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Orientador : Lúıs Bernardo, Professor Auxiliar com Agregação , FCT-UNL

Rui Dinis, Professor Auxiliar com Agregação, FCT-UNL
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Sumário

A crescente procura por serviços sem fios de banda larga levou ao desenvolvimento e

evolução das tecnologias de rede celular, que prometem ritmos elevados para utilizadores

móveis. A 3GPP propôs o LTE (Long Term Evolution) e mais recentemente o LTE-A

(LTE advanced). Está prevista a existência de macro estações base (eNB) e de micro

estações (HeNB), com baixa potência que complementa a cobertura da rede aumentando

a densidade de estações base. Com o inerente aumento da interferência, torna-se essencial

uma receção eficaz. Nesta dissertação é proposta a utilização de SC-FDE no downlink de

uma rede de femtocells e especialmente a utilização da receção multipacote (MPR) para

fornecer serviços de alto débito sem fios. Por outro lado com as crescentes preocupações

ambientais, surgiu o conceito de Green Communications (GC) que visa encontrar soluções

para o melhoramento da eficiência energética das redes. Tendo como base os prinćıpios

de GC é proposto um algoritmo para controlar o número de estações base (principais re-

sponsáveis pelo consumo energético das rede sem fios) necessárias fornecer serviços com

igual elevada qualidade. Os resultados globais mostram que as tecnologias empregues são

uma solução para obter uma boa relação desempenho/poupança energética, indo ao en-

contro das exigências (elevadas taxas de dados) e das preocupações (baixo consumos de

energia) da sociedade moderna.

Palavras Chave: Long Term Evolution (LTE), Single Carrier with Frequency

Domain Equalization (SC-FDE), Frequency-Domain Equalization (FDE), Iterative

Block-Decision Feedback Equalizer (IB-DFE), femtocell (Home enhanced Node B

(HeNB)), Successive Interference Cancellation (SIC), Multipacket Reception (MPR),

Green Communications (GC)
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Abstract

Driven by the growing demand for high-speed broadband wireless services, LTE technol-

ogy has emerged and evolve, promising high data rates to the demanding mobile users.

Based on the 3rd Generation Partnership Project (3GPP) specifications,Long Term Evo-

lution Advanced (LTE-A) telecommunication services predict the existence of macro base

stations, Enhanced Node B (eNB) and micro stations HeNB with low power that comple-

ments the network’s coverage. This dissertation studies the complementary use of HeNBs

(femtocells 3GPP terminology) to provide broadband services. It is essential to main-

tain the networks performance with the network densification phenomenon, which brings

significant interference problems and consequently more collisions and lost packets. The

use of SC-FDE in the downlink of a LTE-A femtocell network - specifically multipacket

reception (MPR), with an IB-DFE receiver employing Multipacket Detection (MPD) and

SIC techniques is proposed. A new telecommunications concept named GC emerged with

the increasing environmental concerns. This dissertation shows the performance results

of an iterative MPR and proposes a green association algorithm to change the network

layout according to the mobile users demands reducing the Base Station (BS)’s negative

contribution to the network total energy consumption. The overall results show that the

technologies employed are a solution to achieve a favorable trade-off between performance

and Energy Efficiency (EE), responding to the global demands (high data rates) and con-

cerns (low energy consumption and carbon footprint reduction).

Keywords: Long Term Evolution(LTE), Single Carrier with Frequency Domain

Equalization (SC-FDE), Iterative Block-Decision Feedback Equalizer (IB-DFE),

Home enhanced Node B (HeNB), Successive Interference Cancellation(SIC),Multipacket

Reception(MPR), Green Communications (GC) ,
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Chapter 1

Introduction

In recent years, due to the continuous technology development, operators saw a rapid

growth of mobile broadband subscribers as well as of their traffic volume demanded, spe-

cially due to the introduction of more advanced mobile devices and real time services [1].

As a consequence of this, there is also an increasing demand for high speed data rate

services. Under the partnership of the 3GPP, LTE was developed and proposed to sub-

scribers to fulfill this ambitious task. LTE evolution, known as LTE-A, was the first to

meet the International Mobile Telecommunications-Advanced (IMT-A) requirements for

4G systems, promising among others [2], peak data rates up to 1 Gbit/s. To achieve

the desired hight data rates, LTE-A proposed a set of features such as spectrum flexibil-

ity, multi-antenna transmission, scheduling and link adaptation, carrier aggregation, relay

nodes, Heterogeneous Network (HNet)s and Coordinated Multipoint (CoMP), among oth-

ers [3]. LTE radio access exploit rapid variations in channel quality in order to make more

efficient use of available radio resources. This is done in both time and frequency do-

mains using Orthogonal Frequency-Division Multiplexing (OFDM) and SC-FDE multiple

access versions, known as Orthogonal Frequency-Division Multiple Access (OFDMA) and

Single Carrier Frequency-Division Multiple Access (SC-FDMA), in the Downlink (DL)

and Uplink (UL) respectively. One of the major concerns is the probable lack of capacity

due to the rapid and continuous growth of traffic data demands. The concept of HNet

was introduced to face this problem, which briefly consists on adding a second layer to

the existing network (macro BSs), dedicated to low power BSs [4]. Seen as the most

1



2 CHAPTER 1. INTRODUCTION

cost-efficient solution to both service provider and end user , the femtocell BS (or HeNB

in 3GPP) terminology deployment became a reality. Femtocell networks use the same

Physical layer (PHY) technology as macro cellular networks, which means OFDM and

SC-FDE multi access versions, serving less users compared to the macro network. Al-

though it enhances the overall network performance, the HNet approach also brings new

concerns such as the increase of the interference level [4].

1.1 Motivation

According to the requirements, LTE-A is expected to provide higher data rates. Increasing

the BSs transmit power seems to be the logical solution. However, it causes higher inter-

ference in the network and consequently reduces the network efficiency (performance). To

enhance the network performance/efficiency, the decrease of the cell size, reducing the BSs

transmit power, seems to be the solution. This reduction is compensated with an increase

in the number of deployed BSs in the network. With the emerge of these low power BSs,

known as femtocell base stations or HeNB in 3GPPs terminology, the network layout was

redesigned, bringing the UEs and the BSs closer to each other. To take advantage of the

low power transmissions, an efficient reception becomes essential to enhance HeNBs cover-

age range and communication links reliability. In addition, most of the proposed solutions

to deal with poor transmission conditions forgot the Energy Efficiency(EE) issue, being

typically performance-oriented.

1.2 Objectives and Contributions

LTE-A telecommunication services predict the existence of macro base stations, eNB, and

femto base stations HeNB with low power that complements the network’s coverage. This

dissertation aims to study the complementary use of HeNBs to provide ultra-wideband

services. It is assumed that there is a fiber network interlinking the HeNBs, allowing the

use of MPR, and switch off techniques. To handle the network densification phenomenon,

which brings significant interference problems and consequently more collisions and lost

packets, this research work proposes the use of SC-FDE in the downlink of a LTE-A
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femtocell network - specifically the use of an IB-DFE receiver employing MPD and SIC

techniques. The work is divided in two parts: the first part (chapter 3) analyzes the en-

hancements achieved with the IB-DFE receiver and MPR technique when multiple HeNBs

transmit concurrently. In the second part (chapter 4) it is discussed the appliance of the

iterative SIC receiver and MPR technique combined with a switch off technique. The

main objective is to achieve the best trade off between performance and energy efficiency,

according to the global demands (high data rates) and concerns (low energy consumption

and carbon footprint reduction). This work main contributions are :

� It shows the IB-DFE receiver employing MPR technique applicability in the downlink

of a LTE-A femtocell based network.

� The development of a green association algorithm, which achieves a trade-off between

energy efficiency and performance, changing the network layout according to the

mobile users demands.

1.3 Thesis Structure

Chapter 2 presents the LTE networks key characteristics and features. A brief description

of LTE evolutionary process is presented in section 2.1.1. The LTE-A network architecture

is depicted in section 2.1.2. The DL and UL multi access schemes adopted are discussed

in section 2.1.3. Section 2.1.4 addresses the emerging of small cells. Relevance is given

in this thesis to a specific type of small cell named femtocell or HeNB, being explained

its concept in section 2.2.1, the fundamental changes that it introduce to the existing

network architecture in section 2.2.2 and its modus operandi in terms of access modes

and spectrum allocation in sections 2.2.3 and 2.2.4 respectively. Section 2.3 addresses the

concept of HNets and discussed the associated interference problems and some possible

solutions.

Chapter 3 discusses several aspects related to the possible adoption of a single carrier

transmission scheme, named SC-FDE, in a downlink of an LTE femtocell based network.

Firstly, section 3.1 presents the concept and explains in detail the various types of receivers

respectively in sections 3.1.1, 3.1.2 and 3.1.3. The MPR technique, which applies MPD and
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SIC approaches, is explained in detailed in section 3.1.4. In section 3.1.5 it is presented the

Packet error rate (PER) calculation model used in this work. The network interference is

characterized in section 3.2. Section 3.3 describes the adopted propagation model, being

the detailed explanation of the channel generation process given in section 3.4. Finally,

in section 3.5 the performance results regarding to the use of the proposed receiver in the

set of chosen simulation scenarios are exhibited and discussed.

Chapter 4 starts with the explanation of the GC concept, concerns and proposed

approaches in section 4.1. In section 4.2 it is presented and explained in detail the proposed

green algorithm. Finally, in section 4.3 is discussed the performance results in terms of

energetic gains, regarding the green algorithm appliance in the definition of a LTE-A

femtocell based network layout.



Chapter 2

State of the art

This chapter provides a brief overview of LTE, addressing key topics such as, network

architecture, applied multiple access schemes and other relevant issues related to the in-

troduction of the small cells (femtocells) approach.

2.1 LTE (Long Term Evolution)

As a consequence of the technological evolution emerged a new concept of mobile users,

more demanding and accustomed to access broadband services everywhere.

Mobile broadband, has become a necessity. The Global System for Mobile Communications

(GSM) answered to this trend developing new mobile technologies to achieve high quality

of services and better performances, such as higher data rates, larger capacity, greater

spectral efficiency, packet switched optimized system and cheaper infrastructure.

