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ABSTRACT

PACKET DATA COMMUNICATIONS OVER CODED CDMA
WITH HYBRID TYPE-II ARQ

by
Seokhyun Yoon

This dissertation presents in-depth investigation of turbo-coded CDMA systems in packet

data communication terminology. It is divided into three parts; (1) CDMA with hybrid

FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random

access environment and A3) an implementation issue on turbo decoding.

As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated

in deterministic environment. It highlights the practically achievable spectral efficiency

of CDMA system with turbo codes and the effect of code rates on the performance of

systems with MF and LMMSE receivers, respectively. For given ensemble distance

spectra of punctured turbo codes, an improved union bound is used to evaluate the error

probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end

and, then, the corresponding spectral efficiency is computed as a function of system load.

In the second part, a generalized analytical framework is first provided to analyze

hybrid type-II ARQ in random access environment. When applying hybrid type-EI ARQ,

probability of packet success and packet length is generally different from attempt to

attempt. Since the conventional analytical model, customarily employed for ALOHA

system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded

analytical model is introduced. It can be regarded as a network of queues and Jackson and

Burke's theorems can be applied to simplify the analysis. The second part is further

divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-II ARQ using

packet combining and CDMA unslotted ALOHA with hybrid type-II ARQ using code

combining. For code combining, the rate compatible punctured turbo (RCPT) codes are

examined.



In the third part, noticing that the decoding delay is crucial to the fast ARQ, a

parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo

codes. It utilizes the forward and backward variables computed in the previous iteration

to provide boundary distributions for each sub-block MAP decoder. It has at least two

advantages over the existing parallel scheme; No performance degradation and No

additional computation.
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CHAPTER 1

INTRODUCTION

With the successful application to second generation (2G) wireless telephony [11, CDMA

has been employed to most major standards of third generation (3G) wireless multiple

access system [2-61 and also become a strongest candidate for future wireless packet

communication system. While 2G wireless systems mainly carried voice streams, 3G

systems intend to multimedia plus data services [71. And now demand for data in

wireless/mobile environments, which requires more reliability while allows some

transmission delay, are growing fast. Although 3G wireless systems provide data service,

it is basically connection oriented to efficiently provide multimedia services, such as

voice and video. Dor data services, it is still inconvenient and inefficient since their

resource management and allocation are devoted to connection-oriented services. This

doubt raises some question regarding CDMA systems as a packet switched data

communication systems; i.e. how efficient are they for packet data transmission and what

can be done to improve the performance of CDMA systems. These questions motivate in-

depth reinvestigation of CDMA systems in terms of packet data communications

terminology.

1.1 System Overview and Performance Criterion

In this dissertation, a cellular CDMA system consisting of a single base station and a

number of active users is considered. In particular, the author focuses on the performance

of uplink transmission, where the users simultaneously send (but not necessarily

synchronized to each other) their data to the base-station over a common wireless

channel. The analytical approach provided in this dissertation, however, is not limited

only to cellular based CDMA system. It can also be applied to other wireless network

configurations, such as CDMA based packet radio and Ad hoc networks. Nevertheless,

1
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the performance analysis will be restricted to a traditional cellular CDMA system with

only one hop communication, as in 3G Wireless or in IEEE 701.11a.

Figure 1.1 shows a simplified uplink signal path of a coded CDMA system to be

analyzed in this dissertation. First, the information bits are encoded with outer error

detection code, of which the primary purpose is to detect errors in the receiver side and

request a copy if an error detected. Then, it again encoded with forward error correction

code, of which the code rate is much lower than that of outer error detection code. The

primary purpose of inner FEC code is to provide high coding gain so that the packet error

probability after FEC is low enough to obtain reasonable packet throughput. Finally, the

coded data packet is modulated with spreading sequences for simultaneous use of a

common channel. Attention will be paid on the system performance with various

configuration of hybrid FEC/ARQ in deterministic/random access environment.

FEC Coding

The reason that CDMA system was so successful for wireless/cellular systems is

the anti multipath fading capability of rake receiver and inherent immunity to interference

(soft collision) [7, 9]. Moreover, the latter allows cell design with frequency utilization
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factor of I, even though there would be capacity degradation to some extent due to inter-

cell interference. When applying to cellular packet radio network, CDMA can provide

uncoordinated channel access with relatively small delay [101 and seamless hand-over

when a terminal moves to a nearby cell. On the other hand, despite these advantages, it

still suffers from inter and intra cell interference, which are generally called multiple

access interference (MAI). When considering only single cell scenario, due to this MAI,

the net bandwidth utilization of CDMA based random multiple access system has shown

to be rather poorer than or, at best, similar to traditional ALOHA systems unless a strong

channel coding Aof low code rate) is used to suppress the harsh effect of the MAE from

other active terminals [11,121. This is why CDMA system heavily relies on channel

coding.

Since the first introduction of turbo code by Berrou et al. [13, 141, it has received

considerable attention and prompted many related researches, to the extent that it has

been accepted by most of the 3G standards as a coding option. Most major 3G wireless

standards [2-61 provide several coding options to support various quality and delay

demands. Some of typical configurations are convolutional codes, concatenated

convolutional-Reed Solomon codes and turbo codes. Dirst two options are suitable for

real time applications, such as voice or video, which need certain delay requirement.

While, the last option is more suitable for data communications since it shows very good

error performance even if the decoding delay can be much larger than the first two.

Hence, in this dissertation, only the turbo coding option will be considered.

Hybrid Type-II ARQ

A concern in data communication system is how to control the transmission errors

caused by the channel noise so that error free data can be delivered to the users. In

wireless communication systems, hybrid DEC/ARQ (Dorward Error Correction and

Automatic Repeat Request) schemes are usually considered to exploit both the high

coding gain of FEC codes and the rate flexibility of ARQ protocol [151. While a high rate
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error detection code is enough for proper operation of ARQ scheme, the primary purpose

of FEC code is to achieve high coding gain so that error probability after FEC is low

enough for the ARQ scheme to work properly.

The hybrid ARQ schemes are classified into two types; type-I and type-II [16]. In

type-I ARQ, the same copy of a packet, which is encoded with a fixed rate FEC coding,

is transmitted at each retransmission attempt. While, in type-II the previously received

packets are combined together in some way, to accomplish enhanced throughput

performance. Two well-known forms of hybrid type-II ARQ are packet combining and

code combining scheme [16]. In packet combining scheme, while the packet contents at

each attempt are the same as in pure or hybrid type-I ARQ, it effectively combines the

soft decision values of these noisy copies so that better probability of packet success can

be accomplished as it combines more of noisy copies. On the other hand, Code

combining scheme employs a type of incremental redundancy retransmission, which will

be described later in more detail. Generally speaking, hybrid type-II ARQ has different

probability of packet success and packet service time from attempt to attempt. In this

dissertation, the author investigates how much throughput improvement can be achieved

hybrid Type II ARQ in a CDMA based random access environment.

CDMA based ALOHA system

Although ALOHA is the simplest random multiple access schemes, it is

particularly interesting because CDMA slotted and unslotted ALOHA are the two

limiting case of the random access in WCDMA system. In WCDMA, the random access

is a type of slotted-offset ALOHA [17,17], where a packet can be transmitted at a

periodic time instances. When the time offset is equal to the packet duration, the system

resembles slotted ALOHA, while when the offset goes to zero, it corresponds to unslotted

ALOHA. Thus, the same procedure as will be described here can also be applied to the

analysis of those slotted offset ALOHA systems. Another reason of considering ALOHA

system in preference to carrier sense multi access (CSMA) is that ALOHA type random
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access is more practical for medium to large coverage area, where carrier sensing is

almost impractical especially when large amount of MAI exists. While for small

coverage area, which is the main target coverage for WLAN, CSMA is practically

feasible and is more attractive than ALOHA type random access scheme.

Performance Criterion: Throughput

A fundamental figure of merit of the packet data communication system would be

the throughput performance, while in connection oriented systems, such as circuit based

telephone system, the user capacity would be of primary interest. The system throughput

can be defined in various ways. In this dissertation, we will use two different types of

throughput, each of which is named as Spectral Efficiency and Normalized throughput.

As will be discussed later, however, these two are the same measure, even though they

are defined in different way. They differ only in that the former is for deterministic

environment while the latter for random access environment.

1.2 Dissertation Overview

The dissertation can be roughly divided into three parts as follows

1) CDMA with Hybrid FEC/ARQ in Deterministic environment (Ch.2)

2) CDMA with Hybrid FECIARQ in Random Access Environment (Ch.3 and 4)

3) An implementation issue on Turbo Decoding. ACh.5)

"Deterministic" stands for that the system load does NOT change during a packet

transmission time, including both the original and retransmission. This assumption,

though impractical, makes the analysis simple while gives insightful results on the system

performance. More practical cases for random access environment are then analyzed in

the second part using a Queuing Network Model. The second part is further divided into
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two sub topics, i.e. CDMA Slotted ALOHA with Hybrid type-I ARQ using Packet

Combining and CDMA Unslotted ALOHA with Hybrid type-I ARQ using Code

Combining. Dor code combining, the rate compatible punctured turbo (RCPT) codes are

examined.

