16 research outputs found

    Nematode.net update 2011: addition of data sets and tools featuring next-generation sequencing data

    Get PDF
    Nematode.net (http://nematode.net) has been a publicly available resource for studying nematodes for over a decade. In the past 3 years, we reorganized Nematode.net to provide more user-friendly navigation through the site, a necessity due to the explosion of data from next-generation sequencing platforms. Organism-centric portals containing dynamically generated data are available for over 56 different nematode species. Next-generation data has been added to the various data-mining portals hosted, including NemaBLAST and NemaBrowse. The NemaPath metabolic pathway viewer builds associations using KOs, rather than ECs to provide more accurate and fine-grained descriptions of proteins. Two new features for data analysis and comparative genomics have been added to the site. NemaSNP enables the user to perform population genetics studies in various nematode populations using next-generation sequencing data. HelmCoP (Helminth Control and Prevention) as an independent component of Nematode.net provides an integrated resource for storage, annotation and comparative genomics of helminth genomes to aid in learning more about nematode genomes, as well as drug, pesticide, vaccine and drug target discovery. With this update, Nematode.net will continue to realize its original goal to disseminate diverse bioinformatic data sets and provide analysis tools to the broad scientific community in a useful and user-friendly manner

    Helminth.net: expansions to Nematode.net and an introduction to Trematode.net

    Get PDF
    Helminth.net (http://www.helminth.net) is the new moniker for a collection of databases: Nematode.net and Trematode.net. Within this collection we provide services and resources for parasitic roundworms (nematodes) and flatworms (trematodes), collectively known as helminths. For over a decade we have provided resources for studying nematodes via our veteran site Nematode.net (http://nematode.net). In this article, (i) we provide an update on the expansions of Nematode.net that hosts omics data from 84 species and provides advanced search tools to the broad scientific community so that data can be mined in a useful and user-friendly manner and (ii) we introduce Trematode.net, a site dedicated to the dissemination of data from flukes, flatworm parasites of the class Trematoda, phylum Platyhelminthes. Trematode.net is an independent component of Helminth.net and currently hosts data from 16 species, with information ranging from genomic, functional genomic data, enzymatic pathway utilization to microbiome changes associated with helminth infections. The databases’ interface, with a sophisticated query engine as a backbone, is intended to allow users to search for multi-factorial combinations of species’ omics properties. This report describes updates to Nematode.net since its last description in NAR, 2012, and also introduces and presents its new sibling site, Trematode.net

    Identification and characterization of alternative splicing in parasitic nematode transcriptomes

    Get PDF
    BACKGROUND: Alternative splicing (AS) of mRNA is a vital mechanism for enhancing genomic complexity in eukaryotes. Spliced isoforms of the same gene can have diverse molecular and biological functions and are often differentially expressed across various tissues, times, and conditions. Thus, AS has important implications in the study of parasitic nematodes with complex life cycles. Transcriptomic datasets are available from many species, but data must be revisited with splice-aware assembly protocols to facilitate the study of AS in helminthes. METHODS: We sequenced cDNA from the model worm Caenorhabditis elegans using 454/Roche technology for use as an experimental dataset. Reads were assembled with Newbler software, invoking the cDNA option. Several combinations of parameters were tested and assembled transcripts were verified by comparison with previously reported C. elegans genes and transcript isoforms and with Illumina RNAseq data. RESULTS: Thoughtful adjustment of program parameters increased the percentage of assembled transcripts that matched known C. elegans sequences, decreased mis-assembly rates (i.e., cis- and trans-chimeras), and improved the coverage of the geneset. The optimized protocol was used to update de novo transcriptome assemblies from nine parasitic nematode species, including important pathogens of humans and domestic animals. Our assemblies indicated AS rates in the range of 20-30%, typically with 2-3 transcripts per AS locus, depending on the species. Transcript isoforms from the nine species were translated and searched for similarity to known proteins and functional domains. Some 21 InterPro domains, including several involved in nucleotide and chromatin binding, were statistically correlated with AS genetic loci. In most cases, the Roche/454 data explored in this study are the only sequences available from the species in question; however, the recently published genome of the human hookworm Necator americanus provided an additional opportunity to validate our results. CONCLUSIONS: Our optimized assembly parameters facilitated the first survey of AS among parasitic nematodes. The nine transcriptome assemblies, their protein translations, and basic annotations are available from Nematode.net as a resource for the research community. These should be useful for studies of specific genes and gene families of interest as well as for curating draft genome assemblies as they become available