LTE was a step beyond 3G and towards the 4G and evolved after Enhanced Data rates

for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS),

High Speed Packet Access (HSPA) and HSPA Evolution, to face users increasing demands

and ensure 3GPP’s competitive edge over other cellular technologies [5]. The evolution

towards LTE began with Release 98 specifying GSM and then continued with Release

99. Release 99 specifies UMTS with Code Division Multiple Access (CDMA) air interface.

The technology moved to an all-IP network development in Release 4. UMTS networks

development moved to HSPA, introduced in 2002 by Release 5 (High-Speed Downlink

Packet Access (HSDPA)) and Release 6 (High-Speed Uplink Packet Access (HSDPA)). The

5
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improvements in mobile technologies went on by HSPA+, which is described in Release 7.

2.1.1 Evolution to LTE-A

The first version of LTE was completed in March 2009 as part of 3GPP Release 8 and just

like the majority of the technologies, it went through an evolutionary process. In order to

properly respond to increasing operator and end-user expectations, the LTE radio access

technology is continuously evolving. In this evolutionary process, releases 9 and 11 were

seen as intermediate releases that introduced multi-cast / broadcast functionality and

CoMP transmission and reception of BSs respectively.

Releases 10 and 12 were the major steps in this continuous evolution. The first one

commonly referred to as LTE-A [6] introduced carrier aggregation, Multiple-Input and

Multiple-Output (MIMO) evolution up to 8× 8 and 4× 4 in the DL and UL respectively,

relay nodes, small cells and HNets [7][8], allowing LTE to meet IMT-A requirements for

4G systems, such as peak data rates up to 1 Gbit/s, as defined by the International

Telecommunication Union Radiocommunication Sector (ITU-R)[9].

3GPP’s release 12 targets the increasing demand for mobile broadband services and traffic

volumes focusing areas like capacity increase, energy savings, cost efficiency, support for

diverse application and traffic types, higher user experience/data rate and small cells [10].

2.1.2 Network Architecture

LTE embraces the evolution of the radio access through the Evolved UTRAN (E-UTRAN),

accompanied by the evolution of non-radio aspects termed System Architecture Evolution

(SAE), originating the overall architecture termed Evolved Packet System (EPS) [11].

The Evolved Packet Core (EPC), or EPS core network, is a flat, packet switched all-IP

network . Its architecture is divided in two planes: Control Plane (C-Plane) and User

Plane (U-Plane). EPC consists of functional entities including C-Plane nodes such as

Mobility Management Entity (MME) and U-Plane nodes such as Serving Gateway (S-GW)

and Packet-data Network Gateway (P-GW). The flat and fully distributed radio-access

network architecture E-UTRAN [12], as depicted in figure 2.1 , consists of base stations,

denoted as enhanced Node B(eNB). The eNBs are responsible for managing multiple cells,
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as well as, implement all related radio functions, such as Radio Resource Management,

Header compression, security, positioning and connectivity to EPC. The interface X2

enables direct communication between eNBs, supporting mobility, inter-cell interference

management and Self-Organizing Network (SON) functionalities. S1 connects E-UTRAN

and EPC, connecting eNBs to MME and S-GW entities .

eNB eNB

eNB

MME/S-GW MME/S-GW

X2

Figure 2.1: LTE Radio Access Network Architecture

2.1.3 Multiple access schemes

The adopted multiple access schemes for DL and UL in LTE are built over OFDM and

SC-FDE modulations. This section starts with a brief introduction to OFDM main char-

acteristics, being the SC-FDE explained in detail later in chapter 3.

2.1.3.1 Orthogonal Frequency Division Multiplexing (OFDM)

OFDM is widely used in wideband wireless communications due to the numerous advan-

tages associated to its usage, where the ability to handle severe channel conditions should

be highlighted [13]. OFDM is a Multi-Carrier (MC) transmission scheme in which a

single channel with a certain frequency band uses multiple sub-carriers on adjacent fre-

quencies. In order to maximize spectral efficiency and simultaneously prevent adjacent

channel interference or Inter-Carrier Interference (ICI), the sub-carriers are orthogonally

overlapping (see figure 2.2)[14]. Each subcarrier is modulated with a conventional modu-
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lation scheme (e.g. Quadrature amplitude modulation (QAM) or Quadrature Phase-Shift

Keying (QPSK)) at a much lower rate than the original stream, which combined with the

use of an efficient implementation of Discrete Fourier Transform (DFT), named as Fast

Fourier Transform (FFT), to simplify and improve the channel equalization [15].

Frequency

Overlaping Sub-Carriers

Figure 2.2: OFDM Subcarrier Spectrum

However, communication systems are susceptible to multi-path channel reflections,

that leads to delayed copies of the signal and delay spread in transmission, causing Inter-

Symbol Interference (ISI). To avoid/reduce ISI, the OFDM based transmitter introduces

a guard period, known as the Cyclic Prefix (CP), between each transmitted data symbol.

The CP is a repetition of the last section of the OFDM symbol that is inserted before to

its beginning, that does not carry data and its length is chosen in order to be larger than

the expected delay spread of the propagation channel, as depicted bellow in figure 2.3.

OFDM blockCyclic Prefix

TTG

t

s(t)

TB

Figure 2.3: OFDM Block Structure with Cyclic Prefix
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Similar procedures are applied in the reverse order at the receiver side.A simple OFDM

block diagram is shown in figure 2.4.

Add CP

Decision
Device

Channel
Equalization

DAC
/RF

Remove CP

IFFT

FFT RF
/ADC

Figure 2.4: Basic OFDM transmitter and receiver block diagram

Although OFDM meets the demands for spectrum flexibility and provides cost-efficient

solutions for wide-band wireless communications, it has an enormous drawback (especially

to UL communication side): the high Peak-to-Average Power Ratio (PAPR), which re-

quires linear transmitter circuitry that can be expensive [16].

2.1.3.2 OFDMA in the downlink

OFDMA was chosen to be the transmission scheme in LTE downlink. It is very similar to

OFDM, with the main difference that instead of allocating all the available subcarriers,

the BS allocates a subset of carriers to each user in order to accommodate multiple trans-

missions simultaneously [14]. A block diagram of this multiple access method is depicted

in figure 2.5.

Subcarrierz
Mapping

M-point
IDFT

AddzCP
/zPS

DAC
/ RF

RemovezCP
M-point

DFT

Subcarrierz
De-mappingz/
Equalization

Detection
RF

/ ADC

Figure 2.5: Transmitter and receiver structure of OFDMA system.

OFDMA enables the OFDM transmission to benefit from multi-user diversity, based

on feedback information about the frequency-selective channel conditions from each user.

Adaptive user-to-subcarrier assignment can be performed, enhancing considerably the

total system spectral efficiency compared to single-user OFDM systems. OFDMA inherits

the advantages but also the drawbacks, from its underlying technology. Since all the

frequencies of the subcarriers were generated by one transmitter, in OFDM is relatively
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easy to maintain the orthogonality of the subcarriers, whereas in OFDMA, since many

users transmit simultaneously, each with their own estimates of the subcarrier frequencies,

a frequency offset is inevitable and multiple access interference may occur.

2.1.3.3 SC-FDMA in the uplink

As previously seen in LTE femtocell DL access scheme, the big advantage of OFDMA

is its robustness in the presence of multipath signal propagation and its main drawback

is the very pronounced envelope fluctuations of the waveform, resulting in a high PAPR

in OFDM modulated signals. Signals with a high PAPR require highly linear power

amplifiers to avoid excessive inter-modulation distortion. So, to achieve this linearity the

amplifiers have to operate with a large back-off from their peak power. Another drawback

of OFDMA usage identified for UL transmissions is, the sensitivity to frequency offset

(Doppler-Shift). With multiple terminals simultaneous transmissions, different doppler-

shifts lead to an orthogonality loss and consequently the introduction of Multi Access

Interference (MAI). Since power consumption is one of the main concerns of mobile

equipment’s manufactures, this power inefficiency (measured by the ratio of transmitted

power to DC power dissipated) induced/caused by OFDMA usage, that increases the cost

of the terminal and reduces battery life, led to the choice of the SC-FDMA as the LTE UL

transmission technique [17]. SC-FDMA is the multiple access version of SC-FDE, which

is similar to OFDM, in that they both perform channel estimation and equalization in the

Frequency Domain (FD). The system model for this access method is depicted in figure

2.6.

N-point
IDFT

M-point
IDFT

M-point
DFT

DAC
/RF

AddlCP
/lPS

RemovelCP
Subcarrierl

De-mappingl/
Equalization

Subcarrierl
Mapping

Detection

N-point
DFT

RF
/ADC

Figure 2.6: Transmitter and receiver structure of SC-FDMA system.

SC-FDMA has two different subcarrier mapping schemes: distributed and localized.

In distributed subcarrier mapping scheme, user’s data occupy a set of distributed subcar-

riers achieving frequency diversity. In localized subcarrier mapping scheme, user’s data in-
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habit a set of consecutive localized subcarriers achieving frequency-selective gain through

channel-dependent scheduling. The main differences between OFDMA and SC-FDMA

[18]are:

� the DFT block placement in the transmitter side, before symbol to subcarrier map-

ping, due to the fact that in a Single Carrier (SC) transmission each data symbol

is transmitted using the entire allocated bandwidth, while in MC transmission only

one subcarrier per data symbol is used.

� the Inverse Discrete Fourier Transform (IDFT) block placement in the receiver side

due to fact that the decision about transmitted bits, contrarily to OFDMA, is done

in the Time Domain (TD).