In the third part, an implementation issue on low latency turbo decoding is

considered. Decoding latency may be one of the critical factors in ARQ protocol in the

sense that it can be a primary cause of large transmission delay, which in turn affects the

window size of Selective-Repeat ARQ. When turbo codes are used, it is especially the

case due to the computational complexity of the turbo decoding.



CHAPTER 2

CDMA WITH HYBRID FECIARQ IN DETERMINISTIC ENVIRONMENT

As a preliminary, the performance of CDMA with Hybrid FEC/ARQ is investigated in

deterministic environment. Especially, it highlights the practically achievable spectral

efficiency of CDMA system with turbo codes and multiuser detection, assuming the use

of hybrid type-I ARQ. The effect of code rates on the performance of systems is also

investigated with matched filter and linear MMSE receivers front-end, respectively. For

given ensemble distance spectra of punctured turbo codes, an improved union bound is

employed to evaluate the error probability of maximum likelihood turbo decoder and

compute the corresponding spectral efficiency as a function of system load.

2.1 System Description and Definitions

Consider a CDMA system consisting of a single base station and K active users who

simultaneously send (but not necessarily synchronized to each other) their data packets to

the base-station over a common wireless channel. The scenario is similar to the code

division packet scheduling [7] in WCDMA system. Each user is assigned a dedicated

channel, over which the packet stream is transmitted. With this scenario, the spectral

efficiency of uplink transmission is evaluated, assuming the number of users does not

change until the entire packet stream is successfully transmitted. Although practical

analysis will need a well-defined packet generation model, this scenario can give useful

insight into the packet transmission over the dedicated channels in 3G wireless systems

and provide a preliminary result for random access scenarios. The analysis for random

access environment, where the number of active users may change during a packet

period, will be provided in Chapter 3 and 4. A detailed description of

modulation/demodulation and encoding/decoding is in Figure 1.I.

7
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A fundamental figure of merit of the system with hybrid ARQ would be the

throughput. For simplicity and analytical compactness, the author considers an idealized

system in which packet overheads, transmission and decoding delay can be ignored.

Throughput degradation due to these factors can be minimized by use of well-designed

protocols, such as selective repeat ARQ. The objective here is rather to examine spectral

efficiency that can be achieved by given rate of punctured turbo codes in CDMA channel.

Dor the idealized ARQ scheme, the per-user throughput can be expressed as a function of

the packet length and the probability of packet failure. Let rinner,eff be the effective code

rate of the inner DEC code and router the code rate of the outer error detection code. Then,

the per-user throughput of CDMA system with hybrid DECIARQ can be expressed as

where M is the number of information bits that has been successfully transmitted without

errors and mauve isi the average number of total bits that actually transmitted, including

parities and retransmissions. Since router is usually close to one, the rate reduction due to

this factor can be ignored. m ay, can be related to the probability of packet failure, which

in turn depends on the system parameters, such as the number of users, processing gain,

effective number of multi-path and so on. Let PJJ ) be the probability of packet failure at
nth 	 n

n trial such that the probability of packet success after i transmissions is given by

Then, the average number of bits mauve that has to be transmitted to deliver M information

bits (without errors) can be expressed as
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where m(i  is the total number of bits transmitted up to itch trial and /(i) is the number of bits

transmitted at th  trial. Consider hybrid type-I ARQ scheme, in which a fixed rate (rinner)

DEC code is used and a copy of the packet is retransmitted if any error is detected. In this

where N is the processing gain and K the number of users in the system. Note that the

unit of the spectral efficiency is bits/chip, hence, assuming the bandwidth is roughly

equal to the chip rate, bits/chip equals to bits/Hz/sec.

Since in CDMA system Ii) depends on the number of active users, one can find

the spectral efficiency t as a function of the number of users in the system given the

processing gain N. In practical situation, the system load may change during the message

exchange in ARQ so that the SNIR at the output of a receiver may also change. However,

deferring the analysis for random access environment to Ch.3 and 4, we assume here for

analytical simplicity that the system load does not change until a packet is successfully

transmitted.
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2.2 Analytical Procedure

2.2.1 Decision Statistics with Random Spreading

There are two philosophies in CDMA system; Deterministic CDMA and Random CDMA

[191. Random CDMA uses long codes, of which the period is much larger than the bit

interval so that the local cross-correlation between any two spreading codes varies

randomly from symbol to symbol. Existing commercialized CDMA systems, such as IS-

95, are random-CDMA [I]. One of the reasons of using long codes is to avoid being

trapped in a bad situation in which some of active users have high correlation to each

other for a long time. In practice, such random interference can be regarded as Gaussian

noise, making it more suitable to use channel codes with appropriate interleaver than to

use multiuser detection technique [201. In fact, the communication quality of IS-95 relies

heavily on the coding gain to mitigate the effect of the interference, while it uses a simple

correlation Amatched filter) receiver, which does not have interference suppression

capability. On the other hand, deterministic-CDMA employs short codes of which the

period is the same as the bit interval. The primary purpose of using short codes is to

enable using multiuser detection with reasonable complexity [21-301. These multiuser

detectors utilize the cross-correlation between the spreading codes, to suppress the

multiple access interference. By employing short codes, one can use adaptive schemes

and/or pilot signals making multiuser detection implementable in less complex hardware.

Although a reasonable assumption requires long codes for conventional correlation

receivers and short codes for multiuser receivers, the use of latter does not necessarily

imply that the cross-correlation matrix is fixed and deterministic [31, 321. Even for

deterministic CDMA system, the cross-correlation has random nature due to the random

assignment of spreading codes, and/or the time variation of channel delay, where one

chip delay of a spreading sequence can make the cross-correlation structure quite

different. Taking the randomness into account, we will perform our analysis based on the

random spreading assumption, regardless whether it results from the use of long code or
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from the random assignment of spreading codes or from the random variation of time

delays.

With this random spreading assumption, three cases are considered; matched filter

receiver in AWGN channel, matched filter receiver — rake combining in L-path Rayleigh

fading channel and MMSE receiver in AWGN channel.

Matched Filter Receiver in AWGN Channel: Consider BPSK modulated,

asynchronous CDMA system with K active users. Usually, for the analysis of matched

filter receiver with random spreading, the standard Gaussian approximation (SGA) [33,

341 is used for simplicity. Here the interference power is obtained by averaging the

conditional variance over the time delays and the carrier phase shift. When applying this

SGA to perfectly power-controlled CDMA signals in AWGN, the SN1R of a matched

filter receiver is given by

where # is the signal to background noise ratio for each user and N is the processing gain.

One may employ improved Gaussian approximation in [351 for more accurate results, but

SGA gives quite accurate results, especially for heavily loaded system, which is our main

concern.

Matched Filter/Rake Combiner in Fading Channel: For L-path Rayleigh fading

channel, a maximal ratio combiner (MRC) is used with L matched filter receivers (finger)

each for a path. Assuming every user have the same number of paths, L, each of which

has identical Rayleigh distribution with the same average power, the pdf of the SNIR at

the output of a rake finger, NIF,Fading, can be expressed as; (See Appendix A)
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Let y denote the SIR at the output of 1 th rake finger, then the PDF of MRC output SNIR

can be expressed as an L-fold convolution of the PDD of rake finger output SN1R, 17  (y),

i.e.

Linear MMSE Receiver in AWGN Channel: The SN1R of MMSE receiver is not as

simple to analyze as that of matched filter receiver. In [311, an approximate PDD of the

output SNER of linear MMSE receiver has been derived. Unfortunately, this

approximation is valid only when the system load is less than half the processing gain.

On the other hand, asymptotic average SANER of MMSE receiver has been derived in [36-

371, showing its convergence to a deterministic limit as the number of users and the

processing gain go to infinity while their ratio remains fixed. Since asynchronous CDMA

is being considered here, the author employs the results of [391, which is an extension of

[371 to asynchronous CDMA. The following theorem is the essence of the results in [391.

