181 research outputs found

    Multi-user detection for multi-rate DS/CDMA systems

    Get PDF
    Wireless cellular communication is witnessing a rapid growth in market, technology and range of services. Current and future demands for wireless communication services motivate the need for handling multi-media traffic types. In a multimedia communication system, users with different and even time-varying rates and quality of services (QoS) requirements, such as voice, image and data, must be accommodated. The use of Spread Spectrum modulation with Code Division Multiple Access (CDMA) technology is an attractive approach for economical spectrally efficient and high quality cellular and personal communication services. This dissertation explores the technologies of applying different interference cancellation techniques to multi-rate CDMA systems that serve users with different QoS. Multiple Access Interference (MAI) and multipath propagation are the major issues in wireless communication systems. It is also true for multi-rate CDMA systems. Multi-user detection has been shown to be effective in combating the near-far problem and providing superior performance over conventional detection method. In this dissertation, we combine both linear minimum mean squared error (LMMSE) detector, nonlinear decision feedback detector, with other signal processing techniques, such as array processing and multipath combining, to create effective near-far resistant detectors for multi-rate CDMA systems. Firstly, we propose MMSE receivers for synchronous multi-rate CDMA system and compare the performance with the corresponding multi-rate decorrelating detectors. The multi-rate decorrelating detector is optimally near-far resistant and easy to implement. The proposed linear MMSE multi-rate receiver can be adaptively implemented only with the knowledge of the desired user. Due to the fact that MMSE detector offers best trade-off between the MAI cancellation and noise variance enhancement, it is shown that multi-rate MMSE receiver can offer better performance than the multi-rate decorrelator when the interfering users\u27 Signal to Noise Ratio (SNR) is relatively low comparing to the desired user\u27s SNR. Secondly, the asynchronous multi-rate CDMA system, we propose multi-rate multi-shoot decorrelating detectors and multi-rate multi-shot MMSE detectors. The performance of multi-shot detectors can be improved monotonically with increasing the number of stacked bits, but a great computational complexity is going to be introduced in order to get better performance. A debiasing method is introduced to multi-rate multi-shot linear detectors. Debiasing method optimizes multi-rate detectors based on the multi-rate multi-shot model. Debiasing multi-shot MMSE detector for multi-rate signals can offer performance than the corresponding debiasing multi-shot decorrelating detector. Thirdly, we propose linear space-time receivers for multi-rate CDMA systems. The minimum mean-squared error criteria is used. We perform a comparative study on the multi-rate receiver which uses either multipath (temporal) processing or array (spatial) processing, and the one which uses both array and multipath (space-time) processing. The space-time receiver for the multi-rate CDMA signals give us the potential of improving the capacity of multi-rate systems. The space-time processing combined with multiuser detection have the advantages of combating multipath fading through temporal processing, reducing MAI through MMSE method and provide antenna or diversity gain through spatial processing and increasing the capacity of the multi-rate CDMA systems. Lastly, the group-wise interference cancellation methods are proposed for multi-rate CDMA signals. The non-linear decision feedback detection (DFD) schemes are used in the proposed receivers. The proposed interference cancellation schemes benefit from the nature of the unequal received amplitudes for multi-rate CDMA signals. Users with same data rate are grouped together. Users with the highest data-rate are detected first. Interference between the groups is cancelled in a successive order. The results show that the group-wise MMSE DFD yields better performance than multi-rate linear MMSE detector and multi-rate decorrelating detector, especially for highly loaded CDMA systems

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided

    Channel Estimation And Multiuser Detection In Asynchronous Satellite Communications

    Full text link
    In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a multiuser detector, a single stage successive interference cancellation (SIC) architecture is analyzed and integrated to the channel estimation technique and the whole system is evaluated. The satellite access method adopted is the direct sequence code division multiple access (DS CDMA) one. To evaluate the channel estimation and the detection technique, we have simulated a satellite uplink with an asynchronous multiuser access.Comment: 14 pages, 9 figure