Figure 2.7: OFDMA vs. SC-FDMA

2.1.4 Cell size reduction

As a consequence of the constant technological evolution, the proliferation of high-specification

handsets, in particular smart-phones and tablets, is the main reason for the recent mobile

users increasing demand for traffic data [19]. As aforementioned in section 2.1, since LTE

Release 10, network densification using small cells is a main feature in 3GPP evolutionary
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process. This network densification can be achieved with the deployment of complemen-

tary low-power BS nodes under the coverage of an existing macro BSs node layer. In such

a heterogeneous deployment, low-power nodes bring transmitters and receivers closer to

each other providing more spectrally efficient links. Therefore more spatial reuse, higher

traffic capacity and end-user throughput (e.g. indoor and outdoor hotspots) is achieved

[1], while the macro layer provides wide area coverage. Unlike the high installation and

maintenance (infrastructural) cost(s) of macro stations, these low-power nodes constitute

a cost-efficient solution to eliminate coverage holes in the network. Types of small cells

include femtocells, picocells, metrocells and microcells, broadly increasing in size from

femtocells to microcells . Recently, in order to exploit the aforementioned key advan-

tages of small-cells in outdoor high-traffic environments, it is emerging a new concept of

macro-assisted small cells, termed Phantom Cell [20].

2.2 LTE Femtocells

As mentioned above in section 2.1.4, small cells are seen as the most promising solution

to respond to the increasing mobile communications demands. Comparing all employed

techniques to increase mobile networks coverage and capacity (e.g. distributed antenna

systems and microcells), femtocells seem to be the most cost-efficient solution to both,

service provider and end user.

2.2.1 Concept

The femtocell base station, or HeNB in 3GPP terminology, is a small Access Point (AP)

or BS, commonly consumer-deployed, connected via broadband connection or optical fiber

technology to the operator’s core network. Femtocells small size nature introduces some

unpredictability in their deployment. They can be seen as non-static base stations and

their deployment is done according users necessities. The lower transmit power reduced

end-user distance deployment and the lower number of users served are seen as the main

aspects to the power and spectral efficiency and capacity benefits of HeNBs [1]. These

promising small base stations are almost total configurable in terms of transmit power

and modus operandi. Spectrum allocation, transmission power and operation mode are
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the most relevant aspects in terms of femtocells interference level management, affecting

its performance and efficiency (discussion is bellow in sections 2.2.3 and 2.2.4).

Femtocell networks use the same physical layer technology as macro cellular networks,

which mean OFDMA in the DL and SC-FDMA in the UL to provide, though limited

by the backhaul connection, the desired higher data rates and improvement in terms of

Quality of Service (QoS) to the mobile users [21].

2.2.2 Architecture E-UTRAN

As the inclusion of femtocell technology is essential for the LTE evolutionary process, it

was necessary to develop the standardized LTE femtocell network architecture taking in

account LTE SAE requirements. The deployment of femtocells introduces a new network

architecture concept termed a two-layer or two-tier network, composed of two clearly

separated layers: the macro cell layer and the femtocell layer (introduced bellow in section

2.3). The femtocell network architecture has been defined to allow maximum flexibility

and scalability, to ensure that the deployment can be easily incorporated into the existing

structures. It was kept in the flattest manner due to the adoption of an all-IP networks in

LTE access network architecture (see section 2.1.3). Interface S1 links E-UTRAN (HeNBs)

to EPC and X2 interface is responsible for the communication and information exchange

between HeNBs (since Rel-9 or later HeNB implementations). HeNB supported functions

and procedures are the same as eNB ones (section 2.1.2), but some modifications were made

to the conventional macro cellular networks topology. The main difference is the possible

inclusion of a new interface, named Home eNodeB Gateway (HeNB-GW), between HeNBs

and EPC that leads to a logical division in S1 interface: S1-MME to carry control plane

information and S1-U for data plane. The HeNB-GW inclusion in the network architecture

is previously referred as a possibility because according to 3GPP technical specifications to

HeNB architecture [22] there are three possible variants of HeNB E-UTRAN architecture:

without HeNB-GW, with dedicated HeNB-GW and with HeNB-GW for C-Plane.
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HeNB SeGW

HeNB-GW

HeNB mgmt system

EPC

S1-MME

S1-U

Figure 2.8: LTE femtocell Radio Access Network Architecture

When present, HeNB-GW serves as a concentrator for the C-Plane, specifically the

S1-MME interface and in a manner that mobility issues would not require inter-MME

handovers. Besides, it may terminate the U-Plane towards the HeNB and S-GW (S1-U)

providing support for U-Plane multiplexing, enhancing systems with limited bandwidth

links. The communication between the HeNB and MME/S-GW or HeNB-GW/S-GW is

secured by the mandatory Security Gateway (SeGW) function. The SeGW establishes and

manages all Internet Protocol Security (IPSec) tunnels that each HeNB needs to ensure

the integrity of data exchanged with the network. SeGW can be implemented either as a

separate physical entity or co-located with an existing entity such as HeNB-GW.

2.2.3 Access modes

Femtocells can support a limited number of users, so it is important to define the set of

users that are authorized to use each HeNB resources, in order words to define the access

mode. HeNBs can be configured to operate in one of three available distinct modes[23]:

Open Access (OA), Closed Access (CA) and Hybrid Access (HA).

� OA mode - allows all users to connect to HeNB, usually applied in public places

such as airports.

� CA mode - only a restrict set of users is allowed to connect to HeNB. The set

of authorized users is saved in a list, termed,Closed Subscriber Group (CSG). It is

usually applied in home environments.
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� HA mode - HeNB provides services to its associated CSG members and to non-

CSG members, i.e., any UE may access the femtocell (with limited amount of HeNB

resources) but preference would be given to those UEs which subscribed to the

femtocell. It is usually applied in enterprise environments.

2.2.4 Spectrum allocation

There are two possibilities to deploy femtocells in cellular network spectrum: dedicated

channel and shared channel. In dedicated channel deployment, a specific channel is allo-

cated for the femtocell network, which is not used by the macrocell; on the other hand,

in shared or co-channel deployment the two layers share all channels i.e. the totality of

the available spectrum. Due to the high cost and scarcity of spectrum, operators prefer

co-channel realization that increases the overall capacity and enhances spectral efficiency,

but causes several interference problems that must be dealt [24].

2.3 Two tier network

As previous referred the deployment of small, low power BSs leads to the redesign of

the cellular network, dividing it into two main layers, as shown in figure 2.9: macro

cellular layer and femto cellular layer. Despite the numerous advantages in terms of

capacity, coverage and overall system quality, it also brings some problems/drawbacks

and challenges, specifically in terms of interference .

Figure 2.9: Two layer network
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2.3.1 Interference challenges

To achieve high data rates, the received signal must have a high SINR, depicted in equation

2.1, meaning that each transmitter should not cause significant interference to base station

users. It is essential to maintain or enhance network capacity level.

SINR =
S

I +N
(2.1)

where S, I and N represent the desired signal, the interference signal and the noise,

respectively. When I and N have Gaussian distributions, the SINR influence can be seen

applying the channel capacity concept to an Additive White Gaussian Noise (AWGN)

channel with B Hz bandwidth and SINR, known as the Shannon-Hartley theorem:

C = B × log2 (1 + SINR) (2.2)

The interference impact in the overall network performance depends on the adopted air

interface technology, such as the OFDMA applied in the downlink of LTE systems. In

order to guarantee the required QoS to eNB users, HeNB available spectrum (bandwidth)

is reduced, increasing the odds of occurring co-tier interference at the femtocell network

(explained above in section 2.3.1.1). The throughput of the network significantly decreases

with all types of interference. Severe interference problems lead to zones where the QoS

degrades significantly, termed Dead Zones. Two-Tier network design equally leads to a

division in two types of interference: Co-Tier and Cross-Tier interferences.

2.3.1.1 Co-tier interference

Co-Tier type refers to the interference caused by elements from the same network layer

(e.g. Interference between HeNBs) [25]. HeNBs are low power base stations, with re-

duced coverage radius, so they are deployed close to users, possibly leading to co-tier

interference problems, for example, in residential or in enterprise environments, due their

dense deployment. To establish a communication link, the SINR value should be above a

certain threshold defined by the used air interface technology taking in account the QoS

requirements. When it is not possible to establish the link, the place has no coverage and
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usually is termed as “coverage hole”. This is even more frequent / worrying when HeNBs

are working in CA mode (creating wider un-coverage areas). Co-tier interference type is

equally divided per communication direction, which means per DL or UL. In the UL side

Co-Tier interference is caused by femto UE that act as source of interference to neigh-

bor HeNBs. OFDMA femtocells may avoid this type of interference due to the OFDMA

division of the spectrum in sub-channels. The BS senses sub-channels conditions. When

an UE requires a certain number of sub-channels according to desired QoS, the HeNB

allocates sub-channels subject to lower level of interference. The DL Co-Tier interference

is caused by a HeNB that acts as source of interference to neighbor femto UEs. This is

very common due to the closed distance and dense deployment of HeNBs. Sometimes a

simple wall cannot attenuate sufficiently the undesired signals from other BSs. Windows

can be a concern too. OFDMA femtocells dynamically sense the air interface and allocate

the sub-channels according to sensing results, achieving minimum interference and maxi-

mum capacity. 3GPP recommends the use of adaptive power control techniques at HeNBs

(especially in CA mode when the serving BS has less power than the interfering one).

2.3.1.2 Cross-tier interference

Cross-tier is the type of interference caused by network elements from a different tier or

layer. (e.g. interference between HeNBs and eNBs and vice versa). Again, as in Co-Tier

type, this problem is more severe in the presence of CA mode femtocells. This type of

interference can be avoided if dedicated spectrum is used for the different layer elements

(spectrum splitting), but as already referred, it is a less efficient technique in terms of

resources and costs. It can also suffer interference if the bands were adjacent to each other

in the frequency domain (adjacent channel interference). In OFDMA systems the femto

UE can act as a source of interference to macro BS (eNB) when the femtocell is placed

/located /deployed near the eNB, because if femto UE is transmitting with high power

in certain sub-channels, those sub-channels become unusable for macro BS, reducing the

overall efficiency. The solution is to restrict the femto UE transmission power. Another

type is when a macro UE acts as a source of interference to a femto BS. HeNB are normally

isolated but due to low wall penetration losses, interference may happen outdoor. Here UE
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is transmitting with high power due to being far away from the macro BS, so the HeNB

should allocate different sub-channels in order to avoid interference. In the DL, cross-tier

interference can be caused by a HeNB close to a macro UE. If the femto BS is working

in CA mode, the area around the HeNB becomes a dead-zone or hole in macro coverage.