<Theorem 4.2> In a symbol aAynchronous (but chip AynchronouA) CDMA AyAtem, if the

relative delay distribution Get) AatiAfieA the condition

obAervation window is an odd integer T ?_ 1, Aymmetric about the Aymbol to be

demodulated, then the asymptotic SNIR, of linear MMSE receiver is lower bounded by

MMSE, which iA the unique Aolution of the equation
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where 02 is the noise power and P 1 is the signal power of the first user (desired user). As

stated in [391, for complete asynchronous system, the interference power P from a user is

replaced with P13, taking into account the chip and phase asynchronim, which reduces

the effective interference power by a factor of I/3. Assuming uniform time and phase

delay distribution, perfect power control and complete asynchronous system, the equation

(2.9) reduces to

Moreover, when the observation window goes to infinity, one can obtain a closed form

solution of the above equation, given by

for asynchronous system and 1 for synchronous system. (2.10) will be

used to evaluate the throughput performance and spectral efficiency of the system with

linear MMSE receiver, especially for heavily loaded system.
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2.2.2 Theoretical System Capacity

Once the output SNIR is given, the theoretical capacity limit can be easily computed. In

[361, such capacity limit has been found for unconstrained signal constellation. However,

in this dissertation the signal constellation is restricted to BPSK only. Hence, assuming

the noise plus interference at the output of a demodulator is Gaussian, the theoretical

capacity limit can be computed as

where the mutual information of binary-input continuous-output channel Cmco(7) is

given by [411

2.2.3 Turbo Code Performance and Improved Union Bound

Compared to convolutional codes [411, turbo codes perform very well even at low SNR

region [13, 141. They show the so called 'turbo cliff' near the Shannon limit provided the

codeword length is large enough. The better performance of turbo code results from the

combination of the recursive systematic encoding and its parallel concatenation with

appropriate interleavers. For a low weight input sequence, the parity weight of non-
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recursive convolutional code does not change much as the position of ones changes. That

is, for example, with a weight one input sequence, wherever the one is located, non-

recursive systematic encoder produces the same parity weight. On the other hand,

recursive convolutional encoder can generate for low weight input sequences (say weight

1 or 1) parity sequences with quite large weight, which may differ according the position

of ones in the input information sequence. In addition to this property, parallel

concatenation provides a type of transmit diversity. That is, when one of the parity

sequences has low weight, the other, which is produced by a pennutated version of the

same input sequence, may have large weight making overall weight of the codeword

large in probability. These two features make the turbo code work well, especially at low

SNR region.

Since the exact analysis is very difficult, the error performance of a code is, in

general, evaluated numerically via union bound, which is based on the pair-wise error

probability [I]. Let C be a binary linear block code of length N and ICI be the alphabet

size of C. Let xi,[xio, xm_01 be the thecodeword inCandy=[yo,yN-111be the

noise observation. Assuming that xo, which is conventionally taken to be the all zero

sequence, is transmitted and EoAx j) be the event that the received noisy observation is

decided to xi in favor of xo. The union bound on the codeword error probability can be

expressed as

The evaluation of the pair-wise error event Pr{ Eo(xj) } in (2.13) is trivial, and so is its

right hand side, if the distance spectrum of the code is given. Unfortunately, even though

this shows good matches in turbo codes at medium to high SNR region, it leads to

computational cutoff in error performance well above the actual cutoff in low SNR

region.
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Many papers have recently dealt with improved union bounds [43-471, most of

which are based on the Gallager's bounding technique in [481 or in [491, and obtained

tighter results than the conventional union bounds. Particularly, these bounds predict the

turbo cliff quite precisely for low rate turbo codes. Therefore, in this paper, we use one of

the improved union bound described in [471 to evaluate the probability of packet failure.

In the following, we will briefly overview this improved union bound and extend it to the

case of fading channel.

Note that most of the improved union bounds recently re-investigated employ

partitioning A into a set of sub-code Ad whose codeword have Hamming weight d.

Assuming xo has been sent, let EoAAd) be the event that the received noisy observation y

is decided as xi in Ad instead of Bo. A tighter union bound on the error probability of ML

decoder can be obtained using

Since the evaluation of Pr{Eo(Ad)} is not as easy as that of the pair-wise error probability,

it is suggested to employ a bounding technique. In this dissertation, the author employs

the technique devised by Gallager in [471, which will be described in the sequel.

Let DAy,xi) be the metric value of the noisy codeword y for the codeword x i. Then,

for any arbitrary real number t, we get an upper bound on Pr{ EoAAd) } as
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which is in fact equivalent to weighted Euclidian distance for Gaussian noise channel.

The function vi(y) will be chosen such that the bound in (2.15) becomes as tight as

Substituting (2.17.a) and (2.17.b) into (2.15.c) and minimizing with respect to t, then,

after certain manipulation, one can obtain
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used. The tightest bound of (2.19) is obtained by minimizing with respect to A, A, w and

way). Resorting to calculus of variation, one can obtain (See Appendix B.2) the optimal

Ay), which minimize (2.19) for given A, A and w of the form,

Since the constant, k, is cancelled out in (2.20), we set k = 1 for convenience. It is also

shown in Appendix C that, with the expression of v(y) of (2.22),

which leads to the fact that the constant a can be determined by solving

identically distributed with the PDF, MO. Assume the perfect knowledge about g at the

receiver so that the detection algorithm can utilize it. Usually, p(y,gixi) is evaluted,



And, as before, the following notations make the expression more compact

Using the Chernoff bound on each term in (2.15.c) with (2.25) and (2.26), one can obtain

the same bound as those in (2.17.a) and (2.17.b), except that, now, with

The rest of the derivation is exactly the same and the improved union bound for fading

environment is expressed in the same form as those in A2.19), A2.20) and A2.21), but with

gAr) and hAr,w) given by (2.27.a) and A2.27.b), respectively. The function yiAy,g) which

minimize the bound is given by
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2.2.4 Distance Spectrum

From (2.19) together with (2.20) and (2.21), the problem of finding the upper bound is

reduced to finding the distance spectrum Kd of a turbo code. Dor convolutional codes,

computing the distance spectrum is well defined in the sense that it gives exact number of

codeword that have a given Hamming weight. Dor turbo codes, in which several

constituent codes are concatenated with interleavers, the situation is not as simple as with

convolutional codes. As described in [50,511, for a specific interleaver, a state path of a

turbo code is defined in hyper trellis, which represents all the combinations of the trellis

paths for each constituent convolutional code. For large block sized code, the number of

the combination is innumerable, making the whole search in the hyper trellis impossible.

Dor computational simplicity, the notion of the uniform interleaver, which is a conceptual

interleaver that averages all the possible permutations, has been introduced in [501.

Although it does not give the exact weight enumerating function for a specific

interleaver, it does give at least the averaged weight enumerating function over all

possible interleavers. In this dissertation, the same approach as in [501 is used to find the

ensemble distance spectrum of turbo codes and also [521 and [53.Ch.611 to compute the

weight enumerating function of the constituent convolutional codes.

2.3 Numerical Results

In this section, some numerical results on the throughput performance of CDMA system

with idealized hybrid type-I ARQ scheme using punctured turbo codes are shown for

both the AWGN and multipath fading channels.
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2.3.1 Punctured Turbo Codes

The punctured turbo codes to be used are derived from a 1/3-rate mother turbo code of

input block length 511, which consists of two identical 16-state recursive systematic

convolutional code with generator polynomial (1, 13/35). Surely, the code performance

depends on the puncturing pattern and its period as presented in [53], where some

optimal puncturing patterns were provided. However, according to the procedures

described in [53.Ch.6], since the multiplication of state transition matrix is permutative

the puncturing pattern itself is not required in the ensemble distance spectrum

computation of the punctured turbo codes, as it depends only on the puncturing rate. In

this work, puncturing period of 7 is used to obtain a set of punctured code of rate 4/5, 2/3,

4/7, 1/2, 4/9, 2/5, 4/11, and I/3, without considering their specific puncturing patterns.

Figure 1.1 shows the distance spectrum of the set of punctured turbo codes and

Table.1 shows some detailed values for first 10 Hamming weights. These values have

been used for the computation of the codeword error probability, which is equivalent to

the probability of packet failure.

2.3.2 Spectral Efficiency of Turbo Coded CDMA

Consider hybrid type-I ARQ scheme with a fixed rate turbo code, where a copy of the

original packet is retransmitted if error occurred. For matched filter receiver, Figure 1.1

and 3 shows the codeword error probability and the corresponding throughput,

respectively, in AWGN channel separately for all the puncture turbo codes of rate 4/5,

1/3, 4/7, 1/2, 4/9, 1/5, 4/11 and I/3. Perfect power control and BPSK modulation were

assumed and the signal to background noise ratio, Es/No, was set to 10 dB for all the

users in the system. For comparison, the theoretical bound that is defined in (2.11) was

also plotted. In Figure 2.3, the throughput reduction caused by outer error detection code

was ignored, so that the nominal throughput is equal to the code rate of inner FEC code.
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The spectral efficiencies are plotted in Figure 2.4 and 2.5 for both AWGN channel

and a 4-path, equal average power, Rayleigh fading channel, respectively. For a given

rate of punctured turbo code, the spectral efficiency increases almost linearly with the

system load, but the system breaks down at a certain point, where the turbo code does not

support the SNIR. From these figures, one can find the system capacity (the maximum

number of users that can be supported by given rate of punctured turbo codes) and the

corresponding spectral efficiencies that can be maximally achieved. Figure 2.6 depicts

the achievable spectral efficiencies versus the code rate. Apparently, with matched filter

receiver, the CDMA system is useless without channel coding. When employing channel

coding, one can obtain higher spectral efficiency with lower rate code. For given rate of

turbo codes, it is desirable to keep the nominal operating point fixed such that one can

obtain as high spectral efficiency as possible without system break down.

