61,060 research outputs found

    Transcription Factor-DNA Binding Via Machine Learning Ensembles

    Full text link
    We present ensemble methods in a machine learning (ML) framework combining predictions from five known motif/binding site exploration algorithms. For a given TF the ensemble starts with position weight matrices (PWM's) for the motif, collected from the component algorithms. Using dimension reduction, we identify significant PWM-based subspaces for analysis. Within each subspace a machine classifier is built for identifying the TF's gene (promoter) targets (Problem 1). These PWM-based subspaces form an ML-based sequence analysis tool. Problem 2 (finding binding motifs) is solved by agglomerating k-mer (string) feature PWM-based subspaces that stand out in identifying gene targets. We approach Problem 3 (binding sites) with a novel machine learning approach that uses promoter string features and ML importance scores in a classification algorithm locating binding sites across the genome. For target gene identification this method improves performance (measured by the F1 score) by about 10 percentage points over the (a) motif scanning method and (b) the coexpression-based association method. Top motif outperformed 5 component algorithms as well as two other common algorithms (BEST and DEME). For identifying individual binding sites on a benchmark cross species database (Tompa et al., 2005) we match the best performer without much human intervention. It also improved the performance on mammalian TFs. The ensemble can integrate orthogonal information from different weak learners (potentially using entirely different types of features) into a machine learner that can perform consistently better for more TFs. The TF gene target identification component (problem 1 above) is useful in constructing a transcriptional regulatory network from known TF-target associations. The ensemble is easily extendable to include more tools as well as future PWM-based information.Comment: 33 page

    MISSEL: a method to identify a large number of small species-specific genomic subsequences and its application to viruses classification

    Get PDF
    Continuous improvements in next generation sequencing technologies led to ever-increasing collections of genomic sequences, which have not been easily characterized by biologists, and whose analysis requires huge computational effort. The classification of species emerged as one of the main applications of DNA analysis and has been addressed with several approaches, e.g., multiple alignments-, phylogenetic trees-, statistical- and character-based methods

    Hidden Markov Models for Gene Sequence Classification: Classifying the VSG genes in the Trypanosoma brucei Genome

    Full text link
    The article presents an application of Hidden Markov Models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the Variant Surface Glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.Comment: Accepted article in July, 2015 in Pattern Analysis and Applications, Springer. The article contains 23 pages, 4 figures, 8 tables and 51 reference

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    A Feature Selection Algorithm to Compute Gene Centric Methylation from Probe Level Methylation Data

    Get PDF
    DNA methylation is an important epigenetic event that effects gene expression during development and various diseases such as cancer. Understanding the mechanism of action of DNA methylation is important for downstream analysis. In the Illumina Infinium HumanMethylation 450K array, there are tens of probes associated with each gene. Given methylation intensities of all these probes, it is necessary to compute which of these probes are most representative of the gene centric methylation level. In this study, we developed a feature selection algorithm based on sequential forward selection that utilized different classification methods to compute gene centric DNA methylation using probe level DNA methylation data. We compared our algorithm to other feature selection algorithms such as support vector machines with recursive feature elimination, genetic algorithms and ReliefF. We evaluated all methods based on the predictive power of selected probes on their mRNA expression levels and found that a K-Nearest Neighbors classification using the sequential forward selection algorithm performed better than other algorithms based on all metrics. We also observed that transcriptional activities of certain genes were more sensitive to DNA methylation changes than transcriptional activities of other genes. Our algorithm was able to predict the expression of those genes with high accuracy using only DNA methylation data. Our results also showed that those DNA methylation-sensitive genes were enriched in Gene Ontology terms related to the regulation of various biological processes

    Differential gene expression graphs: A data structure for classification in DNA microarrays

    Get PDF
    This paper proposes an innovative data structure to be used as a backbone in designing microarray phenotype sample classifiers. The data structure is based on graphs and it is built from a differential analysis of the expression levels of healthy and diseased tissue samples in a microarray dataset. The proposed data structure is built in such a way that, by construction, it shows a number of properties that are perfectly suited to address several problems like feature extraction, clustering, and classificatio

    PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets

    Get PDF
    Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs which play a significant role in several biological processes. RNA-seq based transcriptome sequencing has been extensively used for identification of lncRNAs. However, accurate identification of lncRNAs in RNA-seq datasets is crucial for exploring their characteristic functions in the genome as most coding potential computation (CPC) tools fail to accurately identify them in transcriptomic data. Well-known CPC tools such as CPC2, lncScore, CPAT are primarily designed for prediction of lncRNAs based on the GENCODE, NONCODE and CANTATAdb databases. The prediction accuracy of these tools often drops when tested on transcriptomic datasets. This leads to higher false positive results and inaccuracy in the function annotation process. In this study, we present a novel tool, PLIT, for the identification of lncRNAs in plants RNA-seq datasets. PLIT implements a feature selection method based on L1 regularization and iterative Random Forests (iRF) classification for selection of optimal features. Based on sequence and codon-bias features, it classifies the RNA-seq derived FASTA sequences into coding or long non-coding transcripts. Using L1 regularization, 31 optimal features were obtained based on lncRNA and protein-coding transcripts from 8 plant species. The performance of the tool was evaluated on 7 plant RNA-seq datasets using 10-fold cross-validation. The analysis exhibited superior accuracy when evaluated against currently available state-of-the-art CPC tools
    corecore