If HeNB was deployed close to eNB, the femtocell coverage area would be reduced due to

the interfering signal from the macro BS. Coverage is guaranteed only very near to the

femto BS. In OFDMA the DL interference management is mostly dependent on the sub

channels allocation [26].

2.3.1.3 Overcoming challenges

The adoption of an efficient interference management scheme leads to a reduction, miti-

gation or in the best scenario elimination of co and cross types of interference and conse-

quently to an enhancement in the overall network throughput. Several OFDMA femtocells

interference management techniques were mentioned and explained in [27]. They are split

in three main sections: Interference Cancellation (IC), Interference Avoidance (IA) and

Distributed Interference Management (DIM).

On this thesis context, more relevance is given to an IC technique named SIC and to an IA

technique named spectrum splitting. IC schemes decode desired information, using along

channel estimates to cancel the interference. They require the complete knowledge of the

interfering signal’s characteristics and an antenna array at the receiver side, making this

techniques more suitable to apply in the UL communication and introducing the inherent

extra complexity to the BSs. Extensively used in wireless communications, SIC consists

in the detection and decoding of one signal per iteration, using the decoded bits from the

previous detected signal to cancel it from the combine signal in the next iteration, in order

to recover multiple packets . This technique has a complexity and latency proportional to

the number of desired signals [28]. For example, when two transmitters share one receiver

the common capacity is given by

C = max

((
B × log2

(
1 +

S1
N

))
,

(
B × log2

(
1 +

S2
N

)))
, (2.3)
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where S1 and S2 are the signals of transmitter 1 and 2 respectively.

When employed, SIC capacity gain is observable in [29]:

C = B × log2

(
1 +

S1 + S2
N

)
. (2.4)

The spectrum splitting or allocation consists in a set of different approaches that can

be adopted to manage OFDM sub-channels. In the dedicated spectrum approach, the

licensed spectrum is divided in two parts: one for each layer. It completely eliminates

cross-tier interference but it is inefficient in terms of spectrum reuse and cannot avoid ICI

and MAI caused by lack of synchronization and orthogonality, especially in dense femtocell

deployments. ICI is a major problem in LTE-based systems. Usually mobile operators

prefer using a co-channel approach [26], which means that all the available spectrum is

used by both layers, increasing the spectral efficiency but also the interference concerns,

especially ICI. One approach for reducing ICI from neighboring eNBs and HeNBs is to use

enhanced frequency reuse techniques, such as Fractional Frequency Reuse (FFR), where

only the sub channels that are not used by macrocell, are allocated to femtocell BSs. This

last approach is included in a set of proposed solutions [30] based on partial spectrum

allocation.
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Chapter 3

SC-FDE in the downlink

Block transmission schemes combined with frequency domain processing, such as OFDM,

proved to be the most effective solution to support high rate transmissions over severe

time dispersive channels. Although, present an impressive tradeoff between performance

and processing complexity, OFDM has one considerable drawback: the high envelope

fluctuation of frequency domain data blocks. This high range of amplitude in the given

signal power, measure by the PAPR, appears as a result of high bandwidth demands,

due to transmitter power amplifier nonlinearities and leads to the power inefficiency in

the Radio Frequency (RF) section of the transmitter. Since the power efficiency became

a more relevant issue in mobile communications, a crescent interest in SC modulation

methods emerged, which when combined with FDE presents a similar favorable trade-

off (performance/low processing complexity) and considerable lower envelope fluctuations

than OFDM.

3.1 SC-FDE receiver

In a SC system the signal is transmitted over a single carrier using a conventional mod-

ulation scheme such as QAM or QPSK, at a high bit rate. A serious problem to serial

data transmissions is the ISI that can be seen as a signal distortion, in which one sym-

bol interferes with subsequent symbols, introducing errors in the decision device at the

receiver output, making the communication less reliable. This type of interference is usu-

ally associated to negative, multi-path propagation or the inherent non-linear frequency

21
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channel response effects. Thus, an efficient equalization, i.e. the compensation of the

distortion caused by channel frequency selectivity becomes essential. In SC-FDE systems

a nonlinear equalizer is implemented in FD employing FFT and the CP technique (pre-

viously explained in section 2.1.3.1), achieving similar performances compared to OFDM

with lower complexity, especially on channels with severe delay spread [31].

Insert CP DAC
/RF

RF
/ADCRemove CPFFTChannel

EqualizationIFFTDecision
Device

Figure 3.1: Basic SC-FDE transmitter and receiver block diagram

The low PAPR nature of the SC-FDE systems allows an efficient power amplification

with non linear amplifiers [32]. SC-FDE systems present a good performance, being sub-

stantially more efficient in terms of power consumption than OFDM systems due to the

reduced PAPR. Unlike OFDM systems, in which the decision about the transmitted bits

is done in the FD, in SC-FDE systems the decision is performed in the TD, which leads

to the inclusion of the IDFT block at the receiver side as shown in figure 3.1.

3.1.1 Linear receiver

DFT
{yn}

Decision Device

^~

{yk}
IDFT

{Fk}

{sk}
~{sn} {sn}

Figure 3.2: SC-FDE receiver structure block diagram

A SC-FDE receiver structure is depicted in fig. 3.2, where the received signal is sampled

and its CP removed, resulting in TD samples {yn;n = 0, 1, ..., N − 1} which after a N-sized

DFT, results in the corresponding FD block {Yk; k = 0, 1, ..., N − 1}, given by

Yk = HkSk +Nk; k = 0, 1, ..., N − 1 (3.1)
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where Hk denotes the overall channel frequency response for the kth frequency of the block

and Nk represents channel noise term in frequency-domain. To cope with dispersive chan-

nel effects, FDE is employed and it output, frequency-domain samples
{
S̃k; k = 0, 1, ..., N − 1

}
are given by

S̃k = FkYk, (3.2)

where the set of coefficients {Fk; k = 0, 1, ..., N − 1} denotes the feedfoward FDE coeffi-

cients. To avoid the sub-channels noise enhancement and consequently SNR degradation,

that usually occurs when an Zero Forcing (ZF) equalizer is used, it was employed the

Minimum Mean Square Error (MMSE) optimization criteria instead. MMSE minimize

both effects of ISI and channel noise enhancement [33]. The Fk applied is

Fk =
H∗k

α+ |Hk|2
, (3.3)

with the noise-dependent term, α, that avoids noise enhancement effects for low values of

frequency response Hk, denoted as the inverse of SNR value, more specifically given by

the ratio,

E[|Nk|2]
E[|Sk|2]

=
σ2N
σ2S

, (3.4)

where σ2N represents the variance of the real and imaginary parts of the channel noise com-

ponents {Nk; k = 0, 1, ..., N − 1} and σ2S denotes the variance of both real and imaginary

parts of the data samples components {Sk; k = 0, 1, ..., N − 1}.

3.1.2 Iterative receiver - IB-DFE

SC-FDE performance can be further improved if an IB-DFE is used . In comparison to

linear equalizers, such as the previous described FDE, the nonlinear Decision Feedback

Equalizer (DFE), as proposed in [34], provides better performances, keeping or enhanc-

ing the favorable tradeoff between performance and complexity. Non linear equalizers

based in hybrid-solutions were also proposed, where time and frequency domain filters

were implemented in the feedback and forward operations respectively [34]. Although

this hybrid-DFE approach presents better performances than linear FDE, the number of

”feedback” taps increases with the number of rays leading to problems related to error
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propagation. IB-DFE approach is a promising iterative technique for SC-FDE, proposed

in [35], where the feedback and forward operations are both implemented in FD, present-

ing low noise enhancement and block reliability on the feedback loop similar to turbo FDE

schemes with small error propagation associated [35]. If the estimates of the transmitted

block are reliable, the feedback filter can be employed to eliminate the residual ISI. An

IB-DFE receiver structure is depicted in figure 3.3,
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(i)}
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{sn}^

Decision Device

Delay

+
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^{sk
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{Bk 
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Figure 3.3: IB-DFE with hard-decisions receiver structure

where for the ith iteration, the DFE output block samples are given by

S̃k
(i)

= F
(i)
k Yk −B

(i)
k Ŝk

(i−1)
, (3.5)

with

Yk = SkHk +Nk, (3.6)

where
{
F

(i)
k ; k = 0, 1, ..., N − 1

}
and

{
B

(i)
k ; k = 0, 1, ..., N − 1

}
are the feedfoward and

feedback coefficients respectively.
{
Ŝk

(i−1)
; k = 0, 1, ..., N − 1

}
represents a DFT of the es-

timated (hard-decision) block of the previous DFE iteration transmitted block {sn;n = 0, 1, ..., N − 1}.

Both feedfoward (F
(i)
k ) and feedback (B

(i)
k ) IB-DFE coefficients, are chosen to maximize

themSINR, which is seen as the IB-DFE optimization.

SINR(i) =

∣∣∣∣γ(i)∣∣∣∣2E [|Sk|2]
E

[
|ε(i)k |

2

] (3.7)
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Considering a hard decision IB-DFE, the optimum B
(i)
k and F

(i)
k , respectively, are

B
(i)
k = ρ(i−1)(F

(i)
k Hk − γ(i)) (3.8)

and

F
(i)
k =

κ(i)H∗k
α+ (1− (ρ(i−1))2)|Hk|2

(3.9)

where κ(i) is chosen to assure that the ”mean value of the channel”

γ(i) =
1

N

N−1∑
k=0

F
(i)
k Hk = 1. (3.10)

The α coefficient is given by equation 3.4 and the correlation coefficient from the previ-

ous iteration ρ(i−1), which is determinant to ensure a good receiver performance since it

supplies a block-wise reliable measure of the estimates employed in feedback loop. It is

defined as

ρ(i−1) =
E[ŝn

(i−1)s∗n]

E[|sn|2]
=
E[Ŝk

(i−1)
S∗k ]

E[|Sk|2]
, (3.11)

where ŝn
(i−1) represents the data estimates associated to the previous iteration and Ŝk

(i−1)

its associated DFT result. In order to reduce error propagation associated problems hard-

decisions per block and overall block reliability are considered in the feedback loop. There-

fore, for the first iteration the IB-DFE receiver is simply reduced to a linear FDE.