    Pan-phylum comparison of nematode metabolic potential

    Get PDF
    <div><p>Nematodes are among the most important causative pathogens of neglected tropical diseases. The increased availability of genomic and transcriptomic data for many understudied nematode species provides a great opportunity to investigate different aspects of their biology. Increasingly, metabolic potential of pathogens is recognized as a critical determinant governing their development, growth and pathogenicity. Comparing metabolic potential among species with distinct trophic ecologies can provide insights on overall biology or molecular adaptations. Furthermore, ascertaining gene expression at pathway level can help in understanding metabolic dynamics over development. Comparison of biochemical pathways (or subpathways, i.e. pathway modules) among related species can also retrospectively indicate potential mistakes in gene-calling and functional annotation. We show with numerous illustrative case studies that comparisons at the level of pathway modules have the potential to uncover biological insights while remaining computationally tractable. Here, we reconstruct and compare metabolic modules found in the deduced proteomes of 13 nematodes and 10 non-nematode species (including hosts of the parasitic nematode species). We observed that the metabolic potential is, in general, concomitant with phylogenetic and/or ecological similarity. Varied metabolic strategies are required among the nematodes, with only 8 out of 51 pathway modules being completely conserved. Enzyme comparison based on topology of metabolic modules uncovered diversification between parasite and host that can potentially guide therapeutic intervention. Gene expression data from 4 nematode species were used to study metabolic dynamics over their life cycles. We report unexpected differential metabolism between immature and mature microfilariae of the human filarial parasite <i>Brugia malayi</i>. A set of genes potentially important for parasitism is also reported, based on an analysis of gene expression in <i>C</i>. <i>elegans</i> and the human hookworm <i>Necator americanus</i>. We illustrate how analyzing and comparing metabolism at the level of pathway modules can improve existing knowledge of nematode metabolic potential and can provide parasitism related insights. Our reconstruction and comparison of nematode metabolic pathways at a pan-phylum and inter-phylum level enabled determination of phylogenetic restrictions and differential expression of pathways. A visualization of our results is available at <a href="http://nematode.net" target="_blank">http://nematode.net</a> and the program for identification of module completeness (modDFS) is freely available at SourceForge. The methods reported will help biologists to predict biochemical potential of any organism with available deduced proteome, to direct experiments and test hypotheses.</p></div

    Discovery of anthelmintic drug targets and drugs using chokepoints in nematode metabolic pathways

    Get PDF
    Parasitic roundworm infections plague more than 2 billion people (1/3 of humanity) and cause drastic losses in crops and livestock. New anthelmintic drugs are urgently needed as new drug resistance and environmental concerns arise. A "chokepoint reaction" is defined as a reaction that either consumes a unique substrate or produces a unique product. A chokepoint analysis provides a systematic method of identifying novel potential drug targets. Chokepoint enzymes were identified in the genomes of 10 nematode species, and the intersection and union of all chokepoint enzymes were found. By studying and experimentally testing available compounds known to target proteins orthologous to nematode chokepoint proteins in public databases, this study uncovers features of chokepoints that make them successful drug targets. Chemogenomic screening was performed on drug-like compounds from public drug databases to find existing compounds that target homologs of nematode chokepoints. The compounds were prioritized based on chemical properties frequently found in successful drugs and were experimentally tested using Caenorhabditis elegans. Several drugs that are already known anthelmintic drugs and novel candidate targets were identified. Seven of the compounds were tested in Caenorhabditis elegans and three yielded a detrimental phenotype. One of these three drug-like compounds, Perhexiline, also yielded a deleterious effect in Haemonchus contortus and Onchocerca lienalis, two nematodes with divergent forms of parasitism. Perhexiline, known to affect the fatty acid oxidation pathway in mammals, caused a reduction in oxygen consumption rates in C. elegans and genome-wide gene expression profiles provided an additional confirmation of its mode of action. Computational modeling of Perhexiline and its target provided structural insights regarding its binding mode and specificity. Our lists of prioritized drug targets and drug-like compounds have potential to expedite the discovery of new anthelmintic drugs with broad-spectrum efficacy

    Exploring the Role of Wolbachia Endobacteria in the Biology of Filarial Nematode Parasites

