26,668 research outputs found

    Random Discrete Dopant Induced Variability in Negative Capacitance Transistors

    Get PDF
    In this work we investigate the impact of random discrete dopants (RDD) induced statistical variability in ferroelectric negative capacitance field effect transistors (NCFETs). We couple the 3D `atomistic' statistical device simulator GARAND with the Landau - Khalatnikov equation of the ferroelectric for this study. We found that the negative capacitance effect provided by the ferroelectric layer can lead to suppression of the RDD induced variability in the threshold voltage (Vt), OFF-current (IOFF), and ON-current (ION). This immunity to RDD induced variability increases with increase in the ferroelectric thickness

    Miniature electrometer preamplifier effectively compensates for input capacitance

    Get PDF
    Negative capacitance preamplifier using a dual MOS /Metal Oxide Silicon/ transistor in conjunction with bipolar transistors is used with intracellular microelectrodes in recording bioelectric potentials. Applications would include use as a pickup plate video amplifier in storage tube tests and for pH and ionization chamber measurements

    Negative capacitance transistors with monolayer black phosphorus

    Get PDF
    published_or_final_versio

    Insights into tunnel FET-based charge pumps and rectifiers for energy harvesting applications

    Get PDF
    In this paper, the electrical characteristics of tunnel field-effect transistor (TFET) devices are explored for energy harvesting front-end circuits with ultralow power consumption. Compared with conventional thermionic technologies, the improved electrical characteristics of TFET devices are expected to increase the power conversion efficiency of front-end charge pumps and rectifiers powered at sub-µW power levels. However, under reverse bias conditions the TFET device presents particular electrical characteristics due to its different carrier injection mechanism. In this paper, it is shown that reverse losses in TFET-based circuits can be attenuated by changing the gate-to-source voltage of reverse-biased TFETs. Therefore, in order to take full advantage of the TFETs in front-end energy harvesting circuits, different circuit approaches are required. In this paper, we propose and discuss different topologies for TFET-based charge pumps and rectifiers for energy harvesting applications.Peer ReviewedPostprint (author's final draft
    • …
    corecore