3.1.3 IB-DFE with soft decisions

As depicted in figure 3.5, the IB-DFE performance can be improved with the use of “soft

decisions”, s̄
(i)
n , instead of “hard decisions”, ŝ

(i)
n , meaning the use of symbol averages

instead of blockwise averages. So applying the soft estimation, the equation (3.5) can be

rewritten as

S̃k
(i)

= F
(i)
k Yk −B

(i)
k S̄k

(i−1)
, (3.12)

in which the soft decision estimates from the previous iteration, S̄k
(i−1)

, i.e. the overall

block average of Sk
(i−1) at the ‘DFE output’, is given by

S̄k
(i−1)

= ρ(i−1)Ŝk
(i−1)

, (3.13)
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where ρ(i−1) represents the block wise reliability of the hard decision estimates Ŝk
(i−1)

.
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Figure 3.4: IB-DFE with soft-decisions receiver structure

The receiver structure for IB-DFE with “soft-decisions” is depicted in figure 3.4, being

the used feedforward coefficients (F
(i)
k ) given by equation 3.9. At the DFE output, the

TD samples (s̃
(i)
n ) are de-mapped into the corresponding bits by means of computing the

Log-Likelihood Ratio (LLR) of each bit of the transmitted symbols. Assuming that the

transmitted symbols are selected from a QPSK constellation with gray mapping, then

sn = sIn + jsQn = ±1 ± j in which sIn and sQn denote the real and imaginary parts of sn,

respectively.

Thus, the LLRs of “in-phase bit” and “quadrature bit”, associated to sn, are

LI(i)n =
2s̃
I(i)
n

σ2i
, (3.14)

and

LQ(i)
n =

2s̃
Q(i)
n

σ2i
, (3.15)

respectively, with
{
s̃
(i)
n ;n = 0, 1, ..., N − 1

}
= IDFT

{
S̃
(i)
k ; k = 0, 1, ..., N − 1

}
.

The variance σ2 is given by

σ2i =
1

2
E

[
|sn − s̃(i)n |2

]
≈ 1

2N

N−1∑
n=0

|ŝ(i)n − s̃(i)n |2, (3.16)

where ŝn = ±1± j are the hard-decisions associated to s̃n.

Therefore, the average symbol values conditioned to the DFE output
{
s̄
(i)
n ;n = 0, 1, ..., N − 1

}
,

are

s̄(i)n = tanh
(

L
I(i)
n
2

)
+ j tanh

(
L
Q(i)
n
2

)
= ρInŝn

I + jρQn ŝn
Q (3.17)
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with ρIn, ρ
Q
n denoting the reliabilities related to in-phase and quadrature bit of the nth

symbol, respectively.

Consequently, the correlation coefficient that will be employed to compute the optimal

feedforward coefficients in order to minimize the SINR for a QPSK constellation, is

ρ(i) =
1

2N

N−1∑
n=0

(
ρ
I(i)
n +ρ

Q(i)
n

)
(3.18)
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Figure 3.5: IB-DFE with hard and soft decisions performances with QPSK constellation

3.1.4 Multipacket Reception

Although all efforts to achieve perfect transmission links, it has proved to be complicated,

due to the unpredictability of the factors involved in the transmission process such as

noise interference level and collisions, which cause poor transmission conditions and con-

sequently the loss of the transmitted packets. This is even more critical in a scenario

of multiple and simultaneous transmissions to a common receiver, where the interference

level and the number of collisions increase. One of the major problems is the fact that

transmitters tend to increase their transmit power to overcome the bad transmission con-

ditions, such as high noise level. Several techniques were proposed to cope with lost packet

problem, namely the MPD employed in this study in a reception technique denoted by

MPR. MPR denotes the capability of simultaneous decoding of more than one packet

from multiple concurrent transmissions [36]. As depicted in figure 3.6, the suboptimal

MPD techniques can be categorized in two types: linear and non-linear (or subtractive
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interference) detection techniques.

Non-linear 
      or 
Subtractive

SIC

MPD
(suboptimal)

Linear

PIC

Figure 3.6: Suboptimal MPD techniques

The Decorrelating and MMSE are the most popular multiuser linear detectors, in

which a linear mapping to the soft output of a conventional detector is applied, in order to

reduce the MAI. However, there are fundamental differences between these two linear de-

tectors. Whereas the Decorrelating detector (highly analogous to ZF equalizer) attempts

to completely eliminate the MAI from all users, applying the inverse correlation matrix at

the match filter bank output, the MMSE instead tries to minimize the square of residual

noise plus interference applying a modified inverse correlation matrix at the match filter

bank output, obtaining better results than the Decorrelating detector which often results

in an unacceptable noise enhancement.

Subtractive interference or IC techniques require reliable received signal estimation, mean-

ing an accurate description of what was transmitted as well as the channel effects in that

transmission. These techniques can be organized in two categories: the use of a parallel

Parallel Interference Cancellation (PIC) or serial/successive SIC approach in the packet

detection process. As the name suggest, SIC employs a serial approach i.e. just one

packet is detected per stage, according to their power at the receiver, starting with the

powerful one and so on. The packet is regenerated between the soft estimation of each

transmitted packet. Afterwards the regenerated packet is subtracted from the composite

received signal, allowing the subsequent packet detection to experience less MAI. On the

other hand in PIC, approach the packets are detected in parallel, meaning all packets are

simultaneously detected and the resulting estimation is used to cancel some interference
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to the composite received signal. Although PIC presents a lower latency, it usually has a

higher level of complexity compared to SIC approach which has a complexity and latency

proportional to the number of packets [28].

There are several MPD approaches. In this study a MPD technique based on time diversity

[32] was considered, in which all transmitters involved in a collision (P), transmit several

copies of their packets under slightly modified transmission conditions, in order to allow

their separation at the receiver. So, the received content at the UE {Yk; k = 0, 1, ..., N − 1}

is

Y
(L)
k = H

(L)
k,PSk,P +N

(L)
k , (3.19)

or the expanded expression


Y

(1)
k

...

Y
(L)
k

 =


H

(1)
k,1 · · · H

(1)
k,P

...
. . .

...

H
(L)
k,1 · · · H

(L)
k,P



Sk,1

...

Sk,P

+


N

(1)
k

...

N
(L)
k

 . (3.20)

where L denotes the number of required retransmissions, meaning the temporal diversity

order and P represents the number of BSs involved in the transmission.

As aforementioned in section 3.1.2, both feedforward and feedback filters are implemented

in FD, being, for each iteration, the first responsible for partially equalizing the interference

and the second for the partial removal of the residual interference.

The iterative process gradually increases the reliability of the detected packet. At the first

iteration the feedback coefficients are zero and the equalizer is a linear MMSE equalizer.

In the iterative SIC receiver applied [37], each iteration consists in NP detection stages

(one stage for each collision) as depicted in figure 3.7.
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Figure 3.7: Iterative SIC receiver detecting two packets involved in a collision

When detecting a packet its residual ISI is removed, as well as the residual interference

from other packets. The receiver is composed by NP FD feedfoward filters, one for each

retransmission l and NP FD feedback filters one for each packet p. This SIC receiver uses

the average values associated to a given packet s̄n,p , conditioned to DFE output given by

S̃k,p =
NP∑
l=1

F
(l)
k,pY

(l)
k −

P∑
p′=1

B
(p′)
k,p S̄k,p′ (3.21)

where the average values S̄k,p′ are computed as previously explained in section 3.1.3, so

the optimum feedfoward that minimize SINR for a given packet and iteration are

F
(l)
k,p =

F̆
(l)
k,p

γp
(3.22)

with

γp =
1

N

N−1∑
k=0

NP∑
l=1

F̆
(l)
k,pH

(l)
k,p (3.23)
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being F̆
(l)
k,p computed from

(1− ρ2p)H
(l)∗
k,p

NP∑
l′=1

F̆
(l)
k,pF̆

(l)
k,p +

∑
p′ 6=p

(1− ρ′2p )H
(l)∗
k,p′

NP∑
l′=1

F̆
(l)
k,pH

(l′)∗
k,p′ + αF̆

(l)
k,p = H

(l)∗
k,p , l = 1, ..., NP,

(3.24)

where the correlation coefficient ρ is defined as in equation 3.18 and reproduced in equation

3.25 for a given user p and iteration i.

ρ(i)p =
1

2N

N−1∑
n=0

(∣∣∣<{s̄(i)n,p}∣∣∣+
∣∣∣={s̄(i)n,p}∣∣∣) . (3.25)

So, the feedback coefficients are given by

B
(p′)
k,p =

NP∑
l=1

F
(l)
k,pH

(l)
k,p′ − δp,p′ , (3.26)

with δp,p′ =

1 if p 6= p′

0 if p = p′
.

