖u − λ(u)‖ + ‖u′ − v′‖ + ‖v − λ(v)‖
≤ 2δ + ‖u′ − v′‖ (with Property 1) ≤ r

Hence, u will also be in ∆S as defined in Eq. 7 and contributes to the capacity
of the cut of C(S). Considering all other nodes of S mapped to the same u′,
section 3.5.2 indicates that their total rate is equal to C′

u′ (due to the one node
chosen to transmit), and they are also neighbors of v. Therefore their total
contribution to the capacity of the cut C(S) is identical to the contribution of u′

to the cut C′(S′).
Applying the same reasoning to all nodes in S′, we have: C(S) ≥ |R| − 1.

This establishes the theorem.
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3.5.4 Energy Efficiency of MARAUDS for Dense Networks of the
Plane

In this section, we provide informal arguments and estimates for the energy
efficiency of MARAUDS for general networks of the plane. Formal arguments
are presented in the next section 3.5.5.

We focus on networks that are contained in a predefined region of the plane,
and we are interested in the energy efficiency of the method MARAUDS when
the density increases but the range stays fixed. As the density increases, any
point of the space will be arbitrarily close to a node of the network, hence
geometric reasonings are used.

Consider networks contained in regions such as the one represented in Fig. 2(a).
The networks themselves would be inside the region denoted X . The part de-
noted inner(X) is the region where the nodes would have a sufficient number
of neighbors as the density increases. It is the part where, asymptotically, MA-
RAUDS is locally optimal. The part border(X) is the region where nodes need
to be covered by CDS. The idea is that the border(X) can be covered by nodes
standing near the border as represented in Fig. 6. In that case, we can infor-
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Figure 6: CDS to cover borders in dense networks

mally estimate the number of nodes in the CDS from the perimeter P of the line
midway between the edge of X and the edge of inner(X) as Ncds ≈ P

r . Assume
that the area of the network is A and that the virtual lattice of MARAUDS
has a step ρ. Then Nlattice ≈ A

ρ2 , M ≈ πr2

ρ2 , Ecost ≈ 1
M (P

r × M + N × 1).

Finally denoting λ , A
P as the ratio between area and perimeter of region of

the network, we can estimate the efficiency bound of section 2.3.5:

Eff
(est.)
bound =

1

1 + πr
λ

+ O(
1

λ
) (11)

Notice that when r is kept constant and the entire region of network is
scaled by α, the ratio area/perimeter λ is scaled by the same amount α. Hence,

Eff
(est.)
bound → 1 when the area of the network grows indefinitely; this is because

the area of the border becomes vanishingly small in comparison. This indicates
asymptotic local optimality of MARAUDS (as it was the case for RAUDS) and
implies, asymptotically, global optimality of MARAUDS as well. For the case
of network is included in a square region, a formal proof of Eq. 11 is in the next
section.

3.5.5 Energy Efficiency of MARAUDS for Dense Networks in Squares

In this section, we will establish performance bounds of MARAUDS for growing
density, but with a fixed network region. Precisely: assume networks contained
in the plane, inside a square region A of width L and with a fixed radio range
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r > 0. Consider a rate selection MARAUDS as in section 3.5, with the following
parameters:� ρ = 1

µ
1
3

(µ defined later) and δ = ρ� the nodes of Vreal are mapped to the closest point on the rescaled lattice
Lρ. Denote V(ρ) = λ(Vreal)

For an asymptotic result, we consider a sequence of random unit disk graphs
where the nodes are defined by spatial Poisson process with rate µ, with µ → ∞.
We are interested in the bound given in section 2.3.5, and the estimate of sec-
tion 3.5.4 which is proven as the following theorem:

Theorem 5. The efficiency of MARAUDS is such that E[Effbound]
p→ 1

1+ 4πr
L

for an appropriate rate selection MARAUDS, when the density µ → ∞.

Proof: 5. Consider a lattice with the extension MARAUDS for a random unit
disk graph. V(ρ) is the set of points of the lattice Lρ to which at least one
point of V is mapped. When the rate of the spatial Poisson process µ is large
enough, this sets corresponds to the set of points of the full Lρ inside the square
containing the network. We first select ρ to verify this property.

Precisely: let us denote E0 the event, for one point of the lattice: “there is
no point mapped to it”. We have Pr[E0] = e−µρ2

. If E is the global event “at
least one point of the lattice has no point mapped” (which is exactly the event

“Requirement 2 is not met”), an union bound on the L2

ρ2 points of the lattice

Lρ yields Pr[E ] ≤ L2

ρ2 Pr[E0], hence:

Pr[E ] ≤ exp(−µρ2 − 2 log ρ + 2 log L)
By setting ρ = 1

µ
1
3

for instance, we have the desired property Pr[E ] → 0

when µ → ∞. Now consider the efficiency Effbound, which involves Ecost, the
“transmissions per broadcast.”, which in turns requires the maximum broadcast
rate, and the total transmission rate Tcost

When E0 is verified, requirement 2 is true, and from Th. 4, we have: the
maximum broadcast rate is |R(ρ)| − 1. The number of points in |R(ρ)| is the
number of lattice points within a circle of radius fixed around the origin (the
“ circle problem”); it is |R(ρ)| = π( r

ρ )2 + O( 1
ρ) when ρ → 0 ( [30] p. 133)

The rate of transmissions Tcost is given by the rate of transmissions of nodes
in the network, plus the rate of transmissions of the border nodes, and the source.
When the event E is verified, a node in a virtual lattice always has at least one
mapping from a node in a network of V, and only the nodes on the border of V
require rate adjustment from their neighbors.

We can construct a dominating set composed of nodes of Lρ on four lines
parallel to the edges of the square defining the network area (see Fig. 6).

