
User-Centric Plug-and-Play Functionality for
IPv6-enabled Wireless Sensor Networks

Paulo A. C. S. Neves1,2,3, Binod Vaidya1, and Joel J. P. C. Rodrigues1,2

1Instituto de Telecomunicações, Portugal
2Department of Informatics, University of Beira Interior, Covilhã, Portugal

3Superior School of Technology, Polytechnic Institute of Castelo Branco, Portugal
pneves@co.it.pt, bnvaidya@co.it.pt, joeljr@ieee.org

Abstract�— Smart nodes that sense the environment and
communicate wirelessly to reach a sink node create wireless
sensor networks. One of the main research challenges regarding
wireless sensor networks is user deployment, namely in terms of
configuration and management. On non-commercial solutions the
user typically must be aware of the underlying technology to
obtain sensing services. Internet connectivity is also desirable, so
future deployments must take into consideration this feature,
enabling realistic ubiquitous computing. This paper presents a
user-centric solution for IPv6-enabled wireless sensor networks,
using the Contiki operating system and Crossbow TelosB motes,
featuring a Plug-and-Play like experience. One of the motes
provides sink node capability to the network, through USB
connection with a personal computer, which sends and receives
data, presenting it to the user. A dedicated serial protocol for USB
communication with the sink was developed and extensively
debugged, featuring sink querying and network configuration.
The current testbed uses User Datagram Protocol over IPv6, with
6LoWPAN, and IEEE 802.15.4 wireless communication between
the sensor network motes and the sink device. A Plug-and-Play
like operation is achieved through zero-user configuration, since
the user only needs to plug in the sink and give power to the
remote motes.

I. INTRODUCTION
Wireless sensor networks (WSNs) application began in

military applications, namely on enemy detection and targeting
[1]. Due to the growing interest and hardware availability such
networks began to spread over to several civil applications,
such as environmental monitoring, smart spaces, habitat
monitoring, animal tracking, and healthcare, among others [2].

WSNs have yet failed to find the killer application for
general public adoption. Such status quo is mainly due to lack
of auto-configuration tools and corresponding APIs, which
should allow Plug-and-Play like operation of WSNs �– just plug
in and use. Although faced as almost a ideological issue, with
research on both sides of the �“barricade�”, we believe that IPv6
is the needed technology to integrate WSNs into ubiquitous
computing, providing a complete sensing system.

The connection of WSNs to the Internet is as desirable as
needed [3]. Two main approaches exist to achieve Internet
connectivity: proxy-based approach and smart sensor node
IPv6 stack, namely with the implementation of 6LoWPAN [4].
The first approach uses dedicated routing protocols for WSNs,
performing protocol conversion in the sink node. The second is
to use IPv6 inside the sensor network, through a suitable
TCP/IP stack.

Two major operating systems lead the way on firmware

development for motes: ContikiOS [5] and TinyOS [6].
ContikiOS features an implementation of IPv6 over IEEE
802.15.4 [7], using the 6LoWPAN specification. The
TCP/IPv6 sensor stack in Contiki, named uIP6, features TCP
and UDP over IPv6, among other features, granting the IPv6
ready silver seal from the IPSO �– IP for Smart Objects. We
chose ContikiOS over TinyOS for the maturity of its IPv6
stack when compared to blip (Berkley IP) implementation over
TinyOS and the more C-like programming of Contiki versus
the nesC used by TinyOS.

This paper presents an approach for monitoring and
configuration for WSNs without user intervention. Using the
Universal Serial Bus (USB) communication we create a sink
station with a Crossbow TelosB mote and UDP/IPv6 wireless
communication (uIP6) with other TelosB motes on the
network. The testbed remote nodes send sensing values to the
sink, which may respond with configuration commands.

The remainder of the paper is as follows. Section II provides
background information on related technologies. Section III
presents the current approach architecture, featuring Plug-and-
Play like operation, while on section IV implementation details
are exposed. Section V shows testbed validation, and section
VI concludes the paper, adding guidelines for future work.

