5,066 research outputs found

    Graph measures and network robustness

    Full text link
    Network robustness research aims at finding a measure to quantify network robustness. Once such a measure has been established, we will be able to compare networks, to improve existing networks and to design new networks that are able to continue to perform well when it is subject to failures or attacks. In this paper we survey a large amount of robustness measures on simple, undirected and unweighted graphs, in order to offer a tool for network administrators to evaluate and improve the robustness of their network. The measures discussed in this paper are based on the concepts of connectivity (including reliability polynomials), distance, betweenness and clustering. Some other measures are notions from spectral graph theory, more precisely, they are functions of the Laplacian eigenvalues. In addition to surveying these graph measures, the paper also contains a discussion of their functionality as a measure for topological network robustness

    Enhancing network robustness for malicious attacks

    Get PDF
    In a recent work [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. With a greedy algorithm, they found the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement (RnR_{n}), we propose a link-robustness index (RlR_{l}). We show that solely enhancing RnR_{n} cannot guarantee the improvement of RlR_{l}. Moreover, the structure of RlR_{l}-optimized network is found to be entirely different from that of onion network. In order to design robust networks resistant to more realistic attack condition, we propose a hybrid greedy algorithm which takes both the RnR_{n} and RlR_{l} into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered and significant improvement in both aspects of robustness are still achieved.Comment: 6 pages, 6 figure

    Network robustness and fragility: Percolation on random graphs

    Full text link
    Recent work on the internet, social networks, and the power grid has addressed the resilience of these networks to either random or targeted deletion of network nodes. Such deletions include, for example, the failure of internet routers or power transmission lines. Percolation models on random graphs provide a simple representation of this process, but have typically been limited to graphs with Poisson degree distribution at their vertices. Such graphs are quite unlike real world networks, which often possess power-law or other highly skewed degree distributions. In this paper we study percolation on graphs with completely general degree distribution, giving exact solutions for a variety of cases, including site percolation, bond percolation, and models in which occupation probabilities depend on vertex degree. We discuss the application of our theory to the understanding of network resilience.Comment: 4 pages, 2 figure

    Critical Cooperation Range to Improve Spatial Network Robustness

    Full text link
    A robust worldwide air-transportation network (WAN) is one that minimizes the number of stranded passengers under a sequence of airport closures. Building on top of this realistic example, here we address how spatial network robustness can profit from cooperation between local actors. We swap a series of links within a certain distance, a cooperation range, while following typical constraints of spatially embedded networks. We find that the network robustness is only improved above a critical cooperation range. Such improvement can be described in the framework of a continuum transition, where the critical exponents depend on the spatial correlation of connected nodes. For the WAN we show that, except for Australia, all continental networks fall into the same universality class. Practical implications of this result are also discussed

    Network robustness assessed within a dual connectivity perspective

    Full text link
    Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. Typically, in these studies, robustness is assessed only in terms of the connectivity of the nodes unaffected by the attack. Here we put forward the idea that the connectivity of the affected nodes can play a crucial role in properly evaluating the overall network robustness and its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and the efficiency of building-up the IN. We show, via analysis of both prototype networks and real world data, that trade-offs between the efficiency of Active and Idle network dynamics give rise to surprising crossovers and re-ranking of different attack strategies, pointing to significant implications for decision making
    corecore