2,318 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Network, degeneracy and bow tie. Integrating paradigms and architectures to grasp the complexity of the immune system

    Get PDF
    Recently, the network paradigm, an application of graph theory to biology, has proven to be a powerful approach to gaining insights into biological complexity, and has catalyzed the advancement of systems biology. In this perspective and focusing on the immune system, we propose here a more comprehensive view to go beyond the concept of network. We start from the concept of degeneracy, one of the most prominent characteristic of biological complexity, defined as the ability of structurally different elements to perform the same function, and we show that degeneracy is highly intertwined with another recently-proposed organizational principle, i.e. 'bow tie architecture'. The simultaneous consideration of concepts such as degeneracy, bow tie architecture and network results in a powerful new interpretative tool that takes into account the constructive role of noise (stochastic fluctuations) and is able to grasp the major characteristics of biological complexity, i.e. the capacity to turn an apparently chaotic and highly dynamic set of signals into functional information

    The dendritic cell algorithm for intrusion detection

    Get PDF
    As one of the solutions to intrusion detection problems, Artificial Immune Systems (AIS) have shown their advantages. Unlike genetic algorithms, there is no one archetypal AIS, instead there are four major paradigms. Among them, the Dendritic Cell Algorithm (DCA) has produced promising results in various applications. The aim of this chapter is to demonstrate the potential for the DCA as a suitable candidate for intrusion detection problems. We review some of the commonly used AIS paradigms for intrusion detection problems and demonstrate the advantages of one particular algorithm, the DCA. In order to clearly describe the algorithm, the background to its development and a formal definition are given. In addition, improvements to the original DCA are presented and their implications are discussed, including previous work done on an online analysis component with segmentation and ongoing work on automated data preprocessing. Based on preliminary results, both improvements appear to be promising for online anomaly-based intrusion detection.Comment: Bio-Inspired Communications and Networking, IGI Global, 84-102, 201

    The dendritic cell algorithm for intrusion detection

    Get PDF

    An Immune Inspired Approach to Anomaly Detection

    Get PDF
    The immune system provides a rich metaphor for computer security: anomaly detection that works in nature should work for machines. However, early artificial immune system approaches for computer security had only limited success. Arguably, this was due to these artificial systems being based on too simplistic a view of the immune system. We present here a second generation artificial immune system for process anomaly detection. It improves on earlier systems by having different artificial cell types that process information. Following detailed information about how to build such second generation systems, we find that communication between cells types is key to performance. Through realistic testing and validation we show that second generation artificial immune systems are capable of anomaly detection beyond generic system policies. The paper concludes with a discussion and outline of the next steps in this exciting area of computer security.Comment: 19 pages, 4 tables, 2 figures, Handbook of Research on Information Security and Assuranc

    Investigating biocomplexity through the agent-based paradigm.

    Get PDF
    Capturing the dynamism that pervades biological systems requires a computational approach that can accommodate both the continuous features of the system environment as well as the flexible and heterogeneous nature of component interactions. This presents a serious challenge for the more traditional mathematical approaches that assume component homogeneity to relate system observables using mathematical equations. While the homogeneity condition does not lead to loss of accuracy while simulating various continua, it fails to offer detailed solutions when applied to systems with dynamically interacting heterogeneous components. As the functionality and architecture of most biological systems is a product of multi-faceted individual interactions at the sub-system level, continuum models rarely offer much beyond qualitative similarity. Agent-based modelling is a class of algorithmic computational approaches that rely on interactions between Turing-complete finite-state machines--or agents--to simulate, from the bottom-up, macroscopic properties of a system. In recognizing the heterogeneity condition, they offer suitable ontologies to the system components being modelled, thereby succeeding where their continuum counterparts tend to struggle. Furthermore, being inherently hierarchical, they are quite amenable to coupling with other computational paradigms. The integration of any agent-based framework with continuum models is arguably the most elegant and precise way of representing biological systems. Although in its nascence, agent-based modelling has been utilized to model biological complexity across a broad range of biological scales (from cells to societies). In this article, we explore the reasons that make agent-based modelling the most precise approach to model biological systems that tend to be non-linear and complex

    Vulnerability analysis of AIS-based intrusion detection systems using genetic and evolutionary hackers

    Get PDF
    In this thesis, an overview of current intrusion detection methods, evolutionary computation, and immunity-based intrusion detection systems (IDSs) is presented. An application named Genetic Interactive Teams for Intrusion Detection Design and Analysis (GENERTIA) is introduced which uses genetic algorithm (GA)-based hackers known as a red team in order to find vulnerabilities, or holes, in an artificial immune system (AlS)-based IDS. GENERTIA also uses a GA-based blue team in order to repair the holes it finds. The performance of the GA-based hackers is tested and measured according to the number of distinct holes that it finds. The GA-based red team�s behavior is then compared to that of 12 variations of the particle swarm optimization (PSO)-based red team named SWO, SW0+, SW1, SW2, SW3, SW4, CCSWO, CCSW0+, CCSW1, CCSW2, CCSW3, and CCSW4. Each variant of the PSO-based red team differs in terms of the way that it searches for holes in an IDS. Through this test, it is determined that none of the red teams based on PSO perform as well as the one based on a GA. However, two of the twelve PSO-based red teams, CCSW4 and SW0+, provide hole finding capabilities closest to that of the GA. In addition to the ability of the different red teams to find holes in an AlS-based IDS, the search behaviors of the GA-based hackers, PSO-based hackers that use a variable called a constriction coefficient, and PSO-based hackers that do not use the coefficient are compared. The results of this comparison show that it may be possible to implement a red team based on a hybrid �genetic swarm� that improves upon the performance of both the GA- and PSO-based red teams

    Lost in translation: Toward a formal model of multilevel, multiscale medicine

    Get PDF
    For a broad spectrum of low level cognitive regulatory and other biological phenomena, isolation from signal crosstalk between them requires more metabolic free energy than permitting correlation. This allows an evolutionary exaptation leading to dynamic global broadcasts of interacting physiological processes at multiple scales. The argument is similar to the well-studied exaptation of noise to trigger stochastic resonance amplification in physiological subsystems. Not only is the living state characterized by cognition at every scale and level of organization, but by multiple, shifting, tunable, cooperative larger scale broadcasts that link selected subsets of functional modules to address problems. This multilevel dynamical viewpoint has implications for initiatives in translational medicine that have followed the implosive collapse of pharmaceutical industry 'magic bullet' research. In short, failure to respond to the inherently multilevel, multiscale nature of human pathophysiology will doom translational medicine to a similar implosion
    corecore