II. BACKGROUND
This section encompasses some background technical

contents, namely IPv6 over WSNs and the operating system
that enabled us to develop the node�’s firmware, the ContikiOS.

IPv6 for WSNs was considered for some years a myth. As a
result several routing and transport protocols were developed
for WSNs [8, 9]. However, a recent wave of research studies
prove that IP and WSNs can work well together [10].
Specifically through the 6LoWPAN specification, where
�“transmission of IPv6 packets over IEEE 802.15.4 networks�”
is described, adoption on both research and off-the-shelf
solutions has risen.

Contiki is an operating system for embedded smart objects,
namely WSN nodes. The current version, 2.3, features IPv6
routing on the TelosB platform, extended hardware support
and uIPv6 sensor stack. The operation system (OS) features an
event driven kernel, thread-like implementation through
�“protothreads�”, a threading model that allows threads, but
using the same stack, hence resulting in a memory-efficient
approach. Events can be both system and programmer-defined,
and event timers provide support for periodic events.

ContikiOS is based on the C language, using the specific C

978-1-4244-6404-3/10/$26.00 ©2010 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório do Instituto Politécnico de Castelo Branco

https://core.ac.uk/display/62717236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

compiler for the target platform. Due to its build system
applications recompile to different targets only require a
simple change to the �“make�” command, application code is
kept outside OS directories.

One of the biggest features of Contiki is uIP6 [7], a smart
sensor node stack featuring TCP/UDP and IPv6, namely
through sicslowpan (6LoWPAN implementation for Contiki).
This implementation was awarded the IPv6 ready silver seal
from the IPv6 Ready Logo Program.

This paper refers to Plug-and-Play like experience as the
lack of user intervention on the network, namely with the
introduction of new and different nodes. The user just needs to
plug-in the sink mote through USB to start monitoring and, if
desired, issue configuration commands.

WSN can benefit from PnP capabilities in several
applications. Imagine the simple scenario of a body sensor
network. Some patients may need specific biosensors, while
others do not. If PnP is not available, every time new sensors
must be attached to the network, configuration procedures are
needed. Moreover, on dynamic and heterogeneous networks,
where several different mote types can be used, can also
benefit from PnP.

III. SYSTEM ARCHITECTURE
This section describes the architecture of the testbed. Our

testbed currently consists of 10 Crossbow TelosB motes, one
sink and up to 9 wirelessly (CC2420 IEEE 802.15.4 compliant
radios) connected remote nodes, as Fig. 1 depicts. The TelosB
features 10KB of RAM, 48KB or Flash ROM, three LEDs
(blue, red and green), one user-programmable press button and
a reset button (for program reboot, not flash reset). This
platform also features integrated USB connection.

Fig. 1. Testbed architecture.

The sink connects to the personal computer that is

monitoring the network, presenting several sensor and mote
data according to the current TelosB architecture: ambient
temperature, normal light, ultraviolet light and humidity
sensors. Once the sink mote is connected, the commands may
flow without user intervention. Two types of serial commands
were defined, one that relates to the sink, querying sink�’s data
and other for connected motes sensor data.

The sensed values are transmitted to the UDP server (sink)
that automatically assigns a numerical node ID, associating
with the received transmitter mote IPv6 address. This is useful
for sensor network description, instead of using the full IPv6
address to identify a node on the personal computer. Moreover,

to send a command to the sink about a given node, much less
characters are sent.

This system architecture is simple enough for users, without
the need for configuration. Just plug in the sink, power the
motes and data acquisition and communication begins. As a
result it can be very suited to locally deployed WSNs, namely
the case with body wide sensor networks (BSNs) [11].

A. Serial Protocol �– Monitoring
We defined and implemented a dedicated serial protocol

between the personal computer and the mote. The protocol
defines the commands that the sink node may accept and send
respective possible replies. Two main contexts were defined:
sink commands (commands begin with a BS, as in Base
Station), and smart node commands (commands begin with a
SN, as in Smart Node).