Their space is chosen as ≈ r, i.e. r + O(ρ), and from elementary geometry,
this is always possible if ρ is small enough (from elementary geometry, sufficient
condition: ρ ≤ r

8 ), and the total number of nodes in the dominating set is
4L
r + O(ρ)

With the size of dominating set, we can express Tcost as:

E[Tcost] = L2

ρ2 + (|R(ρ)| − 1)(4L
r + O(ρ))
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The cost of transmission per broadcast then:

E[Ecost] =
L2

ρ2(|R(ρ)| − 1)
+

4L

r
+ O(ρ)

Let us consider the ratio of Ecost with the transmission-level bound Ebound

from section 2.3.1, Ebound = L2

πr2

Considering the limit of all involved quantities, we get 1
Effbound

= Ecost

Ebound
→

1 + 4πr
L wh en µ → ∞ conditioned to the event E whose probability Pr[E ] → 0

(which ensures requirement 2).

For non-uniform networks, consider a sequence of non-uniform networks in-
dexed by i ∈ N, i → ∞, and assume that the nodes are given by point processes
with of density µi(x) for x ∈ A. We have the following additional theorem:

Theorem 6. If the densities verify minA µi → ∞, the efficiency of MARAUDS

is such that: E[Effbound]
p→ 1

1+ 4πr
L

.

Proof: 6. We can consider the µ = minx∈A µi(x) in the proof of Th. 5, then
the proof also applies. What happens is that, with MARAUDS, every region of
the plane will contain the same density of nodes of the dominating lattice V.

4 Comparison of the Energy Efficiency of Net-
work Coding and Routing in the Plane

In other sections, we described the local optimality of IREN/IRON, RAUDS,
and MARAUDS in the parts of the networks that are distant (three hops or
more) from the CDS and the source.

One question is: without network coding, can the broadcast also be locally
energy efficient (on the lattice and in general)? One answer is negative, from
an argument of Fragouli et al. [14]: consider any broadcast with a store-and-
forward, non-coding method (including, but not limited to, the use of CDS
for broadcast), and consider the sets of nodes which have (re-)transmitted the
packet. Apart from the source, any retransmitting node v will have received the
packet from another node u. When v retransmits the packet, its transmission
will be received again by u itself, and additionally any common neighbors of
u and v. For those nodes, the transmission will be redundant (see Fig. 7(a)).
Hence, apart from the source, the retransmissions are never locally optimal.

If we consider dense networks of the Euclidean plane and consider areas
to evaluate the bound derived from the previous argument, in a unit disk
graph with range r, two neighbors share a neighborhood area at least equal

to (2π
3 −

√
3

2 )r2 (Fig. 7(a)). Hence a bound for the transmission-level efficiency
of broadcast in a dense, uniformly distributed graph, is

Eff
(routing)

upper−bound =
E

(routing)

bound

E
(routing)
cost

≤ 2π+3
√

3
6π ≈ 0.609 (see also Fragouli et al. [14]).

On the other hand, if the area tends toward infinity, it is at least possible to
cover the whole space with alternating rows of aligned nodes such as the border
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(a) Inefficiency of
routing

��
�

(b) CDS cover of the
plane

Figure 7: Routing – bound and cover

CDS of Fig. 6 (see also Bai et al. [5]).4 This yields a lower bound of the possible

efficiency of routing: Eff
(routing)

lower−bound = 2+
√

3
2π = 0.594 . . .

Hence, for infinitely large and dense networks and for single-source broad-
cast, we have the following bounds for the gain of network coding over non-
coding:

1.642 ≈ 6π

2π + 3
√

3
≤ coding gain

in dim 2
≤ 2π

2 +
√

3
≈ 1.684 (12)

4.1 Comparison of MARAUDS and Routing

In the previous section, the comparison of network coding and routing was
possible when the area of the network would grow indefinitely, because at the
same time, MARAUDS would become asymptotically optimal.

Another question would be to estimate if gains over routing would be ex-
pected for a given area of the network (but the density still increases). Our
results cannot answer this question, since the efficiency of the optimal rate se-
lection for network coding is not known; however, some insight is possible for
the rate selection MARAUDS from Eq. 11 and Th. 5. Comparing Th. 5 and

the upper bound of efficiency for routing Eff
(routing)

upper−bound of the previous section,
it follows that MARAUDS would be expected to be advantageous over routing,
at least for dense square networks where:

r
L ≤ 3

4π+6
√

3
− 1

4π ≈ 0.0510 . . .

that is where: L ≥ 20r

4.2 Sample Rate Selection with RAUDS

The Fig. 8 represents one example of rate selection RAUDS. The larger (colored)
points represent nodes on the CDS with higher rate, whereas other nodes have
rate 1. The points with slightly smaller size are nodes on the borders that are
covered by 3 CDS. The source may be placed at any node.� There are N = 3249 nodes, the range is r = 3, and MR = 28.� Two neighbors have at most 17 non-common neighbors, and then the lower

bound of the size of a CDS is 191

4Their spacing is r(1+
√

3
2

), and the cost of additional connecting nodes such as the colored

one in Fig. 7(a) is O( 1
λ
).
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Figure 8: Example of rate selection with RAUDS - in this case it outperforms
any method not using coding
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(RAUDS)
cost =

186.429 . . .� Here L
r = 19.000 . . .

This example is illustrative because it is one for which RAUDS will outper-
form any method using routing. The gap with the efficiency of the upper bound
of routing and RAUDS is rather small: one reason is that the parameters r

L are
slightly lower than those given in section 4.1, beyond which there would be an
expectation for RAUDS or MARAUDS to gain advantage over routing.

5 Further Insight on the Max-Flow between Source

and Destination

In the previous sections, we were mostly concerned about the energy-efficiency
of network coding, computed for specific methods.

In this section, the objective is to explore more closely the available max-
flow between the source and the destination, on the integer lattice, when most
nodes have the same rate.

Consider the IRON/IREN method (section 3.1). We have shown previously,
that the min-cut between the source and the destination is MR. It is actually
the capacity of the cut around the source (for S = {s}; T = V \ {s}) or around
the destination (S = V \ {t}; T = {t}), hence two bottlenecks are both around
the source and around the destination.

The question that we intend to explore is the following: what is the capacity
of the network with IRON/IREN, if these bottlenecks were relaxed?

Our answer will be that the bottlenecks would still be the limited be the size
of the region around the source and the destination.

To proceed, we assume that we have a lattice network as in section 3.1 and
section 3.2. Since we are only interested by the max-flow available between the
source area and the destination area, we assume instant transmission in area
that are peripherical to the issues, that: the border, around the source and
around the destination.