    Get PDF
    Filarial nematodes are vector borne parasitic worms that cause a variety of disfiguring and disabling diseases, including lymphatic filariasis and onchocerciasis. Many filarial species require Wolbachia endobacteria: family: Rickettsiaceae) to carry out their life cycle. Studies using antibiotics to target the endobacteria, thereby interfering with worm fertility and viability, have generated interest in using Wolbachia as an antifilarial drug target. However, the exact mechanisms underpinning this interesting mutualistic interaction are poorly understood. Wolbachia-dependence is not ubiquitous in the filarial family. Some species are able to survive in the absence of an endosymbiont. The inconsistent patterns of Wolbachia-dependence and independence seen in filarial nematodes may be explained by two hypotheses. Following infection with the endobacteria, reductive evolution could have removed redundant genes or pathways present in both partners. Thus, deletions in the worm\u27s genome would render it dependent on Wolbachia for vital gene products. Conversely, Wolbachia-dependent species could re-acquire vital genes from the endosymbiont by horizontal gene transfer, rendering the bacteria expendable. Mitochondria and Wolbachia are co-transmitted vertically from mother to offspring, therefore the mitochondrial genome: mtDNA) is particularly sensitive to evolutionary pressures exerted by the endosymbiont. Wolbachia is also thought to be closely related to the mitochondrial progenitor, so they may overlap in function: e.g., energy production). In order to address our first hypothesis, we sequenced the mitochondrial genomes of several species of Wolbachia-dependent and independent filarial nematodes in hopes of finding some degeneracy in the mtDNA of the Wolbachia-dependent species. Our studies have shown that the mtDNA of all examined species encodes the same 12 protein coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes. Despite a careful analysis, no sequence-level differences were observed between the mtDNA of infected and uninfected species. In order to address our second hypothesis, we surveyed the genomes of two Wolbachia-independent filarial species, Acanthocheilonema viteae and Onchocerca flexuosa, in search of evidence of horizontal gene transfer from Wolbachia. Many genomic fragments containing regions with high homology to Wolbachia sequences were identified. Follow-up transcriptomic and proteomic analyses in O. flexuosa have shown that Wolbachia-like sequnces are expressed at the RNA and protein levels. Imaging studies indicate that Wolbachia-like RNAs are mainly produced in tissues known to harbor Wolbachia in infected species, while a Wolbachia-like protein was found nearby but not in the same tissue. This project has produced a vast amount of data that will be useful to the filariasis research community, including the mtDNA sequences of five filarial species, genomic sequences from A. viteae and O. flexuosa, transcriptomic sequences from O. flexuosa and a survey of the O. flexuosa adult worm proteome. Our results have verified a longstanding hypothesis that the ancestor(s) of many Wolbachia-free filarial nematode species was colonized in the distant past despite the present lack of endobacteria. Future studies may prove that horizontally transferred bacterial genes are necessary for the survival of Wolbachia-free filarial worms that would otherwise require Wolbachia for reproduction and development

    Analysis of the transcriptome of adult Dictyocaulus filaria and comparison with Dictyocaulus viviparus, with a focus on molecules involved in host–parasite interactions

    Get PDF
    Parasitic nematodes cause diseases of major economic importance in animals. Key representatives are species of Dictyocaulus (=lungworms), which cause bronchitis (=dictyocaulosis, commonly known as “husk”) and have a major adverse impact on the health of livestock. In spite of their economic importance, very little is known about the immunomolecular biology of these parasites. Here, we conducted a comprehensive investigation of the adult transcriptome of Dictyocaulus filaria of small ruminants and compared it with that of Dictyocaulus viviparus of bovids. We then identified a subset of highly transcribed molecules inferred to be linked to host–parasite interactions, including cathepsin B peptidases, fatty-acid and/or retinol-binding proteins, β-galactoside-binding galectins, secreted protein 6 precursors, macrophage migration inhibitory factors, glutathione peroxidases, a transthyretin-like protein and a type 2-like cystatin. We then studied homologues of D. filaria type 2-like cystatin encoded in D. viviparus and 24 other nematodes representing seven distinct taxonomic orders, with a particular focus on their proposed role in immunomodulation and/or metabolism. Taken together, the present study provides new insights into nematode–host interactions. The findings lay the foundation for future experimental studies and could have implications for designing new interventions against lungworms and other parasitic nematodes. The future characterisation of the genomes of Dictyocaulus spp. should underpin these endeavours

    Recent advances in candidate-gene and whole-genome approaches to the discovery of anthelmintic resistance markers and the description of drug/receptor interactions

    Get PDF
    Anthelmintic resistance has a great impact on livestock production systems worldwide, is an emerging concern in companion animal medicine, and represents a threat to our ongoing ability to control human soil-transmitted helminths. The Consortium for Anthelmintic Resistance and Susceptibility (CARS) provides a forum for scientists to meet and discuss the latest developments in the search for molecular markers of anthelmintic resistance. Such markers are important for detecting drug resistant worm populations, and indicating the likely impact of the resistance on drug efficacy. The molecular basis of resistance is also important for understanding how anthelmintics work, and how drug resistant populations arise. Changes to target receptors, drug efflux and other biological processes can be involved. This paper reports on the CARS group meeting held in August 2013 in Perth, Australia. The latest knowledge on the development of molecular markers for resistance to each of the principal classes of anthelmintics is reviewed. The molecular basis of resistance is best understood for the benzimidazole group of compounds, and we examine recent work to translate this knowledge into useful diagnostics for field use. We examine recent candidate-gene and whole-genome approaches to understanding anthelmintic resistance and identify markers. We also look at drug transporters in terms of providing both useful markers for resistance, as well as opportunities to overcome resistance through the targeting of the transporters themselves with inhibitors. Finally, we describe the tools available for the application of the newest high-throughput sequencing technologies to the study of anthelmintic resistance
    corecore