126,643 research outputs found

    6G Underlayer Network Concepts for Ultra Reliable and Low Latency Communication in Manufacturing

    Full text link
    Underlayer networks in the context of 6G for manufacturing are crucial. They address the evolving needs of highly interconnected and autonomous systems in industry. The digitalization of manufacturing processes, driven by the Internet of Things and increased data availability, enables more efficient and demand-driven production. However, wireless connectivity, which offers flexibility and easy integration of components, comes with challenges such as signal interference or high latency. A new management system is needed to coordinate and route traffic of multiple networks in a specific coverage area. This paper proposes underlayer networks designed for manufacturing, providing low latency, reliability, and security. These networks enable wireless connectivity and integration of wireless technologies into the manufacturing environment, enhancing flexibility and efficiency. The paper also discusses network slicing, spectrum sharing, and the limitations of current wireless networks in manufacturing. It introduces a network concept for underlayer networks and evaluates its application in closed-loop communication for machine tools. The study concludes with future research prospects in this area

    User-centric plug-and-play functionality for IPv6-enabled wireless sensor networks

    Get PDF
    “Copyright © [2010] IEEE. Reprinted from 2010 IEEE International Conference on Communications. ISBN:978-1-4244-6402-9. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Smart nodes that sense the environment and communicate wirelessly to reach a sink node create wireless sensor networks. One of the main research challenges regarding wireless sensor networks is user deployment, namely in terms of configuration and management. On non-commercial solutions the user typically must be aware of the underlying technology to obtain sensing services. Internet connectivity is also desirable, so future deployments must take into consideration this feature, enabling realistic ubiquitous computing. This paper presents a user-centric solution for IPv6-enabled wireless sensor networks, using the Contiki operating system and Crossbow TelosB motes, featuring a Plug-and-Play like experience. One of the motes provides sink node capability to the network, through USB connection with a personal computer, which sends and receives data, presenting it to the user. A dedicated serial protocol for USB communication with the sink was developed and extensively debugged, featuring sink querying and network configuration. The current testbed uses User Datagram Protocol over IPv6, with 6LoWPAN, and IEEE 802.15.4 wireless communication between the sensor network motes and the sink device. A Plug-and-Play like operation is achieved through zero-user configuration, since the user only needs to plug in the sink and give power to the remote motes

    Performance Study of Wireless Access in Vehicular Environment 802.11p in Ad-Hoc on Demand Distance Vector Routing (AODV) with Propagation Models Nakagami and Two Ray Ground

    Get PDF
    The development of communication systems is not only limited in its use for human interaction and mobility with various electronic devices. However, it is expected to be a solution for traffic management and management strategies. The number of vehicles is continuously increasing especially in big cities so it needs communication between vehicles for the development of VANETs technology. The IEEE international standards communication system establishes the use of the Wireless Access in Vehicular Environment (WAVE). With the IEEE 802.11p standard, it is possible to build an integrated information and communication-based transportation system.In this research will be analyzed VANET communication performance through parameters of packet delivery ratio, routing overhead, and packet drop. VANET uses NS-2 as a simulator and AODV routing protocol. In a network, routing protocols are very influential on VANET network performance. Simulation scenarios with VANET using Nakagami and TwoRayGround propagation models are expected to result in connectivity performance on interoperable communication networks (V2V) with IEEE 802.11p standards in VANET environments. From the experimental results in the AODV protocol scenario using propagation modeling, the value of packet delivery ratio, routing overhead, and packet drop with the Nakagami transmission model is better than the value of packet delivery ratio, routing overhead, and packet drop with TwoRayGround transmission model has good value but Unstable in the node transmission process. Thus, the performance of the Nakagami transmission model looks more stable overall than the TwoRayGround transmission mod

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    iTETRIS: An Integrated Wireless and Traffic Platform for Real-Time Road Traffic Management Solutions

    Get PDF
    Wireless vehicular cooperative systems have been identified as an attractive solution to improve road traffic management, thereby contributing to the European goal of safer, cleaner, and more efficient and sustainable traffic solutions. V2V-V2I communication technologies can improve traffic management through real-time exchange of data among vehicles and with road infrastructure. It is also of great importance to investigate the adequate combination of V2V and V2I technologies to ensure the continuous and costefficient operation of traffic management solutions based on wireless vehicular cooperative solutions. However, to adequately design and optimize these communication protocols and analyze the potential of wireless vehicular cooperative systems to improve road traffic management, adequate testbeds and field operational tests need to be conducted. Despite the potential of Field Operational Tests to get the first insights into the benefits and problems faced in the development of wireless vehicular cooperative systems, there is yet the need to evaluate in the long term and large dimension the true potential benefits of wireless vehicular cooperative systems to improve traffic efficiency. To this aim, iTETRIS is devoted to the development of advanced tools coupling traffic and wireless communication simulators

    User Needs and Advances in Space Wireless Sensing and Communications

    Get PDF
    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets
    • …
    corecore