Precisely:� We assume that the source s transmits instantlly all information to a set
of nodes Hs, and that, in addition, this set of nodes retransmit instantly
to their neighbors. This can be modeled with nodes with infinite rate.� We assume that there is a set of nodes Ht which transmits instantly all
information they receive to the destination t. This is modelled with point-
to-point links with infinite rate.� We assume that the nodes on the border (IREN) have also infinite rate.� By convention, we put s ∈ Hs and t ∈ Ht

5.1 Generalization of Th. 1

Our objective is a generalization of Th. 1 which could allow larger bounds when
Hs and Ht include more than the source s or the destination t respectively.
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We start from cuts of V . Consider a source s and a destination t ∈ V \ {s}.
Let (S, T ) be a s− t−cut of V . The capacity of the cut is C(S), and is given by
Eq. 7.

We first generalize lemma 2:

Lemma 3. The capacity of one cut C(S) in a lattice graph verifies at least one
of the three following properties:� (C(S) ≥ bout(T ) and N (T ) ⊂ V)� or (C(S) ≥ bin(S) and N (S) ⊂ V)� or (C(S) is infinite)

Proof. First, the following the steps of the lemma 2, we distinguish the same
three cases, represented on Fig. 4.

• First case: B ⊂ S (see Fig. 4(a)). We proceed as previously but using
Eq. 29 instead of Eq. 31, we get:

C(S) ≥ bout(T )

and also N (T ) ⊂ V from the same Eq. 29.
• Second case: B ⊂ T (see Fig. 4(b)). We proceed as previously except for

using Eq. 28 instead of Eq. 30, and we get either |border(S)| = S (in which case
C(S) is infinite) or:

C(S) ≥ bin(S)

and also N (S) ⊂ V using Eq. 29 with X = S and Y = V .
• Third case: both T and S have nodes in B, that is: T ∩ B 6= ∅ and

S ∩B 6= ∅ (see Fig. 4(c)). As previously, in that case one of the node of T is in
range with one of the node of S on the border, hence the capacity of the cut is
infinite.

Connecting the results of the three cases yields the lemma. Notice for in-
stance, that even if the partition S/T falls in the first case, the quantity bin(S)
is well defined (as involving sets of Z

n ; bin and bout are always defined).

We start introducing the sets Ht and Hs with the following lemma 4:

Lemma 4. One cut (S, T ) ∈ Ω verifies:� If N (T ) ⊂ V, then:
Ht ⊂ T or else C(S) = ∞� If N (S) ⊂ V, then:
Hs ⊂ inner(S) or else C(S) = ∞

Proof.
• We start with the second, more complex, case: N (S) ⊂ V . Then consider
what happens if Hs 6⊂ inner(S): there exists at least one node in Hs which is
not in inner(S). Denote u this node.

By definition of inner(S), u is neighbor of at least one node which is not in
S, denoted v. Because N (S) ⊂ V , it follows that N (u) ⊂ V , hence v ∈ V . Since
v is not in S, it must be in T .

Since Hs was defined as a set of nodes with infinite rate to their neighbors,
it follows that u in S transmits with infinite rate to v in T , hence the capacity
of the cut verifies C(S) = ∞.

This proves the lemma for this case.
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• In the first case N (T ) ⊂ V . Now if Ht 6⊂ T , we can find a node u ∈ Ht ∩ T ,
and that node will transmit with infinite rate to t, hence the lemma is proved
for this case also.

We are now able to combine the two lemmas, lemma 3 and lemma 4, to
provide a generalization of Th. 1, in the following Th. 7:

Theorem 7. Assume a rate selection IREN/IRON on a network of nodes V
included in the integer lattice Z

n verifying the requirements (2), (3), (4), then
the maximum source broadcast rate Cmax−flow verifies:

Cmax−flow ≥ min(Mout, Min)

where:� Mout , min{bout(T ) : (S, T ) ∈ Ωout}� Min , min{bout(inner(S)) : (S, T ) ∈ Ωin}� Ωin = {(S, T ) : (S, T ) ∈ Ω
and N (S) ⊂ V and Hs ⊂ inner(S)}� Ωout = {(S, T ) : (S, T ) ∈ Ω
and N (T ) ⊂ V and Ht ⊂ T }� Ω is the set of partitions of V� bout is defined in Th. 8� Min or Mout are set to ∞ when they are a minimum over an empty set.

Proof. Let (S, T ) be a s− t−cut of V . It verifies lemma 3, and combining with
lemma 4 in the first two cases of lemma 3, we get:� (C(S) ≥ bout(T ) and N (T ) ⊂ V and Ht ⊂ T )� or (C(S) ≥ bin(S) and N (S) ⊂ V and Hs ⊂ inner(S))� or (C(S) is infinite)

Hence every cut verifies: C(S) is infinite or C(S) ≥ min(Mout, Min) (notice
that by definition, for any set X , bin(X) = bout(inner(X))).

As a result the min-cut verifies also the property, and since the maximum
source broacast rate is the capacity of the min-cut, then the theorem Th. 7 is
established.

Note that from their definition, Min or Mout can possibly be minimum over
an empty set ; if both are, then it means that the network topology is such that
the capacity of the cut is infinite. In that case, the reason is that the topology is
also specific, that is, every node is neighbor of the source or of the border, and
that we set an infinite rate on the source and on the border in IREN/IRON.
IREN/IRON is not specially interesting in this case, but the theorem still holds.

5.2 Lower Bounds for Maximum Source Broadcast Rate

We are now able to establish bounds for the maximum source broadcast rate
based on Th. 7.
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5.3 Generic Bound using Inequalities on Minkowski Sums

Assume that we have the following property for X, Y specific subsets of Z
n:

|X ⊕ Y | ≥ f(|X |, |Y |) + |X | + |Y | (13)

where f is a function which is monotonically increasing both in |X | and |Y |.
Different bound functions f and different conditions of the sets X, Y exists, see
in section B.1, the Brunn-Minkowski style inequalities Property 22, Property 23
or Property 21.

