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Abstract—In this work we investigate the impact of random
discrete dopants (RDD) induced statistical variability in ferroelec-
tric negative capacitance field effect transistors (NCFETs). We
couple the 3D ‘atomistic’ statistical device simulator GARAND
with the Landau - Khalatnikov equation of the ferroelectric for
this study. We find that the negative capacitance effect provided
by the ferroelectric layer can lead to suppression of the RDD
induced variability in the threshold voltage (V:), OFF-current
(Iorr), and ON-current (/on). This immunity to RDD induced
variability is found to increase with increase in the ferroelectric
thickness.

Keywords—Negative capacitance, MOSFET, Ferroelectric, sta-
tistical variability, Random Discrete Dopants

I. INTRODUCTION

NCFETs are constructed by introducing into the gate stack
a layer of a ferroelectric material that acts as a conditionally
negative capacitor. Such devices have been demonstrated to
achieve a sub-60 mV/dec subthreshold swing [1], [2] and
consequently they are being pursued as a means to scale down
supply voltage without loss of performance [3], [4].

Variability induced due to intrinsic statistical nature of
random discrete dopants in the semiconductor channel of
MOSFETs has been an important source of variability, and its
role in limiting the performance of existing CMOS technolo-
gies has been well studied [5], [6]. In this work we compare the
impact of RDD in conventional MOSFETs and ferroelectric
based negative capacitance transistors combining 3D TCAD
with the steady state Landau - Khalatnikov (L-K) model of
ferroelectrics.

II. SIMULATION METHODOLOGY

We examine bulk NCFETs with the MFMIS (Metal-
Ferroelectric—-Metal-Insulator—Semiconductor) structure which
essentially consist of a conventional MOSFET with a ferroelec-
tric layer in between the gate of the conventional MOSFET and
an external metal gate as shown in Fig. 1.

We use the 3-D device simulator GARAND [7] to obtain
the charge-voltge and current-voltage characteristics of the
reference MOS transistor. We then calculate the potential
drop across the ferroelectric using the steady-state Landau-
Khalatnikov equation [8], [9]. Finally we map the internal
gate bias to the actual (external) gate bias using voltage
balance, thus obtaining the terminal characteristics of the
NCFET. The simulation flow and assumptions therein have
been illustrated in Fig. 2. We have performed 1000 simulations
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Fig. 1. Cross-sectional schematic of an NCFET. The ferroelectric is
sandwiched between the internal and external metal gates.
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Fig. 2. NCFET simulation flow: Vé is the internal gate voltage, V. is
the voltage drop across the ferroelectric, P is the polarization, Qg is the
gate charge density, o and 3 are the ferroelectric parameters which can be
expressed in terms of the coercive field, E. and remnant polarization, Pp.
tse is the ferroelectric thickness. Ip and Vi denote the drain current and
post-processed gate voltage for the NCFET.
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Ips — Vs curves for the reference MOSFET and NCFET (7. = 5 nm) obtained from statistical simulation (solid lines) and continuous doping

profiles with no RDD (dashed lines). (a) - (b): at Vpg = 0.05V. (¢) - (d): at Vpg = Vpp. The nominal NCFET curves are shifted to have the same Iopp as
the reference MOSFET, and the same amount of shift is applied to the statistical data for NCFETs.

each with a random distribution of dopants and one simulation
assuming continuous doping without any dopant fluctuation.
Drift-diffusion transport model with density gradient quantum
correction is employed in the simulations. We have not in-
cluded the tunneling leakage mechanisms in this study.

We use a CMOS process compatible metal doped HfO,
ferroelectric having a coercive field, E. = 1 MV/cm and
remnant polarization, P, = 5 MC/CIII2 [10]. We have set each
nominal NCFET device to be hysteresis-free (this limits the
maximum ¢y, to ~7nm). The operation of NCFETs based on
capacitance matching, their typical characteristics and depen-
dence on ferroelectric thickness and matarial parameters have
been described elsewhere (e.g. see [8], [9], [11], [12]) and will
not be discussed here. Also, note that the variability in the
ferroelectric layer itself is not considered here, as the focus
is to isolate the impact of the NC effect on RDD induced

variability.

III. RESULTS AND DISCUSSION

For a reasonable comparison, the OFF-current of the RDD-
free nominal NC device (assuming continuous doping) at each
tre is set to that of the reference MOSFET. The Ipg — Vg
curves of the reference MOSFETs and NCFETs with atomistic
RDD are evaluated including the same offset. Fig. 3 shows
the transfer characteristics of the reference MOSFETs and
NCFETs (with ¢y, = 5nm) at low and high drain biases. The
improvement in the subthreshold slope and the ON-current are
evident as is typical with NCFETs.

We examine the impact of RDD on the variability in
the main device figures of merit V;, Iorr, and Ion as a
function of the ferroelectric thickness. oy, linearly reduces
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Fig. 6. Q-Q plots for (a) V%, (b) Iorr and (c) Ion for the reference MOSFET (¢, = 0 nm), and NCFETs with ¢, = 3 nm and 6 nm.



with increased ferroelectric thickness, as shown in Fig. 4(a).
NCFETs with ferroelectric thickness of 6 nm show more than
50% reduction in V; variability. As the OFF-current follows
a log-normal distribution, we calculate the standard deviation
of the logarithm of the OFF-current, ologio(Iorr). We find
that it is not affected much by ¢y, and shows slight reduction
with increasing t. (Fig. 4(b)).

Fig. 5(a) shows the increase in Ionx with ¢, on account
of better capacitance matching and higher internal voltage
amplification. But the standard deviation of the ON-current,
OIox Shows a non-monotonic behavior with increase in #y..
As Ion in NCFETs is significantly higher than the reference
bulk MOSFET, instead of comparing the absolute standard de-
viations, it is more insightful to compare the relative standard
deviation (o /p). It is clearly seen to improve with increased
tie

Quantile-quantile plots for these figures of merit which
corroborate these observations are shown in Fig. 6 for the
reference device and NCFETs with different ferroelectric
thicknesses. Threshold voltage, logarithm of the OFF-current,
and the ON-current distributions remain Gaussian in nature in
the NCFETs. Similar results were reported in a recent study
on geometrical process variations in negative capacitance based
FinFETs using a compact modeling approach [13].

IV. CONCLUSION

We have shown that the negative capacitance effect of the
ferroelectric in an NCFET can result in higher immunity to
statistical variability induced by random discrete dopants in the
transistor channel. In particular, NCFETs show reduced RDD
induced V; and Iopy variability with the immunity increasing
with increase in the ferroelectric thickness. For the ON-state
current, although the absolute variability is not a monotonic
function of the ferroelectric thickness, the variability relative to
the mean value is suppressed with increase in the ferroelectric
thickness.
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