3.1.5 IB-DFE receiver performance

The IB-DFE receiver decodes the HeNB’s L transmissions up to Niter iterations. The

estimated data symbol S̃
(i)
k,p, for a given iteration i and HeNB p is

S̃
(i)
k,p = F

(i)T

k,p Yk −B
(i)T

k,p S̄
(i−1)
k (3.27)

where F
(i,l)T

k,p and B
(i,l)T

k,p with l = 1, 2, ..., L are the feedfoward and feedback coefficients

respectively. S̄
(i−1)
k,p with p = 1, .., P are the soft decision estimates from the previous

iteration for all HeNBs. S̄
(i−1)
k,p can be related to symbols hard decisions, Ŝ

(i−1)
k,p as

S̄
(i−1)
k,p ' P (i−1)Ŝ

(i−1)
k,p (3.28)

Ŝ
(i−1)
k,p = P (i−1)∆k (3.29)

where P (i−1) = diag(ρ
(i−1)
1 , ..., ρ

(i−1)
P ) are the correlation coefficients and ∆k = [∆

(1)
k , ...,∆

(P )
k ]T

is a zero mean error vector. Assuming an QPSK constellation, the correlation coefficient
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for a given HeNB p is

ρ(i−1) =
1

2N

N−1∑
n=0

∣∣∣∣ρIn,p(i−1)∣∣∣∣+

∣∣∣∣ρQn,p(i−1)∣∣∣∣ . (3.30)

For the first iteration (i = 1), S̄
(i−1)
k,p is a null vector and P (i−1) is a null matrix. As

aforementioned, the F
(i,l)
k,p and feedback B

(i)
k,p coefficients are selected to minimize the SINR,

for a given packet and a given iteration. This optimization problem can be written as the

minimization of MMSE, E
[∣∣∣Sk,p − S̃(i)

k,p

∣∣∣2], of Sk,p :

E
[∣∣∣∣(F (i)

k,p

T
(HT

k Sk +Nk)

)
−
(
B

(i)
k,p

T
P (i−1)(P (i−1)Sk + ∆k) + ΓpSk

)∣∣∣∣2] . (3.31)

To obtain the optimal coefficients,F
(i)
k,p and B

(i)
k,p, under the MMSE criterion , the gradient

of the Lagrange function is applied to equation 3.31:

∇J = ∇
(
E
[∣∣∣Sk,p − S̃(i)

k,p

∣∣∣2]+ (γ(i)p − 1)λ(i)p

)
(3.32)

conditioned to

γ(i)p − 1 =
1

N

N−1∑
k=0

L∑
l=1

F
(i,l)
k,p H

(l)
k,p − 1. (3.33)

The following set of equations 
∇
F

(i)
k,p

J = 0

∇
B

(i)
k,p

J = 0

∇
λ
(i)
p
J = 0

(3.34)

were verified when

γ(i)p = 1. (3.35)

For a single HeNB p transmitting data, i.e. without collisions, results

γ(i)p = 1, (3.36)

B
(i)
k,p =

L∑
l=1

F
(i,l)
k,p H

(l)
k,p − γ

(i)
p , (3.37)
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F
(i,l)
k,p =

γ
(i)
p H

(l)∗

k,p

σ2
N

σ2
S

L∑
l=1

∣∣∣H(l)
k,p

∣∣∣2 . (3.38)

σ2p
(i)

=
1

N2

N−1∑
k=0

E
[∣∣∣S̃(i)

k,p − Sk,p
∣∣∣2] . (3.39)

Assuming the Gaussian behavior of the overall interference Nk that affects the symbol

estimation, in accordance to [37], the symbol error probability Ps for a QPSK constellation

is denoted by

Ps ' 2Pe

(
ηk >

√
Eb

)
= 2Pe

(
ηk
σp

>

√
Eb
σ2p

)
= 2Q

(√
Eb
σ2p

)
, (3.40)

where Q(x) is the well known Gaussian error function. Assuming that Eb = 1, the Bit

Error Rate (BER) for a given HeNB p is

BER(i)
p ' Q

(
1

σ
(i)
p

)
. (3.41)

For an uncoded system with independent and isolated errors, the PER for a fixed packet

size of M bits is

PER(i)
p ' 1−

(
1−BER(i)

p

)M
. (3.42)

PER values are used to compute the HeNBs associated throughput at the receiver, denoted

as

Th =
W (1− PER)

L
, (3.43)

where W represents the data bit rate and L denotes the number of packet transmissions

used in the applied MPD technique (explained in section 3.1.4).
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3.2 Femtocell interference characterization

This dissertation analyses the performance of the IB-DFE receiver when multiple femto

BSs (HeNBs) transmit. A SC-FDE downlink channel is considered. For the receiver

algorithm [37], using the receiver performance model presented in the subsection above

can be used to characterize the system performance. The PER and BER are defined

as a function, < BER;PER >= f(Hk;Eb/N0) , which depends on the channel and

on the transmission power. The energy per bit to noise power spectral density ratio,

Eb/N0, is an important parameter in digital communication or data transmission. It is

a normalized SNR measure. Eb/N0 is equal to the SNR divided by the link spectral

efficiency in (bit/s)/Hz, where the bits in this context are the transmitted data bits. The

SINR is normally used to characterize the interference caused by others transmissions in

the reception at the UE of the desired signal. It is defined as

SINR =
PR

Pnoise + PI
(3.44)

where PR and PI denote the received power of the, desired signal from HeNB1 and the

signal from the P-1 interfering HeNBs. The received signal strength goes down as the

Pathloss (PL) (explained in section 3.3) increases with the distance from the serving HeNB.

The reception power is calculated using

PT − PL, (3.45)

where PT denotes the HeNB transmit power and PL represents the path loss value asso-

ciated to each link HeNB −UE .
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3.3 Propagation Model

The receiver performance is strongly influenced by the characteristics of the channel.

These characteristics depend upon the distance between the two antennas (transmitter

and receiver) and the signal path(s). To support the development of 4G, ITU-R has

adopted a number of models [38] to characterize different transmission scenarios, including:

Urban Macro-cell scenario (UMa), Urban Micro-cell scenario (UMi) and Indoor Hotspot

scenario(InH). For distances between 3 and 150 meters, common in femtocells hotspot,

the InH was chosen. The propagation condition, LoS or NLoS, is assigned based on the

physical distance (UE - HeNB) and the associated PL is computed as despited in equation

3.46, for each HeNB - UE communication link.

PL

 LoS = 16.9× log10(d) + 32.8 + 20× log10(fc) if d < 10

NLoS = 43.3× log10(d) + 11.5 + 20× log10(fc) if d ≥ 10
, (3.46)

where d represents the distance between the pth HeNB and the UE given in m and fc

denotes the HeNB carrier frequency given in GHz. The effect of both pathloss models

adopted in terms of Eb/N0(dB)= PT − PL− Pnoise, is depicted in figure(3.8). NLoS and

LoS are valid between 3 and 100 m and 10 and 150 m respectively, where Eb/N0 from LoS

is higher than from NLoS channels, for distances above 18 m.
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Figure 3.8: Propagation Models InH: LoS and NLoS Eb/N0 influence
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3.4 Channel coefficients generation

In general, the received signal can be obtained by convolving (in TD) or multiplying (in

FD) the transmitted signal with the impulse response of the channel. Therefore, the

received signal is:

Yk = HkSk +Nk, (3.47)

where Hk and Nk are the FD channel response and the noise respectively. The Hk co-

efficient for a transmitter and a receiver is defined by a set of signal paths or rays, each

with a distinct delay and attenuation, characterized by the tap delay or clustered delay

line model : 
P(1) τ(1)

...
...

P(C) τ(C)

 (3.48)

where C denotes the considered number of clusters. A cluster is characterized as a prop-

agation path diffused in space, either or both in delay and angle domains [38] or simply

as a set of rays. Each cluster delay and power, represented by τ(c) and P(c) respectively,

are computed as follows.

3.4.1 Cluster delay generation

Depending if the propagation condition assigned was LoS or NLoS, the set of delays τ(c)

are generated using a uniform distribution as followed, where rτ is the delay distribution

proportionality factor, στ is the delay spread and Xc ∼ Uni(0, 1).

τ
′
c = −rτστ ln(Xc) (3.49)

Then the delays are normalized (by subtracting the minimum delay) and sorted in de-

scending order.

τc = sort(τ
′
c −min(τ

′
c)) (3.50)
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In the case of a LoS path, an additional scaling was done to compensate peak addition to

delay spread,

τLoSc =
τc
D
, (3.51)

where D is the Ricean K-factor dependent, scaling constant given by:

D = 0.7705− 0.0433K + 0.0002K2 + 0.000017K3 (3.52)

3.4.2 Cluster power generation

Each cluster power or attenuation, P ′(c) is computed based on the above explained delay

generation. P ′(c) has an exponential distribution [38],

P ′(c) = exp(−τc
rτ − 1

rτστ
).10

−Z(c)
10 , (3.53)

where Z(c) ∼ N(0, ζ2) denotes the shadowing term.

Then P ′(c) is normalized,

Pc =
P
′
c

C∑
c=1

P ′c

, (3.54)

and in the case of LoS path, an additional specular component is added to the first cluster

P1,LoS =
KR

KR + 1
, (3.55)

so the LoS cluster powers are

Pc,LoS =
1

KR + 1

P
′
c

C∑
c=1

P ′c

+ δ(c− 1)P1,LoS , (3.56)

In this performance model it is assumed that the HeNB1 transmits during L slots and that

the other P−1 also transmit simultaneously during the L slots. Let {sn,1;n = 0, 1, ..., N − 1}

denote the data block from the HeNB1 and {sn,p;n = 0, 1, ..., N − 1} from the HeNBp

and their corresponding frequency domain blocks, after applied an size-N DFT operation,

{Sk,1; k = 0, 1, ..., N − 1} and {Sk,p; k = 0, 1, ..., N − 1}, respectively, where N denotes the
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number of data symbols.

The received content at the UE , {Yk; k = 0, 1, ..., N − 1}, depends on the L channel realiza-

tions of the P HeNBs (Hk,p; p = 1, ..., P ), P HeNBs transmitted signals (Sk,p; p = 1, ..., P )

and associated channel’s noise (Nk), and is given by equations 3.19 and 3.20 reproduced

bellow by convenience.

Y
(l)
k = H

(l)
k,1Sk,1 + · · ·+H

(l)
k,PSk,P +N

(l)
k , (3.57)

or the expanded expression


Y

(1)
k

...

Y
(L)
k

 =


H

(1)
k,1 · · · H

(1)
k,P

...
. . .

...

H
(L)
k,1 · · · H

(L)
k,P



Sk,1

...

Sk,P

+


N

(1)
k

...

N
(L)
k

 , (3.58)

where Hk denotes the channel frequency response computed from tap delay values (3.48)

and Nk denotes the corresponding channel noise.

3.4.3 Channel modeling

The channel model is influenced by the interference pattern, modeled by ITU-R [38], and

by the spatial distribution of the HeNBs and the UEs. The two contributions are modeled

in the Hk,l matrix coefficients. The signal attenuation associated to the transmission from

a HeNB and the UE is defined by the PL, which depends of the distance and the channel

model and can be calculated using [38] (see equation 3.46),

ξ(l, p) = 10
−PL(p)

20 . (3.59)

The coefficients that form the H matrix are calculated assuming a reference transmission

power, so the equivalent PL is defined as PL = PTref −PR, where PT = PR +PL. Finally,

the coefficients for the L channel realizations of the pth HeNB are given by

ξ(l, p)H
(l)
k,p. (3.60)
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So the received content at the UE, given by equation 3.57, can be rewritten as

Y
(l)
k = ξ(l, 1)H

(l)
k,1Sk,1 +

P−1∑
p=1

ξ(l, p)H
(l)
k,pSk,p +N

(l)
k , (3.61)

for a scenario with P-1 interfering HeNBs.