Assume that R, and every S and T (for (S, T ) in Ωin ∪ Ωout) would verify
the conditions for Eq. 13 to be true.

Then we have:

bout(X) = |X ⊕ R| − |X | (by def.)

≥ f(|X |, |R|) + |R| (14)

which depends only on the size of X or R.
Consider a network satisfying the conditions of Th. 7. Then starting from

the definition of Mout:

Mout = min{bout(T ) : (S, T ) ∈ Ωout}
(a)

≥ |R| + min{f(|T |, |R|) : (S, T ) ∈ Ωout}
(b)

≥ |R| + f(min{|T | : (S, T ) ∈ Ωout}, |R|)
(c)

≥ |R| + f(|Ht|, |R|)

(a) is because of Eq. 14, (b) is because f is monotonically increasing, (c) is
because by definition of Ωout, every T in Ωout must include Ht.

Applying the same reasonning to Min, we have:

Min ≥ |R| + f(|Hs|, |R|)

Denote h , min(|Ht|, |Hs|). Then Th. 7 can be further written as:

Cmax−flow ≥ |R| + f(h, |R|) (15)

Notice how the previous results can be recovered from this equation. Using
the property Eq. 20, we have a bound function f0, which is f0(|X |, |Y |) = −1
for all X, Y non-empty. (We also set Hs = {s} and Ht = {t}). This yields:
Cmax−flow ≥ |R| − 1, which is Th. 1.

5.4 Bound for small Hs and Ht

The inequality Eq. 21 yields a bound function fR which is:

fR(|X |, |Y |) , (n − 1)min(|X |, |Y |) − n(n + 1)

2

The condition on X , Y is that dim(X ⊕ Y ) = n. It is always true because,
as we use it, one X or Y is R and if the condition were not true, it could be
shown that the network is not connected.
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For small Hs and Ht, that is, for h ≤ |R|, we have:

Cmax−flow ≥ |R| + (n − 1)h − n(n + 1)

2
(16)

For dimension n = 2, Eq. 16 is never less tight than Th. 1. For dimension
n = 3, Eq. 16 is tighter than Th. 1 for h ≥ 3. We observe:

The bound in Eq. 16 increases by (n − 1) every time h is increased by 1.

5.5 Bound when Hs and Ht are the neighborhood of s and
t

Consider the case where Hs = N (s) and Ht = N (t). Then h = |Hs| = |Ht| =
|R|, and this is the largest neighborhood size for which the results of previous
section may be applied. We get from Eq. 16:

Cmax−flow ≥ n|R| − n(n + 1)

2
(17)

which is noticeably better than Th. 1, essentially by the constant factor n.

5.6 Bound for large Hs and Ht

The inequality Eq. 22 yields a bound function fGG which is, for |X | ≥ |Y |:

fGG(|X |, |Y |) , (n − 2)|Y | − n(n − 1)

2
+ (|X | − n)(n−1)/n(|Y | − n)1/n

For large Hs and Ht, that is such that h ≥ |R|, we have:

Cmax−flow ≥ (n − 1)|R| + (h − n)(n−1)/n(|R| − n)1/n − n(n − 1)

2

5.7 Consequences on Network Coding Broadcast Proto-
cols

The previous results, and most notably section 5.5, have some implications for
the decoding process, and for some protocols. Using IREN/IRON and random
linear coding, the source could asymptotically approach the maximum broadcast
rate Th. 1, and the destination would still be likely to decode.

One issue is that if the rate of the source is set exactly to the maximum
broadcast rate, then the exponent of the probability of decoding in the coding
delay (established by Lun et al. in [22]) becomes 0 (i.e. no guarantee to decode,
no matter how long is the transmission). Hence, in practice, one approach is to
set the source rate strictly below the maximum transmission rate MR.

Another approach is to observe that from Eq. 17, the min-cut between the
source s and one destination t is n times larger than the maximum source broad-
cast rate MR ; n = 2 for the plane. Hence even when setting the transmission
rate of the source exactly to MR, proper decoding could be guaranted provided
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that 1) the source and its neighbors would exchange sufficiently well coded pack-
ets with their neighborhood, 2) the neighbors of the destination would do the
same with the destination. This scenario could be achieved for instance by a
control protocol, exchanging the state of the nodes within their neighborhood,
and a slight increase of the transmission rate around the source and the destina-
tion. Then the regions around the source and the destination (i.e. the broadcast
process from Hs to Ht), would operate as if it were transmitting at a fraction
of the maximum broadcast rate 1

n , hence with good probabilities of decoding.
To a large extent, this approach can be related to the one chosen in DRAG-

ONCAST [7]: there, the protocol ensures that the information received in one
node (rank of received coded packets) is kept in line with the information of
neighbors.

Finally, we conclude these observations with one consequence of the results
ofsection 5.4. Just setting h = 2 (one single neighbor of t transmits instantly
with t, another node repeats the information from the source s) even, yields a
capacity bound which is MR + 1 when n = 2 hence a non-zero decoding error
exponent, even when the rate of the source is exactly MR.

5.8 Consequences on Random Networks

6 Extensions

In the article, results were presented for some families of networks, and with
some assumptions; in this section, we informally discuss how the results could
be extended in different conditions.

6.1 Generalization to Arbitrary Radio Shapes and Dimen-
sion

Some of the previous results were discussed for unit-disk graph networks, where
the neighborhood of one node is the set of nodes within a ball.

However many of the results for the integer lattice apply for arbitrary shapes
of R provided that the set of requirement 1 (section 2.4) is verified. Specifically,
Th. 1 (maximum broadcast rate of IREN/IRON), the property of local optimal-
ity in the core (section 3.2), and Th. 3 (maximum broadcast rate of RAUDS)
apply directly to any such shape R, and any dimension.

It is also trivial to extend the results of energy efficiency, global optimality
(Th. 2, section 3.3.2), by considering the following property: in a space of any
dimension n, for a network inside an hypercube of edge length L, the set of
nodes in the border of the network will be a fraction O( 1

L) of the nodes (for any
R). As a result their contribution to the energy cost converge towards 0 when
L → ∞, and the global optimality derives from local optimality again.

