48,989 research outputs found

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    How to monitor sustainable mobility in cities? Literature review in the frame of creating a set of sustainable mobility indicators

    Get PDF
    The role of sustainable mobility and its impact on society and the environment is evident and recognized worldwide. Nevertheless, although there is a growing number of measures and projects that deal with sustainable mobility issues, it is not so easy to compare their results and, so far, there is no globally applicable set of tools and indicators that ensure holistic evaluation and facilitate replicability of the best practices. In this paper, based on the extensive literature review, we give a systematic overview of relevant and scientifically sound indicators that cover different aspects of sustainable mobility that are applicable in different social and economic contexts around the world. Overall, 22 sustainable mobility indicators have been selected and an overview of the applied measures described across the literature review has been presented

    Towards an agri-environment index for biodiversity conservation payment schemes

    Get PDF
    The aim of the paper is to give suggestions about how an agri-environment index can be designed by taking into account specific ecological and economical factors that reflect benefits and costs of biodiversity conservation. Main findings are that the general structure of an agri-environment index is recommended to be a benefits-to-cost ratio, whereby the conservation benefits are accounted for by the following factors which evaluate i) certain criteria that value the ecological quality of a site and point out its significance for biodiversity conservation (Conservation Significance Factor), ii) a criterion that reflects the connectivity of the site which is an important factor for species migration (Connectivity Factor) and iii) criteria that estimate the potential biodiversity outcomes induced by specific management actions (Conservation Management Factor). The Cost Factor reflects the amount of money that the landholder demands as compensation payment for his conservation services. The paper points out that an agri-environment index is a promising approach to encourage and compensate farmers for biodiversity-friendly management actions. Thereby, an improvement of the effectiveness and efficiency of European conservation payment schemes is a decisive contribution to biodiversity conservation in agricultural landscapes.agri-environmental policy, biodiversity benefits index, biodiversity conservation, ecosystem services, environmental benefits index, rural development

    Multi-node protection of landscape connectivity: habitat availability and topological reachability

    Get PDF
    The selection of reserves for biodiversity conservation involves the evaluation of multiple criteria, ranging from representativeness of ecological features to anthropogenic interests and spatial configuration. Among the principal spatial attributes to be considered, connectivity has received particular emphasis in response to the escalating threat of habitat loss and fragmentation. Connectivity is an intrinsic property of networks. Consequently, we have observed the gradual development of the concept of reserve networks, enlisting also tools from the mathematical branch of network theory. Here, we first outline three key aspects of reserve selection for connectivity conservation based on network analysis. 1) It may be based on the application of topological indices, which take into consideration only the geographical position of the habitat patches, or area-weighted indices, which add a premium to larger patches. 2) It may be done through single-node analysis, where the relative importance of patches is evaluated individually, or with the more efficient multi-node analysis, where we search for the optimal group of patches that best complement each other in the role of maintaining connectivity. 3) The goal of the selection may be to avoid fragmentation of the population into isolated portions, or to ensure that reachability is maintained to all habitat patches, including peripheral sites. In previous studies, we had introduced multi-node analysis to the prioritization of reserves, using fragmentation and reachability indices, but these were limited to topology only. Here, we present an improved approach where multi-node prioritization is performed with area-weighted fragmentation. We apply it to 20 bird species in Catalonia, Spain. In comparison with single-node and/or topological fragmentation, we observed here a decentralization of the selected reserve sets: they included not only the main core population, but also secondary clusters of well-connected habitat. This may potentially bring two added advantages to the reserve network: spreading of risk, and inclusion of a wider variety of local genetic profiles. We propose combining this approach with topological reachability, to account for peripheral populations and maximize accessibility to the entire network

    Where and how to conserve : Extending the scope of spatial reserve network design