The PER values for the iterative receiver can be calculated extending the models intro-

duced in sections 3.1.3 and 3.1.4. The linear one is a special case of the IB-DFE, where

the number of iterations (Niter) is equal to 1.

3.5 Performance results

This section presents a set of performance results for the proposed IB-DFE receiver in time-

varying channels. It was considered a SC-FDE modulation, with FFT-block of N=256 data

symbols and a CP of 32 symbols, longer than overall delay spread of the channel. The

simulations were performed in MATLAB® following ITU-R M.2135 simulation guideline

using the key simulation parameters summarized in Table 3.1.

HeNB transmit power 21 dBm

Bandwidth 20 MHz

Minimum distance (d) between UE serving HeNB 3 m

Carrier frequency (fc) 3.6 GHz

Thermal noise level -174 dBm/Hz

Channel model/PL ITU-R M.2135

InH : LoS or NLoS

Table 3.1: Simulation parameters

For each value of D (distance between serving HeNBs) the UE reception performance

was measured considering the coverage range of HeNB1 and a granularity of one meter,

for each value of D considered. The distance between HeNBs (D) was set between 5 and

a maximum value defined by the propagation model adopted upper limit [38], considering

increments of 5 meters. The performance results are presented to a maximum distance of:
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D = 100 without retransmissions and D = 200/250 (for P=3/P=2)D = 200, to evaluate

the retransmission’s potential gains. To evaluate the receiver performance three main

study scenarios were defined(explained and discussed in detailed in the follow subsections):

1. without interference - 1 HeNB; 1 UE (see section 3.5.1)

2. with simple interference - 2 HeNBs; 1 UE (see section 3.5.2)

3. with complex interference - 3 HeNBs; 1 UE (see section 3.5.3)

It is important to refer that the number of uncorrelated channels is a receiver algorithm

[37] input variable, chosen according to the desired precision level.

3.5.1 Without interference

The experiment performed is illustrated in figure 3.9. One HeNB transmits to a UE.

HeNB1
d1

Figure 3.9: Simulation scenario used to find HeNB1 range, with P=1 and L=1

The average range of the HeNB1 transmission without interferences (i.e. with a single

HeNB) was measured in these set of simulations. The result is despited in figures 3.10

and 3.11, which show that to have a PER below 1% the UE should be up to 75 meters

far from the HeNB1 or in terms of SNR, it should not be bellow 15 dB.
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Figure 3.10: Throughput as a function of distance HeNB1 - UE
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Figure 3.11: Throughput as a function of SNR
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3.5.2 Simple interference

The experiment performed is illustrated in figure 3.12. One HeNB transmits to a UE that

receives interference from another HeNB.

HeNB1 HeNB2

D

UE

d1 d2

Figure 3.12: Simple interference simulation scenario used to evaluate receiver
performance, with P=2 and L=1

Two kinds of receivers were analyzed: linear receivers and IB-DFE receivers consid-

ering 4 iterations (Niter = 4). The simulation performed with 2 HeNBs simultaneously

transmitting to an UE, in which was applied an linear FDE receiver is depicted in figures

3.13 and 3.14.
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Figure 3.13: Throughput as a function of distance HeNB1 - UE and HeNB2 - UE

It is observable a significant HeNB1 coverage range decrease, due to the interference

from HeNB2. 10 dB is the minimum SINR value that allows experiencing the maximum

throughput. The transition between the LoS and the NLoS model is noticeable for the

distances of 10 and 90 meters.
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Figure 3.14: Throughput as a function of SINR

In figure 3.15 is shown the results when the iterative receiver is used. It can be seen

that IB-DFE increases the coverage range of the HeNB because IB-DFE SIC technique is

capable of recovering the received signal within the coverage range as long as the received

power from both HeNBs differ at least 5 dB as shown in figure 3.16.
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Figure 3.15: Throughput as a function of distance HeNB1 - UE
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Figure 3.16: HeNB1 and HeNB2 SNR as function of distance

When the two reception powers are similar, IB-DFE fails, and a dead zone exists in

the coverage area. In order to improve the coverage range and eliminate that dead zone,

multiple copies of the packets can be transmitted. The next experiment in figure 3.17

depicts the result of applying the MPD technique, where it is required one retransmission

per HeNB involved in the collision, so L=2.
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Figure 3.17: Throughput as a function of distance HeNB1 - UE

It is clear that the MPD technique appliance not only resolved the coverage hole or

dead zone problem, as well as significant enhanced the HeNB1 coverage area. However,

as shown in equation 3.43 it also reduce the available bandwidth.
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Figure 3.18: HeNB1 and HeNB2 SNR as function of distance, with L=2

3.5.3 Complex interference

The experiment performed is illustrated in figure 3.19. One HeNB transmits to a UE that

receives interference from two HeNBs.

HeNB2HeNB1

D
d2d1

HeNB3

Figure 3.19

As previously depicted in the simple interference scenario 3.5.2, the IB-DFE SIC

technique is capable of recovering the received signal under a minimum difference in the

received powers from all HeNBs difference; The capacity to recover from collisions remains

with three concurrent HeNBs, although it presents a larger dead zone in the coverage area,

meaning that it needs a greater difference in the received power from all HeNBs.
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Figure 3.20: Throughput as a function of distance HeNB1 - UE , HeNB2 - UE and
HeNB3 - UE
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Figure 3.21: HeNB1, HeNB2 and HeNB3 SNR as function of distance

When the MPR technique is applied, i.e. when packets are transmitted twice per

HeNB involved in the collision, it is observable a coverage gain as expected, although less

significant than the one verified in the simple interference scenario.
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Figure 3.22: Throughput as a function of distance HeNB1 - UE , HeNB2 - UE and
HeNB3 - UE
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Figure 3.23: HeNB1, HeNB2 and HeNB3 SNR as function of distance, with L=2

As depicted in figures 3.22 and 3.23, high values of throughput can be achieved with

low values of SNR when the MPR technique is applied to resolve the three collisions. Due

to the serial nature of the receiver considered, with 4 iterations, it can resolve collisions of

up to 4 UEs, failing for the 5th less powerful UE signal. It is also important to refer that

for =. 10m there is a small variance in the SNR value , owing to the change of propagation

conditions, i.e. PL models (LoS to NLoS)(see section 3.3).
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Chapter 4

Green concern

The energy consumption is viewed as one of the near-future major concerns due to the

rapid growth of cellular networks, typically performance-oriented planned. Moreover the

exponential growth of mobile data traffic [39], requiring higher network capacity equally

leads to an increase of the energy consumption. These are the main reasons why great

attention is currently devoted to this problematic [40]. In this chapter, a brief introduction

to Green Communication(GC) is carried out. This introduction includes the main concerns

and proposed technologies. Lastly, it is explained and tested the green algorithm proposed

in this thesis.

4.1 Green Communications

The rising energy costs and carbon footprint of operating cellular networks have led to

an emerging trend of addressing energy-efficiency amongst the network operators and reg-

ulatory bodies [41], [42]. From an operator’s perspective, reducing energy consumption

will also translate to lower Operational expenditure (OPEX) costs. Telecommunication

networks and broadband access are proved to consume a huge amount of energy for data

delivery and this consumption is mainly drawn from BSs and the increasing number of

deployed BSs to address high capacity networks. In order to achieve a favorable tradeoff

between energy consumption and performance, an efficient use of the available resources

(BSs) should be done. This is the main idea behind the recently emerged concept of

GC. Following this GC notion, several schemes and technologies were proposed. Taking

49
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advantage of the network traffic load fluctuation phenomenon, both academic and indus-

try studies proposed some switching on/off schemes [40]. Another popular approach is

to adjust BS’s transmit power, which leads to variable cell sizes, i.e. different coverage

areas per BSs. This approach is commonly known as Cell-Zooming [43]. Finally, taking

advantage of the emerged low power BSs, namely femtocells, some multi-cell cooperation

approaches were proposed [40]. The femtocells deployment is seen as the most promising

solution to enhance mobile networks capacity and coverage, and also constitutes a huge

step to achieve this green concern [44]. Although being more energetic efficient compared

to eNBs, the HeNBs low power nature and consequently low coverage area, leads to a

network densification, i.e. the deployment of a large number of HeNBs per area, raising

questions about the corresponding electrical energy consumption footprint. The main pro-

posal of this section is to improve of HeNBs power amplifiers, using IB-DFE transmission

scheme in the DL and to reduce the number of active HeNBs, applying an switching-off

algorithm according to traffic load demands. The final goal is to achieve the main purpose

of green communications, energy saving in BSs.

4.2 Green algorithm

Given the global increasing concerns (specially from the telecommunications community)

about the energetic consumption, it is proposed an UE - HeNB association algorithm,

whose main goal is to reduce the total BS energy consumption, adapting the network

layout according to data traffic demands, i.e. reducing the number of HeNBs required to

serve UEs in their deployment area.

4.2.1 System characterization

The DL of a HNet with a dedicated channel deployment of macro and femto BSs is

considered for this study, assuming the SC-FDE as transmission scheme. All UEs are

under the eNB coverage. The macro-cell is seen as a fall-back solution applied when there

are no available HeNBs or when the femtocell network layer reaches its maximum capacity.

An UE never experiences lack of coverage.

The proposed algorithm iteratively combines a switch-off scheme (turns off BSs) with
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the previous explained and tested IB-DFE receiver (see chapter 3), in order to achieve a

favorable tradeoff between EE and QoS in the femtocell layer of the simulated wireless

network. To calculate the PL gains between HeNBs and UEs an indoor hotspot channel

model(InH) was used, based on ITU-R M.2135-1 indoor test environment [38], previously

explained in section 3.3. For simplicity, it was assumed that the deployed HeNBs were

configured to work in OA mode (see section 2.2.3), thus avoiding the UE association

security issues/constraints.