For arbitrary shape of networks, in [3], we actually proposed and proved the
results for a more general version of RAUDS, where the network could be within
an arbitrary shape (and where there could be “holes” inside the network).

For random unit disk graphs, the results rely on the rate selection MA-
RAUDS (section 3.5), which assumes a unit disk graph model where neighbors
are nodes within an region R that is a ball (see section 3.5.2). This property
is used in the proof at the key step around Eq. 10: it can be replaced by the
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requirement that the region R may be filled by specific sets of balls of fixed
radius (and arbitrarily, closely as the radius converges towards 0, i.e. the region
should not be “fractal” for some definition of fractal).

For the energy-efficiency of MARAUDS, it is not immediate to find an equiv-
alent of Eq. 6 for arbitrary dimension or arbitrary neighborhood set R. However

the following property of global optimality E[Effbound]
p→ 1 is easily derived as

for RAUDS.
The bounds of the coding gain of section 4 are however not easily generalized,

mostly because the optimal energy-efficiency of routing is not well-known. The
coding gain is discussed in section 6.2.

6.2 Coding Gain in Arbitrary Dimension

In previous section 6.1, we surveyed how previous results are generalized. Es-
sentially, for any dimension, it can be easily generalized that network coding is
optimal in the sense that Ebound → 1.

6.3 Lower Bound of Coding Gain from Connexity Con-
straint

The lower bound based on the connexity constraint of section 4 is easily gener-
alized. It follows from the computation of the intersection of two hyperspheres
(see Fig. 7(a)).

In section B.3, we reproduce the computation of volume Vn(r) of an hyper-
sphere, and the volume Wn(r) of intersection of two hyperspheres.

The lower bound for the coding gain Glower is then:

Gn,lower =
Vr(n)

Vr(n) − 2Wr(n)
=

1

1 − 2Jn

In

where In, Jn may be computed with the recursive equations:� I0 = π; I1 = 2; In = n−1
n In−2� J0 = π

3 ; J1 = 1
2 ; Jn = 1

n ((n − 1)Jn−2 − (
√

3
2 )n)

6.3.1 Bounds of Coding Gain from Sphere Coverings

We are search for upper bounds of connected dominating sets.
We start from the simpler problem of “dominating sets” in Euclidean space

of dimension n. With the unit disk graph model, finding the most efficient
dominating set is also know as “optimal sphere covering” in dimension n. An
exploration of the topic of (specific) sphere coverings has been proposed, for
instance, by F. Valletin in [29] (for low dimensions). He reports that, except for
the trivial case of dimension 1, only for dimension 2, the optimality of a sphere
is proven at the moment.

Schürmann, Vallentin, and Sikiric give a table of the least dense known
lattice coverings [2] (in [29] p.109, a table of the least dense known lattice
coverings in dimensions up to dimension 24, noting that “at the same time this
list gives the least dense known sphere coverings in dimensions up to 24 since
there is no covering of equal spheres known which is better than the best known
lattice covering”).
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The density is defined as a quantity corresponding to the number of spheres
that cover one random point on average ; it is equivalent to the coding gain
(valid if the sphere covering is connected), since we have shown that network
coding is asymptotically optimal.

It is not hard to see that if a sphere covering is known for a bounded subset
of a space of dimension n (yielding a dominating set), one may transform it into
a connected dominated set, by adding iteratively at most one connecting sphere
for each sphere of the covering.

Hence the upper bound:

Gn,upper = 2µn

where µn is the density of one known sphere covering (starting from the list
in [2]).

For also large dimensions,the bounds have been established:� Coxeter, Few and Rogers provide a lower bound τn in [9], (we used the
formulation given by Conway and Sloane [8] for computing numerical re-
sults in next section). The asymptotic behavior of τn is caracterized by:
τn ∼ n

e3/2� Dumer proves a upper bound in [12] in dimension n ≥ 3, for covering of
larger spheres by unit spheres. It is proven that the bound on density µ∗

n

verifies:

µ∗
n ≤ (

1

2
+

2 log log n

log n
+

5

log n
)n log n

which is (1
2 + o(1))n log n

Notice that τn → ∞ when n → ∞. τn is the number of spheres covering one
point in space on average ; hence ideally, one sphere could be used to connect τn

spheres at the same time (instead of just two). In the most optimistic scenario,
the connecting spheres might represent a fraction as low as 1

τn
which converges

towards 0. In reality, one cannot connect arbitrarily different spheres at will,
hence some redundancy is expected: as a result, the asymptotic relative cost of
connecting spheres appears to be an open question (it is between 0 and 1).

6.3.2 Results of Bounds of Coding Gain for Various Dimensions

The table 1 represents numerical results from the bounds presented in previous
dimensions.

When dimension grows, the behavior is the following:� The connexity constraint is less and less costly ; in fact the lower bound
converges towards 1, as it may be seen from the expression of In and Jn
5.� On the other hand, it becomes harder to cover space with spheres (from
the lower bound in section 6.3.1).

Hence the coding gain of network coding grows infinitely for the main reason
that when the dimension of the space n increases, because space covering with
spheres becomes inefficient.

It might be possible to envision the use of several wireless technologies as
generally having as similar effect of increasing the dimension n; netherless the

5see section B.3: Jn integrates on a smaller interval than In - in the range where sinn(θ)
that converges faster towards 0
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Lower Bound Lower Bound Upper Bound from Upper Bound
Dimension from connexity from sphere known sphere from [12]

Gn,lower covering [9] coverings Gn,upper

2 6 π

2 π+3
√

3
≈ 1.6420 1.2092 2.4184 -

3 16
11

≈ 1.4545 1.4323 2.9270 34.4244

4 12 π

4 π+9
√

3
≈ 1.3390 1.6584 3.5311 50.7713

5 256
203

≈ 1.2611 1.8852 4.2486 67.5649

6 30 π

10 π+27
√

3
≈ 1.2055 2.1121 4.9296 84.7473

7 2048
1759

≈ 1.1643 2.3387 5.8000 102.2618

8 840 π

280 π+837
√

3
≈ 1.1329 2.5650 6.2844 120.0627

9 65536
59123

≈ 1.1085 2.7910 8.5372 138.1140

10 840 π

280 π+891
√

3
≈ 1.0892 3.0168 10.3089 156.3871

11 524288
488293

≈ 1.0737 3.2424 11.0112 174.8589

12 660 π

220 π+729
√

3
≈ 1.0612 3.4677 14.9310 193.5102

. . . . . . . . . . . . . . .

n 1 + o(1) τn ∼ n

e3/2 - 2 × ( 1
2

+ o(1))n log n

Table 1: General bounds of coding gain: numerical results in various dimensions.
The section 4 and section 6.3.3 present tighter bounds for the practical cases of
n = 2 and n = 3

practically useful results from the table are mostly the results for dimension 3
(dimension 2 was addressed previously).