    Channel estimation and signal enhancement for DS-CDMA systems

    Get PDF
    This dissertation focuses on topics of Bayesian-based multiuser detection, space-time (S-T) transceiver design, and S-T channel parameter estimation for direct-sequence code-division multiple-access (DS-CDMA) systems. Using the Bayesian framework, various linear and simplified nonlinear multiuser detectors are proposed, and their performances are analyzed. The simplified non-linear Bayesian solutions can bridge the performance gap between sub-optimal linear multiuser detectors and the optimum multiuser detector. To further improve the system capacity and performance, S-T transceiver design approaches with complexity constraint are investigated. Novel S-T receivers of low-complexity that jointly use the temporal code-signature and the spatial signature are proposed. Our solutions, which lead to generalized near-far resistant S-T RAKE receivers, achieve better interference suppression than the existing S-T RAKE receivers. From transmitter side, we also proposed a transmit diversity (TD) technique in combination with differential detection for the DS-CDMA systems. It is shown that the proposed S-T TD scheme in combination with minimum variance distortionless response transceiver (STTD+MVDR) is near-far resistant and outperforms the conventional STTD and matched filter based (STTD+MF) transceiver scheme. Obtaining channel state information (CSI) is instrumental to optimum S-T transceiver design in wireless systems. Another major focus of this dissertation is to estimate the S-T channel parameters. We proposed an asymptotic, joint maximum likelihood (ML) method of estimating multipath channel parameters for DS-CDMA systems. An iterative estimator is proposed to further simplify the computation. Analytical and simulation results show that the iterative estimation scheme is near-far resistant for both time delays and DOAs. And it reaches the corresponding CRBs after a few iterations

    Adaptive DS-CDMA multiuser detection for time variant frequency selective Rayleigh fading channel

    Get PDF
    The current digital wireless mobile system such as IS-95, which is based on direct sequence Code Division Multiple Access (DS-CDMA) technology, will not be able to meet the growing demands for multimedia service due to low information exchanging rate. Its capacity is also limited by multiple accessed interference (MAI) signals. This work focuses on the development of adaptive algorithms for multiuser detection (MUD) and interference suppression for wideband direct sequence code division multiple access (DS-CDMA) systems over time-variant frequency selective fading channels. In addition, channel acquisition and delay estimation techniques are developed to combat the uncertainty introduced by the wireless propagation channel. This work emphasizes fast and simple techniques that can meet practical needs for high data rate signal detection. Most existing literature is not suitable for the large delay spread in wideband systems due to high computational/ hardware complexity. A de-biasing decorrelator is developed whose computational complexity is greatly reduced without sacrificing performance. An adaptive bootstrap symbolbased signal separator is also proposed for a time-variant channel. These detectors achieve MUD for asynchronous, large delay spread, fading channels without training sequences. To achieve high data rate communication, a finite impulse response (FIR) filter based detector is presented for M-ary QAM modulated signals in a multipath Rayleigh fading channel. It is shown that the proposed detector provides a stable performance for QAM signal detection with unknown fading and phase shift. It is also shown that this detector can be easily extended to the reception of any M-ary quadrature modulated signal. A minimum variance decorrelating (MVD) receiver with adaptive channel estimator is presented in this dissertation. It provides comparable performance to a linear MMSE receiver even in a deep fading environment and can be implemented blindly. Using the MVD receiver as a building-block, an adaptive multistage parallel interference cancellation (PIC) scheme and a successive interference cancellation (SIC) scheme were developed. The total number of stages is kept at a minimum as a result of the accurate estimating of the interfering users at the earliest stages, which reduces the implementation complexity, as well as the processing delay. Jointly with the MVD receiver, a new transmit diversity (TD) scheme, called TD-MVD, is proposed. This scheme improves the performance without increasing the bandwidth. Unlike other TD techniques, this TDMVD scheme has the inherent advantage to overcome asynchronous multipath transmission. It brings flexibility in the design of TD antenna systems without restrict signal coordination among those multiple transmissions, and applicable for both existing and next generation of CDMA systems. A maximum likelihood based delay and channel estimation algorithm with reduced computational complexity is proposed. This algorithm uses a diagonal simplicity technique as well as the asymptotically uncorrelated property of the received signal in the frequency domain. In combination with oversampling, this scheme does not suffer from a singularity problem and the performance quickly approaches the Cramer-Rao lower bound (CRLB) while maintaining a computational complexity that is as low as the order of the signal dimension