    Get PDF
    Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.Monien lajien elinympĂ€ristöt vĂ€henevĂ€t, mikĂ€ uhkaa lajien selviytymistĂ€ pitkĂ€llĂ€ aikavĂ€lillĂ€. Lajien sukupuuttoja voidaan ehkĂ€istĂ€ luonnonsuojelualueita perustamalla. SuojelutyöhĂ€n varatut varat ovat kuitenkin rajalliset, joten luonnonsuojelualueiden sijoittaminen tĂ€ytyy harkita tarkkaan. Suojelualueverkostojen suunnittelu on tieteenala, joka kĂ€sittelee suojelualueiden hankintaan varattujen varojen tehokasta kĂ€yttöÀ. Alueiden suojelu ei ole ainoa tapa auttaa lajien sĂ€ilymistĂ€. Laadultaan heikentyneiden elinympĂ€ristöjen kuntoa voidaan parantaa. Jotkin elinympĂ€ristötyypit vaativat hoitoa pysyĂ€kseen tietynlaisina. Esimerkiksi kedot, joista monet lajit ovat riippuvaisia, metsittyvĂ€t vĂ€hitellen ilman hoitoa. NiinpĂ€ suojelusuunnittelussa tĂ€ytyy pÀÀttÀÀ kĂ€ytetÀÀnkö suojelun tukena hoitotoimia elinympĂ€ristöjen sĂ€ilyttĂ€miseksi. Suojelusuunnittelussa kĂ€ytettĂ€vĂ€t tietokoneohjelmistot eivĂ€t osaa vastata kysymykseen siitĂ€, kuinka suojeltavia alueita tulisi hoitaa niiden avulla saadaan selville vain se, mitkĂ€ alueet kannattaa suojella. Olen kehittĂ€nyt vĂ€itöskirjatyössĂ€ni menetelmiĂ€, joiden avulla voidaan mÀÀrittÀÀ mikĂ€ suojelun taso tai hoitotoimi alueelle kannattaa kohdentaa toimittaessa kustannustehokkaasti. Kun hoitotoimi on suotuisa yhdelle lajille, saattaa se olla haitallinen toiselle lajille. TĂ€stĂ€ syystĂ€ kokonaisuuden kannalta parhaan hoitotoimen mÀÀrittĂ€minen on vaikeaa. KehittĂ€mĂ€ni menetelmĂ€t auttavat vaihtoehtoisten suojelu- ja hoitotoimien suunnittelemisessa sekĂ€ suojelupÀÀtösten seurausten arvioimisessa. Suojelualuesuunnittelussa on tĂ€rkeÀÀ huomioida alueiden sijoittelu toisiinsa nĂ€hden, sillĂ€ yksilöiden liikkuminen eri suojelualueiden vĂ€lillĂ€ on lajiston sĂ€ilymisen kannalta tĂ€rkeÀÀ. Koska eri lajien leviĂ€miskyvyt ovat erilaiset, tulee suojelualueverkoston rakennetta arvioida lajien ominaisuudet huomioiden. Osoitan työssĂ€ni kuinka lajien esiintymisen todennĂ€köisyys kasvaa kun suojeluverkoston rakenteessa huomioidaan lajien leviĂ€miskyvyt. Suojelualueverkoston rakenteen huomioiminen on erityisen vaikeaa silloin, kun kĂ€ytettĂ€vissĂ€ on useita vaihtoehtoisia suojelutoimia, mutta esitĂ€n työssĂ€ni tĂ€lle ongelmalle yhtĂ€ lajia kerrallaan tarkastelevan ratkaisun. Jotta lajien pitkĂ€n aikavĂ€lin sĂ€ilymistĂ€ autetaan parhaalla tavalla, tulee suojeluun varatut resurssit kohdentaa mahdollisimman tehokkaasti. Suojelusuunnittelussa tĂ€ytyy yleensĂ€ valita yksi vaihtoehtoisista suojelu- tai hoitotoimista kullekin kohteelle. NĂ€mĂ€ vaihtoehtoiset toimet tulee siten sisĂ€llyttÀÀ suojelusuunnittelussa kĂ€ytettĂ€viin menetelmiin ja tietokoneohjelmistoihin. VĂ€itöskirjatyöni ottaa ensimmĂ€isen askeleen tĂ€hĂ€n suuntaan, ja nĂ€yttÀÀ kuinka suojelualueverkoston rakenteessa voidaan huomioida lajien erilaiset liikkumiskyvyt ja elintilatarpeet.Steeds meer habitat van veel plant- en diersoorten verdwijnt. Deze soorten worden daardoor in hun voortbestaan bedreigd. Om deze soorten en hun habitat te beschermen, kunnen natuurreservaten worden aangewezen. Het budget voor natuurbescherming is echter beperkt, waardoor er nauwkeurig gekeken moet worden welke gebieden het best aangewezen kunnen worden als natuurgebied. Computerprogramma’s kunnen helpen bij het identificeren van gebieden die samen een kosteneffectief natuurnetwerk vormen. Om habitat en soorten te beschermen, is het aanwijzen van natuurgebieden niet de enige mogelijkheid. Natuurherstel en –beheersmaatregelen kunnen nodig zijn om bijvoorbeeld vegetatie in de gewenste conditie te krijgen en te houden. Zo zouden heide of extensief grasland mettertijd bos kunnen worden, als er niet begraasd, gemaaid of geplagd wordt. Hierdoor zou het habitat voor soorten die leven in extensieve