249 research outputs found

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Multipacket reception in LTE femtocell networks

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de ComputadoresDriven by the growing demand for high-speed broadband wireless services, LTE technology has emerged and evolve, promising high data rates to the demanding mobile users. Based on the 3rd Generation Partnership Project (3GPP) speci cations,Long Term Evo- lution Advanced (LTE-A) telecommunication services predict the existence of macro base stations, Enhanced Node B (eNB) and micro stations HeNB with low power that complements the network's coverage. This dissertation studies the complementary use of HeNBs (femtocells 3GPP terminology) to provide broadband services. It is essential to maintain the networks performance with the network densi cation phenomenon, which brings signi cant interference problems and consequently more collisions and lost packets. The use of SC-FDE in the downlink of a LTE-A femtocell network - speci cally multipacket reception (MPR), with an IB-DFE receiver employing Multipacket Detection (MPD) and SIC techniques is proposed. A new telecommunications concept named GC emerged with the increasing environmental concerns. This dissertation shows the performance results of an iterative MPR and proposes a green association algorithm to change the network layout according to the mobile users demands reducing the Base Station (BS)'s negative contribution to the network total energy consumption. The overall results show that the technologies employed are a solution to achieve a favorable trade-o between performance and Energy E ciency (EE), responding to the global demands (high data rates) and concerns (low energy consumption and carbon footprint reduction). Keywords: Long Term Evolution(LTE), Single Carrier with Frequency Domain Equalization (SC-FDE), Iterative Block-Decision Feedback Equalizer (IB-DFE), Home enhanced Node B (HeNB), Successive Interference Cancellation(SIC),Multipacket Reception(MPR), Green Communications (GC)FCT/MEC Femtocells(PTDC/EEATEL/120666/2010), OPPORTUNISTIC CR(PTDC/EEA-TEL/115981/2009) and ADIN(PTDC/EEI-TEL/2990/2012) project

    System level simulation for femtocellular networks

    Full text link
    © 2014 IEEE. LTE is an emerging wireless data communication technology to provide broadband ubiquitous Internet access. Femtocells are included in 3GPP since Release 8 to enhance the indoor network coverage and capacity. System level simulation is used for performance evaluation of LTE-Femtocellular networks. Research works on performance optimization could not be justified since there was no common reference simulator to do so until the inception of LTE-Sim. The simulation scenarios for Femtocells in LTE-Sim encompasses two-tier macro-femto scenario but to the best of our knowledge there is no published work on coding and scripting of femtocell scenario in LTE-Sim. In this paper, the development of a femtocell scenario is discussed with simulation outcomes

    Project Final Report – FREEDOM ICT-248891

    Get PDF
    This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.This document is the final publishable summary report of the objective and work carried out within the European Project FREEDOM, ICT-248891.Preprin

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    Enhanced Inter-Cell Interference Coordination Challenges in Heterogeneous Networks

    Full text link
    3GPP LTE-Advanced has started a new study item to investigate Heterogeneous Network (HetNet) deployments as a cost effective way to deal with the unrelenting traffic demand. HetNets consist of a mix of macrocells, remote radio heads, and low-power nodes such as picocells, femtocells, and relays. Leveraging network topology, increasing the proximity between the access network and the end-users, has the potential to provide the next significant performance leap in wireless networks, improving spatial spectrum reuse and enhancing indoor coverage. Nevertheless, deployment of a large number of small cells overlaying the macrocells is not without new technical challenges. In this article, we present the concept of heterogeneous networks and also describe the major technical challenges associated with such network architecture. We focus in particular on the standardization activities within the 3GPP related to enhanced inter-cell interference coordination.Comment: 12 pages, 4 figures, 2 table

    Recent advances in radio resource management for heterogeneous LTE/LTE-A networks

    Get PDF
    As heterogeneous networks (HetNets) emerge as one of the most promising developments toward realizing the target specifications of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) networks, radio resource management (RRM) research for such networks has, in recent times, been intensively pursued. Clearly, recent research mainly concentrates on the aspect of interference mitigation. Other RRM aspects, such as radio resource utilization, fairness, complexity, and QoS, have not been given much attention. In this paper, we aim to provide an overview of the key challenges arising from HetNets and highlight their importance. Subsequently, we present a comprehensive survey of the RRM schemes that have been studied in recent years for LTE/LTE-A HetNets, with a particular focus on those for femtocells and relay nodes. Furthermore, we classify these RRM schemes according to their underlying approaches. In addition, these RRM schemes are qualitatively analyzed and compared to each other. We also identify a number of potential research directions for future RRM development. Finally, we discuss the lack of current RRM research and the importance of multi-objective RRM studies

    Fractional frequency reused based interference mitigation in irregular geometry multicellular networks

    Get PDF
    Recent drastic growth in the mobile broadband services specifically with the proliferation of smart phones demands for higher spectrum capacity of wireless cellular systems. Due to the scarcity of the frequency spectrum, cellular systems are seeking aggressive frequency reuse, which improve the network capacity, however, at the expense of increased Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) scheme has been acknowledged as an effective ICI mitigation scheme, however, in literature FFR has been used mostly in perfect geometry network. In realistic deployment, the cellular geometry is irregular and each cell experiences varying ICI. The main objective of this thesis is to develop ICI mitigation scheme that improves spectrum efficiency and throughput for irregular geometry multicellular network. Irregular Geometry Sectored-Fractional Frequency Reuse (IGS-FFR) scheme is developed that comprises of cell partitioning and sectoring, and dynamic spectrum partitioning. The cell-partitioning and sectoring allows full frequency reuse within an irregular geometry cell. Nevertheless, the sub-regions in an irregular cell have varying coverage areas and thus demands diverse spectrum requirements. The IGSFFR scheme is designed to dynamically allocate the spectrum resources according to the traffic demands of each sub-region. An enhanced IGS-FFR has been developed to optimally allocate the spectrum resources to individual users of each sub-region. Enhanced IGS-FFR has been realized using two different approaches, Auction based Optimized IGS-FFR (AO-IGS-FFR) and Hungarian based Optimized IGS-FFR (HO-IGS-FFR). The results show that IGS-FFR has significantly improved the cell throughput by 89%, 45% and 18% and users’ satisfaction by 112%, 65.8% and 38% compared to Reuse-1, Strict-FFR and FFR-3 schemes, respectively. The findings show that the ICI mitigation in IGS-FFR is reinforced by users’ satisfaction. As the number of sectors in IGS-FFR increases from 3 to 4 and 6, the cell throughput increase by 21% and 33% because of spatial diversity exploitation along with orthogonal sub-band allocation. AO-IGS-FFR and HO-IGS-FFR have further improved the cell throughput of the basic FFR-3 by 65% and 72.2%, respectively. HO-IGS-FFR performs 7% better than the AO-IGS-FFR at the expense of 26.7% decrease in the users’ satisfaction and excessive complexity. Although, AO-IGS-FFR compromises sub-optimal bandwidth allocation, it is a low complexity scheme and can mitigate ICI with high users’ satisfaction. The enhanced IGS-FFR can be deployed in future heterogeneous irregular geometry multicellular OFDMA networks
    • 

    corecore