Next, the performance improvement that can be obtained by the use of linear

MMSE multiuser receiver is evaluated. Using the same coding options, the spectral

efficiency is compared with that of matched filter receiver. The overall computation

procedure is the same as that for matched filter receiver, except that for the SNIR (2.10)

is used instead of (2.6). Figure 1.7 depicts the spectral efficiency with the linear MMSE

receiver for the coded CDMA system with Hybrid type-I ARQ and Figure 2.7 shows the

achievable spectral efficiency as a function of code rate with and without linear MMSE

receiver. Note that the former saturates at a code rate around 4/5. This means that the

linear MMSE receiver achieves maximum spectral efficiency with moderate channel

coding, while the spectral efficiency of matched filter receiver depends heavily on

channel coding. As mentioned in [10] and other literature, however, theoretically the

performance of MMSE converge to that of matched filter receiver as the system load

goes infinity. Accordingly, it is expected that the performance difference between

matched filter and linear MMSE receiver will be smaller, if one employs a lower rate

mother code for matched filter receiver, and a well-designed channel codes can be an

alternative to linear multiuser receivers when comparing hardware complexity.
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2.4 Chapter Summary

Apparently, due to the multiple access interferences, CDMA system with only matched

filter receiver is useless without coding. As shown numerically, when using lower rate

turbo codes than 1/3, one can obtain more spectral efficiency than I.I bits/Hz/sec. On the

other hand, by employing multiuser detection, the spectral efficiency could be even

higher than I.6 bits/Hz/sec. Multiuser detections can improve the system capacity for

given rate of coding options, but the efficiency can also be improved with lower rate

channel coding, even without multiuser detection. As the number of users K-) co, the

spectral efficiency of MMSE receiver converges to that of the conventional matched filter

receiver. Hence we may consider lower rate turbo coding in favor of multiuser detection

if the latter requires more complicated hardware than that needed for implementing lower

rate channel coding/decoding. Although the improved union bound still shows gap
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between the actual cutoff and the computational cutoff, especially for high rate punctured

codes, the results in this work can give useful insights into the network level protocol

design in CDMA based random access systems.



CHAPTER 3

QUEUING NETWORK MODELS AND THEIR APPLICATION TO THE

ANALYSIS OF CDMA SLOTTED ALOHA WITH PACKET COMBINING

In this chapter, to analyze hybrid type-I1 ARQ in random access environment, a

generalized analytical framework is introduced. When applying hybrid type-II ARQ,

probability of packet success and packet length is generally different from attempt to

attempt. Since the conventional analytical model, customarily employed for ALOHA

system with pure or hybrid type-I ARQ, cannot be applied for this case, we introduce an

expanded analytical model, which can be regarded as a network of queues, and apply

Jackson and Burke's theorems to simplify the analysis. Then, the analytical model is

applied to a simple example, a CDMA slotted ALOHA with packet combining. The

effectiveness of the model is verified by comparing with some simulation results. The

results show that the packet combining hybrid type-II ARQ automatically adjusts the

spreading factor according to the traffic situation.

3.1 CDMA Slotted ALOHA with Packet Combining

Throughout the last decades, many papers have dealt with the subject of CDMA based

ALOHA system, either slotted [54, 11, 121 or unslotted [55-571, as a candidate for packet

radio network [591. Most of these papers, however, implicitly assumed pure or hybrid

type-I ARQ, for which a single queue model with feedback has generally been used.

Unlike pure or hybrid type-I ARQ, hybrid type-II scheme combines the recent

retransmission with the previously received signals to accomplish enhanced channel

utilization. Packet combining and code combining are the two well-known forms of

hybrid type-I1 ARQ. When applying hybrid type-II ARQ to ALOHA system, the

probability of packet success and packet length is generally assumed to be different from

attempt to attempt, making the analysis complicated and conventional single queue model

29
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not applicable. Recently, some efforts have been made to analyze CDMA based ALOHA

system with hybrid type-I1 ARQ. In particular, CDMA slotted ALOHA with packet

combining has been analyzed in [601, [611 and [621.

In this work, an expanded analytical model is introduced as a general analytical

framework for CDMA based random access system with hybrid type-H ARQ. It shows a

graphical description of equilibrium traffic flow for ALOHA system with hybrid type-IL

ARQ. As discussed in detail later, the model can be regarded as a network of queue so

that Jackson and Burke's theorem [631 can be applied to simplify the analysis. Then, as a

simple example, the expanded model is applied to CDMA slotted ALOHA system with

packet combining. The effectiveness of the queuing network model is verifed by

comparing to simulation results. As will be discussed later, the queuing network model

approach provides a unified methodology for analyzing CDMA based ALOHA with

hybrid type-II ARQ in various scenarios and the work in [621 is a special example of our

generalized framework for CDMA slotted ALOHA with packet combining.

It is also shown that the hybrid type-IL ARQ with maximal ratio packet combining

can be regarded as a decentralized automatic spreading factor adaptation, where the

spreading factor automatically adjusted according to the traffic and/or the channel status.

It is comparable to the hybrid type-IL ARQ with code combining, which is an automatic

code rate adjustment employing incremental parity retransmission.

3.1.1 System Operation

The system consists of a single base station and many nodes, each tries to access the base

station receiver with some probability at a predefined periodic time offset. Throughout

this chapter, the following assumptions are held.

1) The new message arrival is modeled as Poisson process with an arrival rate 2./ and

every message has fixed, L, bits of source information.
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2) When a message is arrived at a terminal, it is encoded first by a cyclic redundancy

check (CRC) code and then by a forward error correction code of rate r. The rate

reduction caused by the outer CRC code will be ignored.

3) To share a common channel, each packet is spread with a sequence from a set of

predefined spreading codes. Assuming the number of predefined spreading codes is

very large, the probability that two or more users choose the same spreading code is

not counted.

4) AWGN channel with perfect power control.

5) Newly received packet is maximal ratio combined with the previously received

packets. Then, the signal to noise plus interference ratio (SNIR) of the combined

signal up to ith attempt, ii) , is expressed as

where 7; and Kid are SN1R and the number of interfering users (not including the

desired user) at the jth attempt, respectively, and N is the spreading factor and /3 the

signal to background noise ratio.

6) When any error occurred, a terminal waits for random time (random number of slots)

before retransmission.

3.2 Analytical Framework

As mentioned before, when applying hybrid type-IL ARQ to ALOHA system, the

probability of packet success and packet length is generally assumed to be different from

attempt to attempt. In such case, one can group terminals into multiple classes according

to their transmission attempts (1 st, 2nd , . . . ,itch ,..) whose average packet success probability

and packet length are the same, respectively. Then, considering the traffic dependency

between these groups, one can construct a queuing network model to analyze the steady-
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state system behavior. This section presents the queuing network models and a simplified

analytical methodology for them.

Figure 3.1(a) shows a conventional analytical model for ALOHA system. B o

denotes arrival rate of new packets and B r  that of retransmissions. psi is the average

probability that a packet is successfully received. Usually, the composite arrival Br = Boa +

Br is modeled as Poisson process [55]. The model in Figure 3.1(a) implicitly assumes the

use of pure or hybrid type-I ARQ, where an exact copy of an original packet is

retransmitted if any error is detected at the receiver and the retransmitted copy is decoded

as a new one, independently of the previously received packet. This means that the packet

length at each attempt, regardless whether it is retransmission or original one, has the

same length, Bp = L. Bhp, where 1,„ is the number of bits contained in a packet and Bb the

time duration of a bit. Therefore, the average packet service time (packet length) is also

Bp and the composite offered traffic is simply given by GT =- (B0+21,0•Bp. (Note that fixed

packet length system is being condidered.) Moreover, since the original and the

retransmitted packets are identical and decoded independently of the others, the average

probabilities of packet success at each attempt is the same at every attempts, as well. In

this case, the steady state analysis (equilibrium analysis) is simple.

3.2.1 Expanded Analytical Model — Network of Queues

When hybrid type-II ARQ scheme is used, both the packet length and the probability of

packet success may be different from attempt to attempt and the model in Figure 3.1(a)

cannot be applied to this case. Tnstead, Figure 3.1(b) shows an expanded model, which

takes this situation into account. In the figure, B ib denote the arrival rate of the packets in

the itchattempt, Althe arrival rate of newly arriving packets,psiexplicitly denotes the

probability of packet success. This model can be regarded as a series of network links or

a series of queues, where packets are coming into the network through the first node and

going out at different nodes. Some of the incoming packets can be routed to go out right
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away if no error is detected and some routed to the next node if there is any error in the

packet. The random event whether a packet is erroneous or not, decides which route a

packet passed through. In this system, the random event is governed by the composite

arrival rate AT and the average departure rate g of the system. With this resemblance to

the queuing network in mind, Burke's theorem [631 can be applied to safely model each

of the arrivals at a node as a Poisson process. Moreover, by applying Jackson's theorem

[631 with the help of the random delay assumption, each node can also be regarded as an

independent queue so that one can easily obtain a set of equations, with which the

throughput of the system can be uniquely determined.
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In Figure 3.I(b), the model implicitly assumes infinite retransmission for erroneous

packet. More realistically, however, the base station receiver would reset the erroneous

transmission when the number of retransmissions exceeds a certain number, saying M

That is, the reset transmission will try again as new message (with systematic bits only).

Tn Figure 3.1(c), a more general analytical model is shown with finite number of

retransmissions. This case will be investigated in Chapter 4 for a more complicated

example; CDMA unslotted ALOHA with code combining.