6.3.3 Further Results for Coding Gain in Dimension 3

In this section, we propose a tighter upper bound for the practical case of
dimension 3, and discuss the bounds.

Figure 9: Proposed connected dominating set for our upper bound in dimension
3

Our improved proposed upper bound is based on the following covering of
the 3-dimensional Euclidean space:
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34 Adjih & Cho� The spheres have radius 1� The centers of the spheres are on the 3-dimensional lattice generated by
the 3 vectors

v1 =




τ
0
1
3



 , v2 =




1
2τ

1
2τ

√
3

2
3



 , v3 =




0
0
1





Precisely the set of the spheres centers is:









τ(i + 1

2j)√
3

2 τj
1
3 ((i + 2j) mod 3) + k



 : (i, j, k) ∈ Z
3




� It can be transformed in a full connected dominated set by adding O(L2)
nodes, when the covered space is a sphere of radius L (or a cube of width
L) ; as a result the fraction of the additional spheres necessary to connect
the covering → 0 when L → ∞.

The Fig. 9 represents two planar cuts and illustrates the construction of the
covering. It starts from an hexagonal covering of the plane (z = 0, horizontal
plane on Fig. 9). That covering is extended on the z−axis with strings of
connected spheres (as shown on the vertical plane on Fig. 9).

Additionally, in a manner similar to the CDS proposed in section 4, the
strings of connected spheres are shifted on the z axis by a given amount (0, 1/3
or 2/3), depending on there position x, y. The underlying idea is the following:
consider the hexagons implied in the covering in the horizontal plane ; they are
classically colored with 3 colors, so that two neighbors have always different
colors ; the amount of shift on the z-axis of the string of spheres associated with
one hexagon is based on the color of the hexagon (hence: 0, 1/3 or 2/3). The
intent is that any point of the space will be surrounded by 3 spheres with differ-
ent shiftings ; as for the previously proposed 2-dimensional CDS (on Fig. 7(b)),
this allows for a less dense CDS than if no shiftings were present.

We used symbolic computation software to find the maximal value τ , for

which we still have a covering ; the value was found to be: τ = 1
3

√
11 + 6

√
3.

The number of sphere centers per unit volume is:

dc =
2

τ2
√

(3)

Our proposed upper bound of the coding gain is the gain over this covering
and is:

G∗
3,upper =

4

3
πdc =

8π
√

3

11 + 6
√

3
≈ 2.0349 . . .

With respect to the lower bounds for dimension 3, presented in table 1, we
observe that the lower bound from connexity and the lower bound from sphere
covering are close from each other. What would be a lower bound when both
sphere covering and connexity are considered together (and not independently)
is an open question, but one may hypothesize it would be noticeably higher than
these bounds taken individually - because both issues tend add to each other.

On the other hand, our proposed 3-dimensional covering uses essentially the
same method that yield an efficient CDS in dimension 2 (extend a covering
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in dimension n − 1 with strings of connected spheres). For these reasons, it is
possible that the coding gain with optimal CDS might be closer to G∗

3,upper than
to the previous lower bounds.

The upper bound of this section, combined with the lower bound from con-
nexity yields the following bounds for the coding gain of network coding in
dimension 3:

1.4323 ≈ 16

11
≤ coding gain

in dim 3
≤ 8π

√
3

11 + 6
√

3
≈ 2.0349 (18)

6.4 Impact of Multiple Sources

In general, coding separately several sources may yield an inferior performance
than coding the output of the different sources together. However, in our case,
since the methods are both locally optimal and, asymptotically, globally opti-
mal, these results directly extend to several sources, even if they are indepen-
dently coded.

6.5 Impact of Uniformity

In our models, with lattices and random unit disk graphs, a constant underlying
theme is that the networks are uniform: most nodes have the same neighbor-
hood, and for those that do not, an adaptation is performed (nodes on the
border). For random unit disk graphs with non-uniform density, MARAUDS
is using a subset of nodes that is, in fact, uniform (through the mapping of a
grid).

One question is: can the result be extended to networks where the neighbor-
hood is not uniform. [26] provides some elements of answers: for random unit
disk graphs, and with a simple local adaptation heuristics, the heuristics per-
form well, but not perfectly. For this reason, we hypothesize that the uniformity
of the network is paramount to our results and that deviation from uniformity
would imply a deviation from local optimality.

6.6 Maximum Capacity and Scheduling

In this article, energy efficient broadcast was addressed, but not maximum ca-
pacity. As a result, with proper scaling of the source rate, the issue of the
limited capacity of the wireless medium disappeared.

If we consider the properties of the rate selections (IREN/IRON, RAUDS,
and MARAUDS), it appears that they set an identical rate on nodes of the core
of the network, but have a higher rate on special nodes: the border nodes and
the source. Hence, for maximum capacity, we conjecture that the bottlenecks
would be such nodes: At the source for instance, the channel use (counting
transmission of the node and of its one-hop neighbors) is approximately twice
the channel use of a node in the core of the network; at the border nodes with
RAUDS, the channel use is also higher, even if fewer nodes are present in their
neighborhood.
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Because our methods are not optimal on the border, they cannot answer the
problem of maximum capacity of network coding, and of the scheduling of the
transmissions in such network.

6.7 Impact of Radio Range

In a network where nodes may emit with different power levels (defining different
neighborhoods), one question is, what would be the most energy efficient power
level?