Command format starts with the context (BS or SN). For the
BS context the command itself follows the context, since the
sink is directly attached to the computer and does not requires
identification. However for the smart nodes (SN) the node ID
follows the context. The node ID is then bounded by a special
character for easier separation of fields, the �“#�” character.

Several commands are common to both the sink and the
smart sensor nodes. Commands such as �“ip�” that returns the
given node�’s IPv6 address, �“sens�” that return the current sensor
readings, and �“txp�” that returns the programmed transmission
power. An example of the command needed for base station
sensor values is �“BSsens�”, while the same command for node
ID 5 is �“SN5#sens�”.

Two commands are exclusively for the sink node, namely
�“mn�” that returns the number of nodes in the network
including the base station and �“list�” that returns the current
node IDs present in the network. Finally the �“ident�” command
features node identification of a given remote node, by flashing
the red LED for 10 seconds, at 2Hz. The full list of
implemented commands is presented in Table I.

TABLE I. SINK QUERY COMMANDS DESCRIPTION.

SERIAL COMMAND PURPOSE CONTEXT COMMAND
BS/SN ip Return the node�’s IPv6 address
BS/SN sens Retrieve last sensor�’s readings, separated by �“|�”
BS/SN txp Retrieve currently programmed IEEE 802.15.4

radio transmission power
BS/SN power Retrieve current node power consumption
BS/SN reset Clear data structures. BS �– all structures, SN �–

specific node�’s structures. Returns OK.
SN ident Command used to �“identify�” a remote node by

blinking the red LED for 10 seconds at 2Hz.
Returns �“OK�” if node exists.

BS list List the current network mote�’s ID, separated by
�“:�”

BS mn Return the current number of motes present in the
network

In terms of command replies, the sink can reply with the

command result or four specific errors: �“NAC�”, �“CER�”, �“INE�”
and �“NDA�” (Fig. 2). �“NAC�” reply is used when a command is
not recognized (Not A Command), �“CER�” stands for
Command Error and may be sent by the sink when the main

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

command is recognized, but the remaining of the command is
not recognized. �“INE�” stands for Inexistent Node Error, and is
sent by the sink when a command is issued for a non-existing
node ID. Finally �“NDA�” (No Data Available) can be replied
when a command has no data, for instance when no remotes
nodes have been identified on the �“BSlist�” command.

B. Serial Protocol �– Configuration
The proposed serial protocol also takes into account

configuration. Two commands can be issued to a specific
network node (SN context) or to all nodes (BS context):
�“sample�” and �“txtime�”. The �“sample�” command allows the
reprogramming of the time period between sensor readings,
while the �“txtime�” allows the reprogramming of the time
between UDP communications. As a result sample time must
be equal or less than �“txtime�”. The reply from the sink on this
commands are just an �“OK�” if the command succeeded and a
�“NOK�” if the command found a problem, for instance a
configuration value out of bounds.

These types of commands are �“complex commands�”, in the
sense that they require further parsing. As an example, the
command �“BStxtime3�” changes all remote nodes transmission
period to 3 seconds.

To send commands to the network remote smart sensing
nodes, the sink uses the communication of the sensor readings
from a given node. It then alters the behavior and sends a reply
to the originating node with configuration data.

C. UDP Communication
UDP communication allows the remote smart sensor nodes

to communicate with the sink. A pre-defined message consists
of the current values of sensor readings, separated by a pipe
symbol �“|�”. The server IPv6 address and UDP port is
hardcoded in the client firmware, while IPv6 local-link
addresses are managed by uIP6.

As above-mentioned, the server sends configuration
commands to the remote smart sensor using UDP
communication. UDP is lighter than TCP in terms of protocol
overhead and energy consumption. To take advantage of the
approach the server only replies to the client when a
configuration message must be sent, or the mote cannot be
added to the current sink.