3.2.2 Equilibrium Analysis

Now, the author briefly discusses on the equilibrium analysis (mean value analysis [63]),

which assumes that p s(i) 's are given. At equilibrium, the conventional model in Figure

3.I(a) gives

and since the inflow rate and the outflow rate should be the same at equilibrium, it also

gives for the outflow rate

Note that the throughput is a percentage of the offered traffic that has been successfully

transmitted. It can be expressed as a product of the average rate of successful packets and

the information contents of the successful transmission measured in time. For an inner

FEC code of rate r, the throughput is defined by
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The average probability of packet success, Bs , can be expressed as

where B ps(k) is the conditional probability of packet success given that the number of

interfering users is k and mk the probability mass function of the number of interfering

users. Since the composite arrival is modeled as Poisson process of rate (.1. 0+2,), mks is

given by Poisson density function defined as

This result is comparable to that of Raychaudhuri [541, where the throughput is given by

Comparing (3.4) with (3.5), the result from equilibrium analysis replaces the variable k

with its mean value, GT. These two are appeared to perfectly match when the offered

traffic is less than a point after which the throughput decreases with offered traffic.

Beyond that point, they show slightly difference in throughput. However, even in this

region, they match well if the processing gain N is large enough (i.e. greater than 64).
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3.3 Analysis of CDMA slotted ALOHA with Packet Combining

Using the model in Figure 3.I(b), the CDMA slotted ALOHA with packet combining

described in Section 3.1 is now analyzed. As mentioned before, with the random time

delay assumption (6), the analysis is simplified by applying Jackson's and Burke's

theorem [63], to treat each node as an independent queue with independent Poisson

arrival. For fixed message length traffic, each node in Figure 3.1 acts like MIDI.. queue.

Denoting the time span of a packet as Tp , the composite offered traffic is given by

Substituting (3.7) into (3.6) and arranging terms, we obtain

for given GT. Once X1 is found, the throughput and the average number of transmissions

required are easy to find.

Since the total inflow to the queuing network and the total outflow should be the

same at equilibrium, the sum of outflow rate ES2i should be equal to X1. Therefore, the

throughput S is given by
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where r is the code rate of inner FEC code. Note that by setting psi) = p(constant) for all i

in Figure 3.1(b) one can obtain the same equation as that of (3.4). Knowing ps(i for i =

2,3,..., and with (3.7) and (3.7), the average number of transmissions needed, NIX,

(including the original one) is given by

3.3.1 Packet Success Probability

Now, the problem is reduced to finding p ski)' 5. In CDMA system, the probability of error

can be expressed as a function of the number of active interfering users. In random access

environment, it fluctuates with time or from slot to slot, where in most practical situation

these fluctuations can be modeled as Markov process. This means that we need to solve

multi dimensional Markov chain model to obtain p ski) 's. Fortunately, a simple solution

can be obtained with fixed message length and random time delay assumptions. Note the

following observations.

1) With the assumption (6), one can treat each traffic flow k i as independent Poisson

process.

2) Since the SIR in (3.1) is governed by the total traffic of the average rate kI, it is not

needed to handle each node separately to evaluate SIR fluctuation, so that only one

Markov chain model is required.

3) With the fixed packet length and random time delay assumption, the number of active

terminals at each time slot is independent (or at least uncorrelated) to each other.

These three observations lead to the fact that Kg 's in (3.I) are independent and identically

distributed random variables with Poisson distribution, mk, given by
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K — mk = FAG  Fmk exp(-GT ) 	 (3.11)

where k! was replaced with the gamma function r(k+1) defined as rya) = ta-l e -tdt

For the system with packet combining described by (3.I), by treating k as a continuous

variable one can obtain the average probability of packet success as

s(I E	 P wetJ =I [S -1 K "N] -l ))

=1 -1 i,,e (v)n fv (v Tv

where the random variable V is defined as

V -=Z[ + K1 /3N] a1j=1

whose PDF is i-fold convolution of the PDD of [,6 1 -1-2Kpiv] -1 given by

1.5 -C2
f (v) = 

rA1.5(v -1 - /1 -1 ) +I) exp(-G
T )

(3.12)

(3.13)

Bwe•) is the word error probability. Without packet combining, Bs(i = ps(const) given by

ph) = E KO- ii,([131 + K 131■11-1))

=I-E k _0 B w,([ 10 1 +k/3N1 a1 )-mk
(3.14)

1 /2 LFor uncoded system, Bw,(7 = fl-Q(y L°, while, for coded system, one can use the

results in Chapter 2 (Figure 2.2).
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3.4 Numerical Results

For uncoded system, Figure 3.2 shows the normalized throughput (SIN) versus

normalized offered traffic (GT/N) of CDMA slotted ALOHA with and without packet

combining and of conventional slotted ALOHA without spreading. To verify the

effectiveness of the proposed approach, the simulation results are also plotted for CDMA

slotted ALOHA with packet combining, for which the spreading factor N was set to 16,

the number of terminals in the system M to 117, packet length L0 = 156 and Es/No to 10

dB. First, the probability of original packet generation, p0, and that of retransmission, pr,

were set equally to GRIM = (GTII N).(NI M) (diamond marks) for each terminal. Then, in

another simulation, pr was changed to 1 (* marks), meaning immediate retransmission

when error occurred, while p„ remained the same. The result shows that for packet

combining CDMA slotted ALOHA the proposed analytical approach is valid even with

immediate retransmission. Figure 3.3 shows the same plot, but now with FEC coding. A

set of punctured turbo codes defined in the previous chapter of rate 4/5, 2/3, i/2 and 1/3

were used. Figure 3.4 shows limiting throughput performance when offered traffic gets

large and Figure 3.5 compares the system performance with different signal to

background noise ratio, Es/No, of 10 dB and 10 dB, respectively.

Packet Combining ARQ as an Automatic Spreading Factor Adaptation

Without packet combining, it should be noted [55] that immediate retransmission leads to

instability causing, as offered traffic increases, sharper dropdown in throughput than

retransmission with random delay. With packet combining, however, there is no

dropdown in throughput, even with immediate retransmission making the system always

stable. The reason is that; packet combining scheme can be regarded as automatic

spreading factor adaptation such that combining n signals is equivalent to the effective

spreading factor of n times the nominal spreading factor N. Hence, as offered traffic
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increases, the probability of packet success decreases causing each terminal to require

more retransmissions on the average, which result in increased effective spreading factor

to fit the current traffic situation. Therefore, with packet combining the throughput is

retained for wide range of offered traffic. Note however that an increased spreading

factor results in n time larger delay since per terminal data rate reduces by 1/n. This

argument is clearer in Figure 3.6. When offered traffic load is small enough, the system

throughput increases linearly with a slope of 1/3, which is the rate of FEC codes.

However, once the offered traffic gets larger than a certain point most of the packets will

be unsuccessful at first attempt, since the offered traffic can not be supported. Now, most

of the backlogged terminal will try again (the second attempt) and make the effective

spreading factor of 2, which in turn makes the effective rate reduced to 1/6. This effective

rate reduction will continue until the system settles down to a stable point.
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Packet Delay Consideration

Figure 3.7 depicts the average number of transmissions versus offered traffic curves for

uncoded system and compares it with simulation results. Figure 3.7 plots the same

curves, but now with FEC coding. With Figure 3.7, one can obtain the actual average

delay as the product of the average number of transmissions, the average retransmission

delay and N1r, which is the nominal rate reduction of coded CDMA system; i.e.

where Td is the average time delay between successive attempts. Apparently, due to the

large rate reduction of 1/N, CDMA system might have much larger delay than

conventional slotted ALOHA and in some cases the delay is not acceptable for the

service requirements. In this case, one may be required to use multiple codes (multiple

channels) to meet the data rate requirement.

3.5 Chapter Summary

As a generalized analytical framework for CDMA ALOHA with hybrid type-II ARQ, the

expanded queuing network model was introduced and applied to a CDMA slotted

ALOHA system with packet combining. The effectiveness of the model was verified by

comparing with some simulation results. Comparing to the code combining ARQ

scheme, which provides a natural mean of code rate adaptation, the hybrid type-II ARQ

with packet combining can be regarded as a decentralized spreading factor adaptation.

Packet combining itself, however, does not increase the system throughput (or the

spectral efficiency) of the system. What improves the limiting performance of the CDMA

based ALOHA system is well-designed FEC code. While this paper focuses only on fixed

packet length traffic, further study can be extended to variable length traffic.
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CHAPTER 4

CDMA UNSLOTTED ALOHA WITH HYBRID TYPE II ARQ USING RATE

COMPATIBLE PUNCTURED TURBO CODES

As a sequel of the previous chapter, we apply the expanded analytical model to a more

general case; CDMA unslotted ALOHA with Hybrid Type-IL ARQ that uses rate

compatible punctured turbo codes. As mentioned before, CDMA unslotted ALOHA is

especially interesting because its operation is quite similar to that of the random access

channel in WCDMA standards. When using code combining, soft-decision decoding is

usually considered, in which case it is very difficult to find the actual probability of

packet success, especially when the number of terminals changes during a packet time

duration. Hence, instead of finding the actual probability of packet success, a lower and

an upper bound are evaluated. Then, together with the expanded model and the packet

success probability bound, the corresponding throughput bounds are obtained by

iteratively searching the steady-state arrival rate, A., and the average departure rate, it, for

given composite offered traffic, G = Al du.