In our case, the energy efficiency increases linearly with the number of neigh-
bors, hence the determining factor is, how does the number of neighbors scale
with the energy cost of transmissions? Fragouli et al. [15] studied this problem.
If we consider a planar network in a three-dimension space, then generally the
number of neighbors will scale sub-linearly. Hence, in that case, the radio range
should be minimized.

7 Conclusion

In order to characterize the performance of broadcast in wireless networks, we
have presented methods of rate selection for network coding in multi-hop wireless
networks. The logic behind these rate selections was described. The methods
are based on setting the same rate on every node, compensating for the effect
of the borders (nonexistent neighbors) and adjusting for non-uniform density of
the network.

Proofs were given for their performance and rely on the proof of maximum
broadcast rate of the source. We proved that IREN/IRON and RAUDS will op-
erate with local optimality, hence that network coding in general could operate
optimally from a local point of view. When the size of the network increases,
we have established the global optimality of the methods.

For random unit disk graphs, MARAUDS will asymptotically achieve op-
timal energy efficiency when the area and density of the network would grow
indefinitely. This is used to derive upper and lower bounds of the gain of net-
work coding in general compared to routing under these hypothesis: between
1.642 and 1.684 (in Eq. 12) for the plane, and bounds of 1.432 and 2.035 for
networks of the euclidean space of dimension 3.

For dense networks in a fixed square region of the plane, an estimate was
given for the condition for expecting the rate selection MARAUDS to outper-
form any method using routing. It is the case when the radio range is smaller
than 1

20 of the edge length of the square.
We also provide bounds for the theoretical case of larger dimensions.
Finally, in extensions of our results, we prove that if the source or if one of

the destination are enlarged to set of nodes, the max-flow between there areas
will be increased.
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A Practical Operation of Random Linear Cod-
ing

In random linear coding [19], the remaining decision is when to send packets.
In this article, we consider rate selections with fixed rates for every node: Cv is
the rate of the node v ∈ V . Then, random linear coding operates as indicated
on algorithm 1.

Algorithm 1: Random Linear Coding with Rate Selection

Source scheduling: the source transmits periodically coded packets1.1

(vectors) with rate Cs.
Nodes’ start and stop conditions: The nodes start transmitting1.2

when they receive the first vector but they continue transmitting until
themselves and their current neighbors have enough vectors to
recover the D source packets.
Nodes’ scheduling: every node v retransmits linear combinations of1.3

the vectors that it has, and waits for a delay computed from the fixed
rate before the next transmission.

With this scheduling of Algorithm 1, the adjustable parameter is the delay
between to transmissions, and for fixed rates, it is delay = 1/Cv.

Notice that we assume that the source transmits coded packets. In an ex-
treme example, the source could repeatedly transmit the same coded packet,
hence another relevant parameter is the innovative packet source rate: in gen-
eral it should be the same as the source rate Cs in a network without losses ;
in any case, the other nodes will be able to decode the broadcast, only if the
innovative packet source rate is lower or equal to the maximum broadcast source
rate for the network.

B Proof of the Main Discrete Geometry Prop-
erty on Neighborhood

B.1 Preliminaries: Minkowski sums

The properties are based on the use of the Minkowski addition and specific
properties of discrete geometry Eq. 20 below. The Minkowski addition is a
classical way to express the neighborhood of one area.

Given two sets A and B of R
n, the Minkowski sum of the two sets A⊕B is

defined as the set of all vector sums generated by all pairs of points in A and
B, respectively:

A ⊕ B , {a + b | a ∈ A, b ∈ B} (19)

Then the closed set of neighbors N [t] of one point t can be redefined in terms
of the Minkowski sum: N [t] = {t} ⊕ R.
This extends to the neighborhood of subsets: N [A] = A ⊕ R

For Minkowski sums on the lattice L, there exist variants of the Brunn-
Minkowsky inequality, including the following ones found for instance in Gard-
ner and Gronch [16] (which include a survey of some known inequalities, and
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prove a new one):

Property 2. Inequality in given [16]:
For two non-empty subsets A, B of the integer lattice Z

n,

|A ⊕ B| ≥ |A| + |B| − 1 (20)

The previous inequality (valid for any non-empty set A, B) is sufficient for
most of our results (except section 5).

More refined results may be used, in fact:

Property 3. Ruzsa proved [25]:
For two finite subsets A, B of the integer lattice Z

n, with |B| ≤ |A| and dim(A⊕
B) = n, then

|A ⊕ B| ≥ |A| + n|B| − n(n + 1)

2
(21)

Property 4. Gartner and Gronch proved (th. 6.5 and th 6.6 of [16]):

For two non-empty finite subsets A, B of the integer lattice Z
n, with |B| ≤ |A|

and dim(B) = n,

|A ⊕ B| ≥ |A| + (n − 1)|B| − n(n − 1)

2

+(|A| − n)(n−1)/n(|B| − n)1/n (22)

For two non-empty finite subsets A, B of the integer lattice Z
n, with dim(B) =

n,

|A ⊕ B|1/n ≥ |A|1/n +
1

(n!)1/n
(|B| − n)1/n (23)

B.2 Main Theorem:

In section B.2.1, we prove the following theorem:

Theorem 8. If X and Y are a partition of the integer lattice L (= Z
n), and

X is finite, then the following two properties Eq. 24 and Eq. 25 are verified:

border(X) = X or |border(X)| ≥ bin(X) (24)

|border(Y )| ≥ bout(X) (25)

where:� bin(X) , |inner(X) ⊕ R| − |inner(X)|,� bout(X) , |X ⊕ R| − |X |,� R is the set of neighbors of the origin point

Denote MR , |R| − 1. Notice that the previous theorem implies:� in all cases, Eq. 20 applied to bout implies that bout(Y ) ≥ MR

INRIA



WBNC: Energy Efficiency, Optimality and Coding Gain in Lossless Net. 39� in the case where border(X) 6= X , which occurs iff inner(X) 6= ∅ (see
proof in next section), Eq. 20 also applies and we get:
bin(X) ≥ MR

This yields the theorem in the following less general form:

Theorem 9. If X and Y are a partition of the integer lattice L (= Z
n), and

X is finite, then the following two properties Eq. 26 and Eq. 27 are verified:

border(X) = X or |border(X)| ≥ MR (26)

|border(Y )| ≥ MR (27)

where R is the set of neighbors of the origin point, and MR = |R| − 1

It was presented in [3] (Th.5 of [3]), and represented on Fig. 10

Figure 10: Illustration of Th. 9

An illustration of the Th. 9 is represented on Fig. 10: on the left part, X is the set of points

inside the polygon, whereas Y is the rest of the (infinite) integer lattice, only a part of which

is represented here. border(X) is the set of clear large points (inside the polygon) ; border(Y )

is the set of dark large points (outside the polygon). In this case, we have |border(X)| ≥ MR

and |border(Y )| ≥ MR. For reference, R is represented on the right part (MR = 28).