graslanden en heide verdwijnen. In het natuurbeheer moet men daarom niet alleen beslissen welke plekken er beschermd moeten worden, maar ook welke herstel- of beheersmaatregelen nodig zijn. De computerprogramma’s die gebruikt worden voor het selecteren van natuurnetwerken, zijn niet geschikt voor het beantwoorden van de vraag hoe plekken het beste beheerd kunnen worden, wanneer er meerdere beschermings- of beheersopties per plek zijn. In dit proefschrift zijn methoden beschreven die wel hulp kunnen bieden bij het maken van beslissingen over hoe verschillende plekken te beheren op een kosteneffectieve manier. Zulke informatie kan gebruikt worden bij het maken van beslissingen over natuurbeheer. Bij het selecteren van natuurreservaten is het belangrijk om de ruimtelijke samenhang van de verschillende reservaten in ogenschouw te nemen. Dit, om de uitwisseling van individuen van soorten tussen de verschillende gebieden mogelijk te maken, wat belangrijk is voor het voorbestaan van soorten. De behoefte voor de grootte van plekken en de ruimtelijke samenhang van die plekken verschilt per soort, waar bij het ontwerp van netwerken rekening moet worden gehouden. Dit proefschrift beschrijft hoe de kans op voorkomen van soorten in het reservaatnetwerk toeneemt, naarmate meer rekening wordt gehouden met de specifieke behoeften aan samenhang van die soorten in het ontwerp van reservaatnetwerken. Wanneer er meerdere beschermings- en beheersopties per plek mogelijk zijn, dan wordt het moeilijk om tegelijkertijd rekening te houden met soort-specifieke eisen aan ruimtelijke samenhang. Dit komt doordat beheersmaatregelen die gunstig zijn voor bepaalde soorten (zoals begrazing van grasland voor graslandsoorten, bijv. sommige vlinders), tegelijkertijd ongunstig kunnen zijn voor andere soorten (bijv. bosplanten). Het proefschrift beschrijft een methode voor het plannen met meerdere opties Ă©n ruimtelijke samenhang, voor Ă©Ă©n soort tegelijkertijd. Om soorten ook op de lange termijn te behouden, is een kosteneffectieve besteding van budget voor natuurbehoud nodig. Het plannen van natuurbeschermingsmaatregelen omvat vaak een keuze tussen meerdere alternatieve maatregelen per plek. De computerprogramma’s ter ondersteuning van planning voor natuurbeheer moeten daarom geschikt gemaakt worden voor meerdere opties. Dit proefschrift maakt een eerste stap in die richting, en geeft ook suggesties hoe expliciet rekening kan worden gehouden met de specifieke eisen van soorten voor ruimtelijke samenhang van natuurgebieden

    Ecological criteria for evaluation candidate sites for marine reserves

    Get PDF
    Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically, then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that, while not strictly biological, have a strong influence on the species present or ecological processes. Our scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of ecosystem goods and services for people ultimately depend on meeting this objective

    Corridors for LIFE; ecological network analysis Regione Emilia-Romagna - the plains of Provincia di Modena & Bologna

    Get PDF
    This report gives the result of an analysis of the ecological network, designed for the agricultural plains of the Provinces of Modena and and Bologna. Three ecosystem types were selected: woodland, wetland, and grassland. Species were selected which can be considered representative of these ecosystems. The LARCH model was used to assess whether these ecosystems still function as an ecological network. We found that the region has a serious fragmentation problem. After implementation of the ecological network the situation would improve much. Larger areas for nature rehabilitation would further improve the functioning of the ecological network
    • 

    corecore