4.1 Hybrid Type II ARQ using RCPT Codes - SYSTEM DESCRIPTION

Since the first introduction of turbo code by Berrou et al. [13, 141, its application to

hybrid ARQ schemes using rate compatible punctured turbo (RCPT) code [64-71] has

been investigated in many papers to improve throughput performance of communication

systems. Originally, the rate compatible punctured code was first introduced by

Hagenauer in [721 using convolutional codes and subsequently studied in [73,74]. The

scheme employs the notion of incremental redundancy retransmission, which is inherent

in punctured convolutional codes. In rate compatible punctured turbo (RCPT) code, the

convolutional codes in rate compatible punctured convolutional (RCPC) codes are

replaced with the turbo codes. In particular, rate compatible codes are useful when the
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channel state and/or the traffic change with time, and where fixed rate FEC can be

inefficient. This motivates the application of RCPT code to random access systems, such

as ALOHA system, where the number of active terminal varies with time according to

the random arrival of messages. In such a system, by employing incremental redundancy

retransmission we can expect to some extent improvement in throughput.

In the Rate Compatible Punctured Convolutional/Turbo Codes, a low rate 1/n code

is punctured periodically with period P to obtain a family of codes of rate Pl(P+1) with /

corresponds to the uncoded frame). This

type of code can be used for incremental redundancy transmission.

Figure 4.1 Operation of Hybrid type-IT ARQ using Rate Compatible Punctured Codes.

This idea of using rate compatible punctured code for incremental transmission of

redundancies is depicted in Figure 4.1. At a terminal node, when a message is arrived,

turbo encoder encodes the message and generates a codeword of rate 1/n. At first attempt,
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however, it sends only a part of them as a punctured codeword. The rest of the parities

are stored in memory for further use. At base station receiver, a turbo decoder is used to

recover the information bits only with the (punctured) partial codeword. If any error is

detected, then the receiver requests the terminal node to send more parity bits. After

receiving the parity bits, the base station receiver combines them with the previous

(punctured) codeword and decodes the combined codeword as a lower rate punctured

code. If there is no error, it sends an ACK message and the terminal node discards the

stored parities.

4.1.1 System Operation

The packet radio system we are dealing with consists of a single base station and many

terminal nodes, each of which tries to access the base station receiver with some

probability. Throughout this chapter, the following assumptions are held.

1) The new message arrival is modeled as Poisson process with an arrival rate X and

every message has source information of the same length of L, bits.

2) When a message is arrived at a terminal, it is first encoded by a cyclic redundancy

check (CRC) code for error detection and then by a forward error correction (turbo)

code of rate 1/n before being transmitted. The CRC code is assumed to be able to

detect all the possible errors. As in Chapter 3, the rate reduction caused by the outer

CRC code is ignored.

3) Hybrid type-II ARQ scheme described in the previous sub-section (Figure 4.1) is

used with mother FEC code of rate Om . At first attempt, it sends only the systematic

part. Later on if any error occurs, it incrementally sends Lr extra bits of parities out of

the stored in memory after a random time delay. As mentioned in Section 3.3, the

random time delay makes the queues in the model of Figure 3.I(b) and 3.1(c)

virtually independent.
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4) For analytical purpose, the maximum number of attempts is restricted to an integer M,

after which the packet transmission is reset and restarted as a new arrival. M is

selected to such a value that re be the code rate without puncturing.

6) To share a common channel, each packet is spread using one of the sequence from a

set of predefined spreading codes and transmitted at any time. Assuming the number

of predefined spreading codes is very large, the probability that two or more users

choose the same spreading code is ignored.

7) Perfect power control is assumed, so that every packet is received with equal power.

8) Soft decision decoding at the base station receiver.

9) The packet overhead is assumed to be much smaller than an entire packet size and is

ignored in the packet service time.

Figure 4.2 Analytical Models for CDMA unslotted
ALOHA with Code Combining.
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When hybrid type-II ARQ is used, the throughput cannot simply be expressed as in

(3.2). As noted before, the throughput can be expressed as a product of the average rate

of successful packets and the information contents of the successful transmission

measured in time. In Figure 4.2, the sum of outflow rates is the average rate of total

successful packets and the information content of each successful transmission is To (The

time duration of the systematic part). Hence, the throughput of the system is given by



Since at equilibrium the total inflow to the queuing network and the total outflow should

be the same, (4.7) also should be equal to X1.

For given p.,ki)s, one can easily solve M+1 equations given by (4.2), (4.3) and (4.4)

to find X1's in terms of AT. And then, using (4.6) and (4.7), one can obtain the throughput

S versus offered traffic AT curve, provided psi) is available. However, there is a dilemma

in obtaining S-G curve. As noted in [11], the average probability of packet success for

CDMA unslotted ALOHA can be expressed as a function of the composite arrival rate,

XT, and the average departure rate, g; i.e. psi) = pski)(kT, g). The dilemma is that kT cannot

be found without the solution of the set of equations (4.3) to (4.5), which in turn can be

solved only when pski)(kT, g)' s are given. For slotted ALOHA, packet length is a constant

system equilibrium behavior could be easily obtained. However, in the case here, the

packet length at each attempt is different from others and the average departure rate is not

IITp any more. Hence, even for given AT, Ps(kT, g) cannot be reduced to ps(GT) and kT can

never be known until the set of equations given by (4.2) to (4.4) is solved in terms of AT.

Instead, kT can be found by trial and error as follows.
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c) Compute ps(i) for given p  = 111p and AT following the procedure in the next

subsection.'

d) Solve the set of equations (4.2) to (4.4)

e) Obtain the right hand side of (4.5) and compare it with AT set in (b).

f) If they are equal or the absolute value of the difference is less than a small value E, we

are done. Otherwise, change Bp and try again following the same steps from b to e.

Let 1:p be the average packet service time. Since at equilibrium (21-1-Am+ i) of total

composite arrivals generates packets of length To while the rest generates a packet of

length Tr, the average packet service time is given by

4.3 Packet Success Probability Bounds

Before starting the analysis, it should be noted that, when evaluating probability of packet

success in CDMA unslotted ALOHA system, the random variation of the number of

active users during a packet service time have to be taken into account. In [111 and [561,

an efficient method to compute the probability of packet success has been proposed for

hard decision decoding. However, since a soft decision for turbo decoding is considered

here, the method in [111 cannot be applied to evaluate the probability of packet success

for given packet generation statistics. Due to the difficulties in evaluating exact values, a

lower and an upper bound is evaluated, each of which gives the corresponding lower and

upper bound on the system throughput.
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4.3.1 Lower Bound on Packet Success Probability, p s(X,

The code performance can be related to SNIR, which is, in CDMA system, expressed in

terms of the number of active terminals. In random access systems, such as unslotted

ALOHA, however, the number of active terminals varies with time and, hence, the

statistical property of the random fluctuation of active terminals should be examined first.

In Figure 4.2, one can safely assume by applying Burke's theorem that the packet

arrival at each node is a Poisson process and by Jackson's theorem each node can be

regarded as an independent queue, so that the composite offered traffic is simply a sum of

the offered traffic to each node. Since the SNIR is governed by the total traffic, it is not

needed to handle each node separately to evaluate SNIR fluctuation. Let the system state

be the number of active interfering terminals (not including the desired one) at any given

time during a packet transmission of the terminal under consideration. Let At be a small

time duration, such that the state transition after At time lapse can be described as a birth-

death process. Let X and 1.t be the composite arrival rate given by (4.5) and the average

departure rate given by the inverse of (4.7), respectively. Note that unslotted ALOHA

systems can be regarded as M/M/oo queue for exponential service time distribution [13] or

M/G/oo queue for general distributions. The latter fits to the system described in Section

4.1.1, where only two types of packet of length T. or Tr is used. From [63], the state

transition matrix for such queue, as well as for M/G/oo queue, is given by [63]
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Dor a stationary Markov process with the transition matrix in (4.9), there exists a row

vector m, such that m = mPt—>ti-er, representing the steady-state distribution of system

state. With A4.10), m is a vector whose element is the Poisson distribution given by

Pski)(k) is the probability of packet success at itch attempt, assuming the number of

interfering users is the same k throughout the composite time interval 7-(i) . As will be

shown later, the evaluation of Pski)(k) is numerically feasible. With this bound, the average

probability of packet success for given A and p can also be bounded by
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p s(1) (2„u).. Ep s(1)(k)- Pr{ ki;:ax = k j A„ u} 	 (4.13)

The probability mass function Pr{kh,:ax) = k I p} in (4.13) can be found by first

evaluating the cumulative mass function

Pr{k,hLx)	k I A„u} 	 (4.14)

The time interval T i) consists of i composite time intervals, T1, T2,...,	 each of which

corresponds to the packet duration of the itch attempt for j = 1,2,...,i. Consecutive elements

in k1 are correlated with each other since a state sequence kid is Markov process described

by the state transition matrix Pt---)t+Lit in A4.9). While, each state sequence kJ, j = 1,2,...,i

can be regarded independent of each other, as inter-attempt time interval between any

two successive attempts is assumed large enough. Note also that for given A and ,u all kid

for j = 1,2,...,i are statistically identical as they come from the same Markov model

defined by A4.9) and (4.10), except for their time span 7).