B.2.1 Proof for Th. 8

Proof. We start by proving Eq. 24 of Th. 8
Consider the set inner(X). If it is empty, by definition of inner(X), all points

of X must be neighbors of points of Y : X = border(X). This implies Eq. 24 of
Th. 8 (as a side note, conversely, if X 6= border(X), at least one point of X is
not neighbor of Y , hence inner(X) 6= ∅).

Otherwise, inner(X) 6= ∅. Again by definition we have:

N [inner(X)] \ inner(X) ⊂ X \ inner(X)

⊂ border(X) (by def.)
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Therefore:
|border(X)| ≥ |N [inner(X)] \ inner(X)|

For the second part of this inequality, we have:

|N [inner(X)] \ inner(X)| ≥ |N [inner(X)]| − |inner(X)|

(a)

≥ |inner(X) ⊕ R| − |inner(X)|

(b)

≥ bin(X)

(a) is by rewriting neighborhood with a Minkowski sum, (b) is from the defini-
tion of bin. Eq. 24 follows.

• For Eq. 25 of Th. 8: By definition, border(Y ) includes all points y ∈ Y
that are neighbors of points of X . Hence:

N (X) ⊂ border(Y )

N [X ] \ X ⊂ border(Y ) by def. of N [X ]

Therefore:
|border(Y )| ≥ |N [X ] \ X |

The second part of the equation can be written:

|N [X ] \ X | ≥ |N [X ]| − |X |
(a)

≥ |X ⊕ R| − |X |
(b)

≥ bout(X)

(a) is by rewriting neighborhood with a Minkowski sum, and (b) is by definition.
This proves Eq. 25 of Th. 8.

B.2.2 Corollary for Finite Networks

When considering finite networks, the difficulty is that Th. 8 is proven for par-
titions of L the infinite lattice6, not for partitions of V , which is a finite subset
of L. We have the following extension of the results as Th. 10 for the case
represented on Fig. 11:

6it is false in general for partitions of finite sets ; it is also false for finite torus lattices for
pathological R
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Figure 11: Illustration of Th. 10

Theorem 10. If X and Y are finite subsets of the integer lattice L, with X ⊂ Y
and X ∩border(Y ) = ∅, then the following two properties Eq. 28 and Eq. 29 are
verified:

border(X) = X or |border(X)| ≥ bin(X) (28)

N (X) ⊂ Y and |N (X)| ≥ bout(X) (29)

where:� bin(X) , |inner(X) ⊕ R| − |inner(X)|,� bout(X) , |X ⊕ R| − |X |,� R is the set of neighbors of the origin point

In particular, this implies that the following two properties Eq. 30 and Eq. 31
are both true:

border(X) = X or |border(X)| ≥ MR, (30)

N (X) ⊂ Y and |N (X)| ≥ MR (31)

where MR = |R| − 1.

Proof: 7. Denote X̄ , L \ X the complementary of the set X in L = Z
n: we

can apply Th. 8 to the partition X ′/Y ′ of L with X ′ = X and Y ′ = X̄.
We get:� Eq. 24 directly yields Eq. 28 (since X = X ′)� Eq. 25 yields: |border(Y ′)| ≥ bout(X)

The latest inequality combined with Eq. 5 yields |N (X)| ≥ |bout(X)|, and the
only statement that remains to be verified is: is N (X) ⊂ Y ?

By contradiction: assume that N (X) 6⊂ Y , and let u be one of the points
u ∈ N (X)\Y . By definition, it is u is neighbor of at least one point v ∈ X. Since
X ⊂ Y , v is also a point of Y . Because v is neighbor of u 6∈ Y , by definition of
border(Y ), v ∈ border(Y ). v being also in X, we have: v ∈ X∩border(Y ). This
is impossible because by assumption X∩border(Y ) = ∅, hence this contradiction
proves that N (X) ⊂ Y . Hence Eq. 29 is proven.

Eq. 24 and Eq. 25 are also proven by following the same steps, but using the
more specific Th. 9 in place of Th. 8.

The theorem follows.

B.3 Volume of Hyperspheres and of Their Intersection

In [20], A. E. Lawrence describes a recursive method for computing the volume
of an hypersphere with elementary calculus, which is summarized here:
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42 Adjih & Cho� The volume of an hypersphere of radius r in Euclidean space of dimension
n has the form Vn = αnrn� Vn may be computed recursively from:

Vn(r) = r

∫ θ=π

θ=0

(sin θ)Vn−1(r sin θ)dθ

which implies:
– αn = Inαn−1

– with In =
∫ θ=π

θ=0 sinn θdθ� Using integration by parts, a relation between In and In−2 is found as:

In =
n − 1

n
In−2� And by direct computation, I0 = π; I1 = 2.

Following the same method as [20], the volume Wn(r) of the intersection
of the hypersphere and the region defined by {(x1, . . . , xn)|x1 ≥ r

2}, may be
computed as:� Wn(r) has the form Vn(r) = βnrn� Vn may be computed recursively from:

Wn(r) = r

∫ θ=π/3

θ=0

(sin θ)Vn−1(r sin θ)dθ

(notice the new integration upper limit) which implies:
– βn = Jnαn−1

– with Jn =
∫ θ=π/3

θ=0 sinn θdθ� Using integration by parts, a relation between Jn and Jn−2 is found as:

Jn =
1

n
((n − 1)Jn−2 − (

√
3

2
)n)� And by direct computation, J0 = π

3 ; J1 = 1
2 .
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