As this algorithm intends to reduce the energy consumption without compromising the

network performance, it was defined that a HeNB serves an UE only if it can guarantee a

minimum level of QoS. It is assumed that the total load of a HeNB, ρ, should be below

90% when more than one UE is associated. So for each UE (i) the set of HeNBs that can

serve it without violating the following capacity constraints, ψ, is found:

ρ(j) ≤ 0.9 if N > 1

ρ(j) ≤ 1 if N = 1
, (4.1)

where N denotes the number of UEs associated to a HeNB and ρ denotes the HeNB total

traffic load given by

ρ(j) =
∑

λeff(i,j). (4.2)

λeff(i,j) denotes each UE portion in the HeNB traffic load, including retransmissions due to

error recovery. An upper bound can be defined assuming that errors are always recovered.

Therefore, λeff can be computed based on:

λeff(i,j) = L(i) ×
λ(i)

1− PER(i,j)
, (4.3)

where L(i) and PER(i,j) represent the number of concurrent transmissions (see MPD ex-

planation in 3.1.4) and the average packet error rate, per HeNB for UE, respectively,

whereas λ(i) denotes ith UE traffic load requirement. All HeNBs included in an UE-HeNB

association that respect the capacity constraints shown in equation 4.1 are added to a

group, named ψ.
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It is from this set of possible associations, that, according to the follow explained

conditions, it is chosen the HeNB to provide coverage to the UE. The five conditions

defined, are showed bellow ordered by deceasing precedence:

1. Highest ratio,
ρ(j)

λeff(i,j)
.

2. Minimum distance to UE (di,j).

3. Highest ρ.

4. Lower λeff .

5. More attached UEs.

Based on [20], it was assumed that the power consumption of a HeNB under maximum

load is 15 Watts, which is divided in two portions: 2/3 associated to power dependency

and 1/3 to power offset consumption (independent of HeNB transmit power (PT )). It

was fixed that all HeNBs have the same transmit power (PT ) and load requirement λ.

Therefore, the power consumption of a HeNB with traffic load ρ is:

Pf(j)(ρ) = 10× (ρ+ α× (1− ρ)) + 5× β, (4.4)

where α, β ∈ [0 (offsets = 0), 1 (load independent)] represent the HeNB energy profile

factor [20]. Finally, HeNBs may work in one of two distinct modes:

� Active mode - The HeNB is serving his associated UE s holding a certain ρ value,

subsequently, the power consumption Pf is given by equation 4.4.

� Sleeping mode - The HeNB is turned off, meaning the power consumption Pf = 0.
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4.2.2 Algorithm

The procedure of the algorithm is described as follows. The algorithm is presented bellow,

identifying the most relevant Steps. Then each identified step is explained.

for each λ do

repeat

for each UE do

for each HeNB do

if active then

Compute distance to UE (Step 1);

if reachable then

Compute :

- PL (Step 2);

- PER (Step 3);

- λeff and ρ (Step 4);

if Respect capacity constraints then

Apply selection conditions on ψ(Step 5);

end

Associate to HeNB;

else

Associate to eNB

end

end

end

end

for All HeNBs do

if presents ρ = 0 & All UEs served then

Sleep Mode (Step 6);

else

Active Mode;

end

end

until no possible changes in network layout ;

Compute total BSs energy consumption. (Step 7)

end
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Step 1: For each UE
{

UE (i); i = 1, ..., I
}

it is calculated the distance, di,j , to all reachable

and active HeNB
{

HeNB (j); j = 1, ..., J
}

, where I and J represent the total number of

UE s and HeNBs, respectively.

Step 2: The suitable PL model (LoS or NLoS), chosen from 3.46 is applied to each di,j

value, and the respective channel coefficients are computed (see section 3.4).

Step 3: For each UE, is applied the IB-DFE receiver function (with Niter=4)(see chapter

3) in order to compute the packet error rate PER(i,j) associated to each received signal

from reachable HeNBs .

Step 4: The effective load λeff is computed using equation 4.3 and the capacity con-

straints 4.1 are applied, in order to select the set of available HeNBs (ψ).

Step 5: Each UE (i) selects among all HeNBs in set ψ, according to the conditions defined

in section 4.2.1.

Step 6: All HeNBs with traffic load ρ(j) = 0 when all reachable UEs are served (by

another HeNB or by the eNB), are turned off i.e. they work in sleep mode in the following

serving time.

Step 7: Finally it is computed the energy consumption 4.4, derived from the final network

layout.

The algorithm ends when there are no changes from the previous iteration network layout,

i.e. no changes in the total number of active HeNBs. The algorithm flowchart is presented

bellow.
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Figure 4.1: Green algorithm procedure

4.3 Simulation

The main purpose of this simulations is to investigate, in terms of energy efficiency, the

influence of combining the use of an IB-DFE receiver and the switch-off BSs approach

in a femtocells network. In order to validate the proposed algorithm a two tier network

scenario, as depicted in figure 4.2, was chosen considering a HeNB dedicated channel

deployment therefore, avoiding the cross-tier interference problems. Mobility was not

considered.

200 m

100 m

100 m

Figure 4.2: Simulation scenario
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The algorithm applies MPR and cell zooming techniques, such as MPD and SIC, and

Zoom in to zero (turning off the HeNBs) respectively. In order to evaluate the potential

gains of the proposed algorithm, the simulations were performed in MATLAB® following

ITU-R M.2135 simulation guideline using the key simulation parameters summarized in

Table 4.1. Each UE is deployed under the coverage of two HeNB, to observe the influence

of the applied techniques. The proposed algorithm changes the network layout according

to mobile users load requirements λ. It was not considered heterogeneous traffic, i.e. is

used the same λ for all UEs.

Central frequency (fc) 3.4 GHz

HeNB transmit power (PT ) -9 dB

Number of HeNBs 6

Number of UE s 6

Coverage (radius) 80 m

Deployment area 200 m × 100 m

Scheduling strategy equal bandwidth per UE

Bandwidth 20 MHz

Thermal noise density -174 dBm/Hz

Channel and path loss models ITU-R M.2135-1

Load per UE (step value) 0.05 to 1 (0.05)

Table 4.1: Simulation parameters
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4.3.1 Performance results

In this section, the simulation results are presented and discussed, regarding the appliance

of the previously explained green algorithm (see section 4.2).

Figure 4.3 depicts the number of active HeNBs based on the load requirement per

UE, considered uniform. It is notable that it is only necessary 50% of the HeNBs in the

active mode, for λ values under 0.5 , to achieve the desired performance and consequent

QoS level.
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Figure 4.3: Number of active HeNBs as a function of UE load requirement, λ

The reduction in the number of active base station is due to the association of multiple

UEs to neighbor HeNBs, instead of using only one UE per HeNB. This joint association is

visible in terms of energy consumption per HeNB represented in figure 4.4, and in terms

of the total traffic load per HeNB, depicted in figure 4.5.
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Figure 4.4: HeNBs energy consumption as a function of UE load requirement, λ
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It is important to notice that for λ values under 0.5, the active HeNBs present higher

energy consumption due to the higher traffic load associated to each one of them.
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Figure 4.5: HeNBs total load ρ as a function of UE load requirement, λ

In consequence of this reduction in the number of active HeNBs, it is achieved a

considerable energetic gain, specially for lower values of λ, as shown in figure 4.6.
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Figure 4.6: Total BS’s energy consumption as a function of UE load requirement, λ

As there are only two concurrent HeNBs, the maximum number of retransmissions was

limited to L=2, to avoid an excessive reduction in terms of available bandwidth. Owing to

capacity constraints applied to guarantee a minimum level of QoS, for λ above 0.5 there is

no visible energy gains since each HeNB can only have one UE associated to it, meaning

that to ensure the total coverage all HeNBs have to be in active mode. In this simulation

scenario there was no need to use eNB coverage, since the applied receiver resolves all

interference problems and the same number of UEs and HeNBs were deployed.



Chapter 5

Conclusions

5.1 Final Considerations

This work intended to demonstrate the performance achievable of the MPR technique

using an IB-DFE receiver in the DL of a LTE-A femtocell based network. As expected,

it is shown in chapter 3 that the iterative SIC receiver presents pleasant performance

results, enhancing the HeNB coverage range even in high interference scenarios. This

receiver “only” recover the signal, it does not prevent the existence of dead zones. The

MPR appliance revel to be very efficient in this undesirable coverage holes elimination.

Although the applied MPR approach reduces the available bandwidth due to require

multiple packet retransmissions. The IB-DFE receiver employing SIC was tested with

up to three HeNBs, i.e. three possible collisions, but uses four iterations it is capable to

efficiently resolve up to four collisions (see explanation of IB-DFE SIC receiver in section

3.1.4 ). The second part of this thesis (chapter 4) intended to prove the applicability

of the receiver and techniques studied in chapter 3 to a simulated “real world scenario”.

Following the actual energy consumption increasing concerns, the receiver is used in a

developed green association algorithm which employs an switch-off algorithm. The energy

savings regarding the use of this algorithm shown in section 4.3.1 meet the main idea

behind the recently emerged concept of GC (see section 4.1). Considerable energetic gains

were achieved specially for lower load requirements. For higher load requirements it was

not possible to turn off serving HeNBs due to capacity constraints applied to preserve the

provided QoS. The overall results show that the employed and developed technologies

59



60 CHAPTER 5. CONCLUSIONS

are a practicable solution to achieve a favorable trade-off between performance and EE

in wideband wireless networks, answering to the global demands (high data rates) and

concerns (low energy consumption and carbon footprint reduction).

5.2 Future Work

In this thesis it was employed SC-FDE in the LTE-A femtocell network DL, studying

the performance of the MPR approach using an IB-DFE SIC receiver. Based on the

pleasant performance results obtained in this thesis, it would be interesting to evaluate

the performance of this iterative receiver and techniques(MPD and SIC) for both UL and

DL communication side, combining them with other techniques such as:

1. Cooperation between BSs (CoMP) (see [45], [46])

2. Adjusting the BS transmit power(Cell zooming) (see [47], [48])
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