Define pk  Ak,T I A, p) as the probability that a state sequence, which is drawn

from a Markov process given by the state transition matrix P t_3t+zit with parameter A and

p, has the largest state less than or equal to k in a time interval T; i.e.

pkmax (k,T I A, ,u) = Pr{The largest state in a time interval 7' k I A, ,u} 	 (4.15)

In particular, Pr{ k L. 5_ k I A, p} = Lk (k,T) I A„ u) for j = 1,2,...,i. Since each state

sequence 	 = 1,2,...,i is independent of each other, the cummulative mass function can

be expressed as a product form; i.e.
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obtained by enumerating all the state transitions for time interval Tin the shaded region

in Figure 4.3 (i.e. for TIAt transitions), then

where 13 is the signal to background noise ratio, N is the bandwidth expansion factor

(processing gain) of the CDMA system and k is the number of signals interfering with the

desired signal. p i,eki)(7) is the word error probability of the turbo code of rate given by
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(4.1), evaluated at the SNIR of y. Hence, for p,), ki)(y), we can utilize the results of Chapter

2 (Figure 1.3). Together with the results of the previously computed probability mass

function, we obtain the lower bound of (4.13).

4.3.2 An Upper Bound on p s(X, 1.1)

Comparing to the lower bound, the upper bound on p ski)(Ä,,g) is not that meaningful since

an upper bound on p 1„k1)(7) will actually be used, rather than itself. Nevertheless, the

author provides an upper bound for p ski)(X,g) using the upper bound on pweki)(7) plotted in

Figure 1.1, hoping to give an intuition on the steady-state system behavior.

Similar to the lower bound, an upper bound also can be found by

However, to make the upper bound tighter, consider the following argument. Define

lc,n( ',),„ as the mean value of the composite vector [k 1 k2 •-• kid], around which the state

sequences randomly fluctuate. Note that when SNIR fluctuate with time, as in time

varying fading channel, a word error rate is dominated by the symbols of which the SNIR

is relatively small. In other word, the word error rate for AWGN channel with a certain

SNIR is lower than that for time varying fading channel with the same value of average

SNIR. We can extrapolate this situation to our case, in which the random fluctuation

comes from the system load change, not from signal power change. In CDMA system

SNIR is directly related to the number of active users. Hence, if the average SNIR

roughly corresponds to k„,(1,)„„ , we can intuitively infer that the probability of packet
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intuition, it is enough to give us a rough, but quite reasonable upper bound on the

throughput performance of the system. Assuming that the PDD of k roughly

corresponds to that of the system state distribution, which is given by Poisson distribution

defined in (4.11), we have a rough upper bound, but tighter than that with (4.20), as

follows.

where Pr {lcIA„u} is the probability that the system is in state k and mk is the kith element of

the vector m. Note that the last line in (4.21) is the same form as the average probability

of packet success for CDMA slotted ALOHA. Since a slotted ALOHA always perform

better than an unslotted ALOHA for given offered traffic, G = Alp, A4.21) can be

regarded as an upper bound of CDMA unslotted ALOHA. As reported in [111, when

applying CDMA to ALOHA, the performance difference between slotted and unslotted is

not so big as in conventional ALOHA system, where the throughput difference is as big

as 2:I.
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4.3.3 Threshold Effect and Channel Load Sensing Protocol

In asynchronous CDMA system, MAGI is the limiting factor on the performance. Thus, for

given system parameters, such as processing gain and code rate, it is desirable to limit the

number of active users, so as to ensure proper operation without system breakdown. This

can be easily implemented with, for example, the preamble acknowledgement protocol as

in random access in WCDMA system [17,17] or the Channel Load Sensing Protocol

(CLSP) [57,59]. For convenience, the author consider the latter, where it is not needed to

take into account the additional random fluctuation due to the preamble-only

transmission. When applying channel load sensing protocol to a Poisson arrival model

with composite offered traffic AI, the system can be regarded as a M/M/m queue with

finite value m, in which the state distribution is expressed by a truncated Poisson

distribution [59]; i.e.
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Figure 4.4 shows the lower bounds on the average probability of packet success

given by (4.13) and, in Figure 4.5, the two throughput bounds of CDMA unslotted

ALOHA systems with hybrid type-IT ARQ, each of which corresponds to the lower and

upper bound on psi). To compute pski)(k) in (4.19), the results in Chapter 2 (Figure 2.3)

was used for pweki)(7). Although the lower and upper bounds are not so tight, especially

when the offered traffic gets heavy, the results give us some insight into the system

behavior. Figure 4.5 also plots, for comparison, the performance of unslotted ALOHA

system without spreading (i.e. (GT)nexp(-2GT)), and the lower bounds of CDMA

unslotted ALOHA with hybrid type-I ARQ using fixed rate of punctured turbo codes.

Similar to the results with hybrid type-I ARQ in Chapter 2, the lower the code rate the

higher the maximal channel efficiency could be obtained. Notice that when employing an

efficient channel coding, such as turbo coding, to combat the MATs, the CDMA unslotted

ALOHA outperform the conventional ALOHA in packet throughput performance.

Moreover, since CDMA system allows cell deployment with frequency utilization of 1,

the overall channel efficiency can be higher, even when the degradation due to inter-cell

interference is taken into consideration. Finally, as one may expect with the use of RCPT

codes, hybrid type-TI ARQ can automatically adjust the code rate so that the maximal

throughput can be achieved with minimal channel usage. Figure 4.6 and 4.7 show the

same plots as Figure 4.4 and 4.5 except for adding Channel Load Sensing Protocol, in

which the normalized threshold a defined as K th/N was set to 3.25. This is the system

load that can be maximally supported by 1/3 rate turbo code, as shown in Figure 2.5.
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Figure 4.7 depicts the throughput versus offered traffic curves with different values

of thresholds. It shows that when the normalized threshold is less than 3.15, the

throughput degradation at high traffic region is not so big, while it is catastrophic if the

threshold exceeds 3.15. Thus, to ensure the proper system operation without system

breakdown while keeping the channel efficiency maximized, the threshold should be

carefully chosen according to the channel coding option of the system.

4.5 Chapter Summary

CDMA unslotted ALOHA system is one of important candidate for packet data

network, especially over cellular system with medium to large coverage area. The RACH

protocol of WCDMA is very similar to CDMA unslotted ALOHA, except that the RACH
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channel in WCDMA allows transmission at the predefined time offsets. However, since

the offset time interval is much smaller than the packet duration (one tenth), it can be

regarded as a modified version of CDMA unslotted ALOHA system. With this in mind,

the author analyzed the throughput bound of CDMA based unslotted ALOHA system that

employs hybrid type-IL ARQ using rate compatible punctured turbo codes, which is a

plausible scenario for packet data transmission over 3G Wireless or IEEE 702.11.a.

To analyze such system, the author introduced an expanded analytical model

describing the equilibrium traffic flow of an ALOHA system with hybrid type-II ARQ.

This model could be regarded as a network of queues so that Jackson and Burke's

theorems could be applied to simplify the analysis. Assuming soft-decision decoding at

receiver, the author also evaluated a lower and an upper bound on the probability of

packet success. Then, with the expanded model and the packet success probability bound,

the corresponding throughput bounds were obtained for given composite offered traffic.

The author believes that the results shown in this Chapter can provide some insights into

the CDMA based random access system behavior, especially when employing hybrid

type-IL ARQ.



CHAPTER 5

AN IMPLEMENTATION ISSUE: PARALLEL MAP ALGORITHM FOR LOW

LATENCY TURBO DECODING

One of the problems in Turbo Code implementation is its decoding delay. In this chapter,

the author proposes a parallel processing scheme for turbo decoding, which can be

regarded as a blocked belief propagation algorithm. Since a convolutional code is used as

a constituent code for turbo code, due to the recursive and iterative nature of the decoding

algorithm the decoding delay may be unacceptable for present digital technology.

Ln the proposed blocked structure, each sub-block performs MAP decoding in

parallel. However, unlike the previously proposed parallel scheme, where sub-block

overlapping is used, it utilizes the forward and backward variables computed in the

previous iteration to provide boundary distributions for each sub-block MAP decoder.

The structure can be described as a coordinated belief propagation algorithm and is

asymptotically optimal in the sense that the BER performance finally converges to the

same as that of original turbo decoder. Although convergence of the belief propagation

algorithm have not been proved yet, the simulation results show that the structure can

converge in almost the same rate as that of original turbo decoding, provided that each

sub-block has a reasonable length.