    Chip and Signature Interleaving in DS CDMA Systems

    Get PDF
    Siirretty Doriast

    Phase-locked loop, delay-locked loop, and linear decorrelating detector for asynchronous multirate DS-CDMA system

    Get PDF
    The performance of phase synchronization and code tracking of a digital phase-locked loop (PLL) and delay-locked loop (DLL), respectively, is investigated in wideband asynchronous multirate DS-CDMA system. Dynamic Partial Correlation (DPC) method is proposed to evaluate the autocorrelation and its power spectrum density (PSD) of the cross-correlated terms in the presence of multirate multiple access interference (MMAI) under additive white gaussian noise (AWGN) and fading channel environments. The steady-state probability density function (PDF) and variance of the phase estimator error and code tracking jitter is evaluated by solving the first-order Fokker-Planck equation. Among many linear multiuser detectors which decouple the multiple access interference from each of the interfering users, one-shot window linear decorrelating detector (LDD) based on a one bit period to reduce the complexity of the LDD has attracted wide attention as an implementation scheme. Therefore, we propose Hybrid Selection Diversity/ Maximal Ratio Combining (Hybrid SD/MRC) one-shot window linear decorrelating detector (LDD) for asynchronous DS-CDMA systems. The selection diversity scheme at the input of the Hybrid SD/MRC LDD is based on choosing the branch with the maximum signal-to-noise ratio (SNR) of all filter outputs. The MR Combining scheme at the output of the Hybrid SD/MRC LDD adopts to maximize the output SNR and thus compensates for the enhanced output noise. The Hybrid SD/MRC one-shot LDD with PLL is introduced to track its phase error and to improve the demodulation performance. The probability density functions of the maximum SNR of the SD combiner, the near-far resistance (NFR) of one-shot LDD by Gaussian approximation, and the maximum SNR of the MR combiner for Hybrid SD/MRC LDD are evaluated, and the bit error probability is obtained from these pdfs. The performance of Hybrid SD/MRC one-shot LDD is assessed in a Rayleigh fading channel

    Packet data communications over coded CDMA with hybrid type-II ARQ

    Get PDF
    This dissertation presents in-depth investigation of turbo-coded CDNIA systems in packet data communication terminology. It is divided into three parts; (1) CDMA with hybrid FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random access environment and (3) an implementation issue on turbo decoding. As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated in deterministic environment. It highlights the practically achievable spectral efficiency of CDMA system with turbo codes and the effect of code rates on the performance of systems with MF and LMMSE receivers, respectively. For given ensemble distance spectra of punctured turbo codes, an improved union bound is used to evaluate the error probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end and, then, the corresponding spectral efficiency is computed as a function of system load. In the second part, a generalized analytical framework is first provided to analyze hybrid type-11 ARQ in random access environment. When applying hybrid type-11 ARQ, probability of packet success and packet length is generally different from attempt to attempt. Since the conventional analytical model, customarily employed for ALOHA system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded analytical model is introduced. It can be regarded as a network of queues and Jackson and Burke\u27s theorems can be applied to simplify the analysis. The second part is further divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-11 ARQ using packet combining and CDMA unslotted ALOHA with hybrid type-11 ARQ using code combining. For code combining, the rate compatible punctured turbo (RCPT) codes are examined. In the third part, noticing that the decoding delay is crucial to the fast ARQ, a parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo codes. It utilizes the forward and backward variables computed in the previous iteration to provide boundary distributions for each sub-block MAP decoder. It has at least two advantages over the existing parallel scheme; No performance degradation and No additional computation

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay
    corecore