The server may need to send configuration commands or
just reply that no space is available for storing the mote�’s data.
The server takes advantage of communication initiated by the
client to reply accordingly. If no space is available an �“NDA�”
is replied. If one or the two controlling timers (sampling and
transmission) must be reset, the server replies with a �“TS�” �–
Timer Set command with two numbers separated by �“|�”. The
first one resets the sampling timer, while the second resets the
transmission timer. Both are expressed in seconds.

Due to the inherent data cache mechanism implemented on
the sink node, and limited available RAM memory, each sink
can monitor up to 10 remote nodes. When a 11th node tries to
be attached to the same sink, the sink replies with a �“NSA�”
(No Storage Available) �– Fig. 3 a).

IV. SINK AND NODE FIRMWARE
This monitoring and configuration tool relies mainly on

firmware on the wireless sensor network smart nodes. Two
firmware implementations, the server and the client were
developed. Since the client does not establishes USB
communication we used the TelosB LEDs to acknowledge
operation. The green LED is used for status information, while
the blue LED is used for UDP communication. The red LED,
on the remote clients, is used to identify a given node, by
blinking continuously for 5 seconds.

The sensor implements a UDP server, a serial
communication service through USB and also monitors its own
sensors. The remote smart sensor nodes implement a UDP
client and monitor its own sensor values.

Both firmware implementations use Contiki Protothreads. A
first protothread is auto-started, the initialization protothread,
which allows initialization of data structures, initialization of
sensors, and USB communication on the sink. This protothread
then starts the other protothreads.

A. Data Structures
Both sink and smart sensor node have data structures to

store information. A structure was defined to store, for each
node, the node�’s ID, IPv6 address, sensor status, and sensor
values. The sampling and transmission timer periods are also
included, together with other data such as power consumption.
We designated this structure as mote_data.

The mote_data structure also includes a status element that
codes the current node�’s status. The status can have five
different values at the server side and four different values in
the client. If status equals 1 it codes the fact that the data
structure exists, but no data is available, while 2 represents the
state that data is available.

In the server side values 3, 5 and 6 codify the need to send
reply to the client, issuing configuration commands. Value 3
corresponds to timer programming, through the �“TS�” reply,
while the value 5 sends a request for identification (through the
blink of the client�’s remote red LED). Finally, 6 code the status
of both timer configuration and identification.

The client adds the values 3 and 4 to the status value, coding
the timers that must be set: value 3 corresponds to the
transmission timer, while 4 corresponds to the sampling timer.

We opted for dynamic memory allocation and linked list
structure on the sink for remote node�’s data storage. On the
sensor node the structure is the same, with the exception that
since a single node is monitored, no linked list is used.

B. Sink Firmware
On the sink, three main protothreads were defined (working

in infinite loop scenarios): udp_server_process,
read_sensors_process and serial_command_parser_process.
The first one is responsible for the UDP server creation and
maintenance. It creates an UDP server on ports 3000/3001,
continuously accepting packets from clients. The
read_sensors_process protothread is common to both sink and
smart node firmware, and is responsible for periodically
retrieving local sensor data. Finally,
serial_command_parser_process is unique to the sink node,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

processing serial communication, verifying and taking actions
accordingly.

The most complex protothread is presented in Fig. 2,
corresponding to the parsing and reply over USB connection.
This protothread runs on infinite loop waiting for serial data
(commands). Upon reception the context is identified. This
allows the distinction between sink-destined and remote smart
node destined commands. If the context is the smart node, the
node ID must be identified. The search over the pool (linked
list of mote data), dictates if the node ID exist or not. If it does
not exist an �“INE�” string is replied. Although not shown in the
figure, the �“NDA�” reply is used when the corresponding node
has no data available, in the �“Process command and reply�”
processing.

Fig. 2. Flowchart of the serial_command_parser_process protothread.

If a command is complex, further processing is needed. The

command string is tested for match with one of the defined
complex commands: �“sample�” and �“txtime�”. If a match occurs,
the command is processed. If not recognized, a �“CER�” is
replied. With this protothread not only all possible commands
are tested, but all issued commands, valid or not, force a
response from the sink. As a result a no reply from the sink
may only occur if the sink is disconnected from the computer,
being it phisically or logically.

Fig. 3. Flowchart of a) udp_server_process and b) udp_server_client.

Fig. 3 a) presents the flowchart for the udp_server_process

protothread. The server waits for an incoming client packet. If
data is received, it processes data, according to a predefined
format, similar to the one used in the sensor values output,
with �“|�” separated values. If the server acknowledges that a
command must be issued to the client, namely informing of no
space available in the pool of clients, or timing values
configuration, it sends back an UDP message to the client.
Finally, the server allows other clients to communicate.

On Fig. 4 the common sensors_read_process is presented.
This protothread is common to both node types (sink and
remote smart nodes), where a timer, which can also be set by
the server, controls the sampling frequency. This process also
signals that data is available through the status variable. This is
the simplest protothread of our current implementation.

C. Smart Node Firmware
Fig. 3 b) depicts the udp_client_process protothread,

responsible for client communication. The client initializes the
UDP client and the periodic timer that controls communication
period.

Fig. 4. Flowchart of the sensors_read_process protothread.

The communication period is, upon startup and by default, 4
seconds. If the timer expires data must be sent to the server. If
the server replies with data, the client must analyze it. On
�“NDA�” reply the client waits 2 minutes before attempting
another communication with the server. If the reply is TS and
two numbers separated by a �“|�” symbol, the mote compares the
actual timer values with the locally stored ones. If different
they are updated in the respective protothreads.

As stated before, the protothread sensors_read_process is
very identical to the server corresponding protothread shown
on Fig. 4, continuously gathering sensor data.

V. TESTS AND VALIDATION
Tests were mainly performed on the testbed, with standalone

tests, mainly over the USB serial connection with the sink.
LEDs and serial communication were extensively used. Fig. 5
present the testbed with 6 TelosB motes where the proposal
was extensively tested and validated.

One of the main concerns was with memory, namely RAM
(Random Access Memory). The current implementation can
hold 10 mote�’s data on the most demanding RAM
implementation �– the server. Several motes were tested, all
commands validated and the testbed with 5 motes and the sink
was put into its paces for a full day. No mote suffered any
crash and all of them worked properly, which confirms the
current implementation as solid and robust.

The testbed shown in Fig. 5 features a laptop for network

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

monitoring, where the sink is connected. A
development and mainly when testing a new
MSPSIM emulator/simulator was used. T
41�’544 bytes of program memory, while
39�’278 bytes. As above-mentioned, only the
to the computer, while all other five mo
wirelessly. The blue led is toggled every tim
wireless communication, thus indicating a
identification feature may be useful to �“find
the network.

Fig. 5. Picture of the testbed running with 5 r

Fig. 6 presents a detail of serial comm

through the Contiki-provided serialdump-li
a) presents the issued commands to get sin
all remote nodes IPv6 address. The �“NAC�”
due to the non-existent context �“Sn�”.
sensor-reading values.

Fig. 6. Communication with sink via USB: a) IPv6 addr

VI. CONCLUSIONS
This paper proposed a monitoring and con

IPv6-enabled wireless sensor network (
Plug-and-Play functionality principle. U
connection the WSN provides sensing ser
without need for configuration. The testbed
BSN-based scenario, where single-hop co
typically employed.

This proposal is flexible in terms of co
The sensors monitored are not fixed at
implementation uses TelosB motes, the mea

At early stages of
w functionality the
The server needs

e the client needs
e sink is connected
otes are connected
me a mote performs
activity. The mote
d the mote�” inside

remote nodes

munication results
inux program. Part
nk sensor data, and
�” in the 8th row is
Part b) presents

ress, b) sensor reading.

nfiguration tool for
(WSN), featuring
Using the USB
rvices to the user,
d can be used on a
ommunications are

nnected hardware.
all. Although the

aning of the values

provided can be absolutely c
software.

As future work concerns
similarities, we consider the r
Bluetooth-enabled mote, such a
use of wireless for connection
mobile devices. Another impr
history data on the external fla
file system.

ACKNOWL

Part of this work has been
Telecomunicações, Next
Applications (NetGNA), Por
Network of Excellence fro
Programme of EU.

REFER

[1] P. Baronti, P. Pillai, V. Chook,
"Wireless Sensor Networks: a Su
802.15.4 and ZigBee Standards"
0140-3664, vol. 30, pp. 1655-1695

[2] I. Khemapech, I. Duncan, and A.
Networks Technology", in 6th An
Convergence of Telecommunicat
Liverpool, UK, June 27-28, 2005.

[3] J. A. Stankovic, "When Sensor and
ETRI Journal, vol. 30, pp. 627-633

[4] G. Montenegro, N. Kushalnagar,
IPv6 Packets over IEEE 802.15.4 N

[5] A. Dunkels, "Operating Systems fo
Wiley Encyclopedia of Computer S
Wiley & Sons, 2009, pp. 2039-204

[6] P. Levis, S. Madden, J. Polastre, R
D. Gray, J. Hill, M. Welsh, E.
Operating System for Wireless Sen
Springer-Verlag, Ed., 2004.

[7] M. Durvy, J. Abeillé, P. Wetterwa
M. Vidales, G. Mulligan, N. Tsifte
Sensor Networks IPv6 Ready", in P
on Networked Embedded Sensor
North Carolina, USA, 2008.

[8] K. Akkaya and M. Younis, "A Su
Sensor Networks", Elsevier Ad Ho
349, 2005.

[9] C. Wang, K. Sohraby, B. Li, M. D
Transport Protocols for Wireless S
20, pp. 34-40, No. 3, May/June 200

[10] J. Rodrigues and P. Neves, "A
Networks Solutions", Internationa
Wiley-Blackwell, 2010 (to appear)

[11] O. Pereira, P. Neves, and J. Rodr
Biofeedback Data Acquisition
Communications Conference (IEE
LA, USA, November 30 - Decemb

onfigurable by the monitoring

s, and due to the platform
replacement of the sink with a
as Shimmer. This will allow the
not only to computers, but also
ovement is the ability to store
ash, namely through the Coffee

LEDGMENTS
supported by the Instituto de

Generation Networks and
rtugal, and by the Euro-NF
om the Seventh Framework

RENCES
S. Chessa, A. Gotta, and Y. F. Hu,

urvey on the State of the Art and the
", Computer Communications, ISSN:
, No. 7, 2007.
Miller, "A Survey of Wireless Sensor

nnual Postgraduate Symposium on the
tions, Networking and Broadcasting,

d Actuator Networks Cover the World",
3, No. 5, 2008.
J. Hui, and D. Culler, Transmission of

Networks, RFC 4944, IETF, 2007.
or Wireless Embedded Devices", in The
Science and Engineering, W. Sons, Ed.:
45.
R. Szewczyk, K. Whitehouse, A. Woo,
brewer, and D. Culler, "TinyOS: An

nsor Networks", in Ambient intelligence,

ald, C. O'Flynn, B. Leverett, E. Gnoske,
es, N. Finne, and A. Dunkels, "Making
Proceedings of the 6th ACM Conference
Systems (ACM SenSys 2008), Raleigh,

rvey on Routing Protocols for Wireless
oc Network Journal, Vol. 3/3, pp. 325-

Daneshmand, and Y. Hu, "A Survey of
Sensor Networks", IEEE Network, vol.
06.
Survey on IP-based Wireless Sensor

al Journal of Communication Systems,
.
rigues, "Mobile Solution for Three-tier
and Processing", in IEEE Global

EE GLOBECOM 2008), New Orleans,
ber 4, 2008, pp. 1-5.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2010 proceedings