5.1 Decoding Delay in Turbo Codes

In turbo coding, convolutional codes are used as a constituent code in order to obtain a

large coding gain and the decoding algorithm employs a type of recursive scheme, such

as symbol-by-symbol MAP decoding [75,76] (also known as forward-backward

algorithm) or its logarithmic versions [77] in which the variables are computed

recursively. Moreover, since turbo decoding is an iterative algorithm, the decoding delay

may not be acceptable.
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Let codeword be the time duration of a codeword and computation be the decoding

computation time. In convolutional codes, the decoding delay can be far less than

Tcodeword if one uses a sliding window algorithm as described in [771. While, since turbo

code is a block code, the decoding delay cannot be less than codeword. Dor a block code, in

which the decoding process can start only after the reception of an entire codeword, the

decoding delay is the sum of Tcodeword and computation. To reduce the decoding delay in

turbo decoding, one may use a short frame size code at the expense of performance

degradation. This is a plausible option in low data rate systems because codeword is the

dominant factor in decoding delay. However, in high data rate systems, such as multi-

mega bps, it may be required to reduce computation, which is dominant.

There are several approaches to reduce computation in turbo decoding, including the

parallel decoding schemes of [791, [801 and [711, in which multiple processors are used.

In [791 and [701, the whole trellis stages are divided into multiple overlapped sub-blocks

and the same MAP decoder as that of the regular turbo decoder is used for each sub-

block. On the other hand, in [711, a sectionalized trellis is divided into sub-trellises, and

multiple processors are used in parallel to compute the branch metrics in each sub-trellis 4 .

This Chapter presents a parallel MAP algorithm in which, instead of using

overlapping between neighbor sub-blocks, the forward and backward variables that were

computed in the previous iteration is utilized as intermediate boundary distributions for

each sub-block MAP decoder. Ln the structure of [791 and [701, each sub-block utilizes, in

fact, only partial observations and hence it is possibly sub-optimal unless a reasonable

overlapping depth is used, while the proposed scheme utilizes all the observations by

message passing.
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5.2 Forward-Backward Algorithm for Turbo Decoding

Consider a turbo code with two 1/2 rate systematic convolutional codes as its constituent

code, whose simplified decoder structure is depicted in Figure 5.1. MAP 1 and 2 are the

maximum a posteriori (MAP) decoders for constituent codes 1 and 2, respectively. One

iteration of turbo decoding includes MAP 1, interleaving, MAP 2 and deinterleaving, in

this order. MAP decoding includes the computation of forward variables, backward

variables and the extrinsic part of the likelihood ratio.

A problem with this structure is that MAP decoding is a recursive process and the

entire decoding should be repeated many times (typically 5-10 iterations), causing a

large computational decoding delay. Let apiki)(A) and 131` )(A) be the forward and backward

variables at the th  trellis stage of state A of the itchconstituent code. For a detailed

description of the turbo decoding algorithm and MAP decoding, see [75]. In MAP

decoding, the whole forward and backward variables are computed recursively. For the

is computed recursively based

on the distribution of the previous variable api ki)(A) and the channel inputs for the itch



68

trellis stage. Similarly, for the latter, starting from PLki)(s), 13.1)(A) is computed from

13i+I ki)(A) and the related observations. Due to the iterative and recursive nature of the

decoding algorithm, the decoding computation time can be very large.

To reduce the decoding time, a parallel MAP scheme was proposed in [70], where

a whole L trellis stages is divided into K sub-blocks and processed in parallel. However,

when implementing each sub-block MAP separately in parallel, appropriate boundary

distributions are not available. Hence, in [70], overlapping between neighbor sub-blocks

is used; i.e. kth sub-block MAP decoder starts its forward recursion from oqki om_d (A) and

the backward recursion from13;,„,C) +d (A), where d is an integer representing the overlapping

depth. Therefore, each sub-block MAP contains a computation of M = LIK + 2d trellises

and requires the additional 2d computations for each sub-block to provide appropriate

boundary distributions at cqki (A) and (3 kJ (A) . Furthermore, the algorithm is necessarily

sub-optimal unless it uses large overlapping. As a rule of thumb, this overlapping depth

should be 5 to 7 times the constraint length of the constituent convolutional code, to

provide valid state distribution and to ensure the code performance to some extent.

5.3 Parallel Turbo Decoding: Blocked Belief Propagation Algorithm

A turbo decoder that employs the proposed parallel scheme is shown in Figure 5.2. As in

[70], the noisy codeword of a constituent convolutional code of length L is divided into K

sub-blocks of length M = LICK trellis stages. However, instead of using overlapping, the

forward and backward variables that were computed in the previous iteration of the

adjacent sub-blocks are used to provide appropriate boundary distributions for each sub-

block MAP decoder; i.e. the kith sub-block MAP decoder starts the forward recursion with

represents the values were

computed in the previous iteration. All sub-block MAP decoders perform the

computation simultaneously, and hence, the proposed algorithm reduces the decoding
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computation time exactly by a factor of K, provided that it requires the same number of

iterations to converge as that of the regular turbo decoder. This will be discussed later in

Section 5.5.

Figure 5.2 Turbo decoder with Blocked MAP. All the sub-block decoders,
shown as a box, are implemented in parallel and perform the same operation; each
of them starts forward-backward recursion with the boundary distributions
computed in previous iteration.
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It should be emphasized, as reported in [71-76], that the iterative turbo decoding

can be described as a "Belief Propagation" algorithm, in which the likelihood ratios

(beliefs) on the transmitted information bits are updated iteratively by exchanging

information between nodes in a graph. Unfortunately, the convergence of the Belief

Propagation algorithm for a loopy network s is not yet proven. However, as mentioned in

[71], it inspires various other strategies for turbo decoding according to how the message

passing in the graphical model is coordinated. In fact, immediate application of the belief

propagation algorithm to the "hidden Markov chain", described in [71], results in our

parallel MAP decoder with sub-block length M equal to l. As in the belief propagation

paradigm, the kth sub-block decoder takes messages

neighbors and La,kki from the other constituent decoder, produces updated information

nd sends them back to its neighbors. L andand L ,k aki)denote

Mxl vectors representing a priori and extrinsic information, respectively, of the kth sub-

block decoder in the itchconstituent code. For simplicity, the systematic partL,,kkiwas

omtted in Figure 5.2. The white arrows in Figure 5.2 represent edge parameters that once

initialized, remain fixed until the entire decoding is done. By the message passing

between sub-blocks, each sub-block MAP decoder can utilize the whole observation to

finally obtain optimal values on the likelihood ratios.

En [70], since each sub-block does not communicate with each other, the

intermediate boundary distributions require additional neighborhood observations, which

were provided by overlapping the sub-blocks. With the configuration in Figure 5.2, at

least two advantages over the previous parallel MAP scheme in [79,70] can be obtained.

First, there are no additional computations due to overlapping. Second, communicating

with their neighbors, each sub-block MAP decoder can asymptotically converge to

optimal values since information in one sub-block propagates through the whole network

by message passing.
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Initialization 

Before proceeding with iterative decoding, the input messages to each sub-block

decoder must be initialized properly. An example of the initialization of these variables is

as follows.

1) Initialize permanently the edge boundary distributions

2) Initialize temporally the intermediate boundary distributions

where Ns is the number of states of the constituent

convolutional code used, and store them into memory,.

3) Enitialize the a priori likelihood ratio

It was assumed that the constituent convolutional code starts and terminates at state zero

with appropriate tail bits. The initialization in 2) was chosen for all intermediate

boundary distributions since, when implemented in parallel, no priori information on the

intermediate boundary distribution is available in the first iteration.

5.4 Simulation Results

En Figure 5.3, the bit error probabilities are plotted at each iteration step, by averaging

over 1100 independent trials, each of which was simulated with sub-block lengths of 7,

16, 31, 117 and 7191, respectively. Since the overall block length was set to 7191 of

information bits, the sub-block length of 7192 is equivalent to regular turbo decoding. At

each trial, the interleaver was set at random. The simulations were performed with the

Max-Log MAP algorithm.

Since the proposed parallel MAP algorithm is used to reduce computational delay,

the convergence speed should also be taken into account. If the proposed algorithm

requires more iterations than that required for the regular turbo decoder, the net delay
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reduction may not be as much as we expected. In the figure, note the following. First, the

final BER after convergence is almost the same as that of a regular turbo decoder. Second

the longer the block length the faster the convergence. In this simulation, the performance

with a sub-block length of 128 shows almost the same convergence speed as that of

regular turbo decoding. This means that a delay reduction by a factor of I/K can be

obtained if one use a longer sub-block length than 128 for the turbo code used.

The reason that the algorithm converge faster with longer sub-block is as follows.

Although the convergence of the Belief Propagation algorithm for a loopy network is not

yet proven, it can be intuitively inferred that a good initial boundary distribution would

accelerate the convergence speed. Clearly, at the first iteration, the internal forward and

backward variables computed in its early recursion of a sub-block MAP decoder will be
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unreliable since, at initial iteration, no prior knowledge about the intermediate boundary

distributions is available. However, if the sub-block length M is large enough, the values

produced at the final recursion of each sub-block can be reliable enough. For example,

for the kth sub-block MAP of length M, the third forward variable, al l+3 AA) , can utilize

only three observations, while <1 ,11 AA) utilizes all the M observations that belongs to

the kithsub-block. Since the soft information is transferred through the recursive

computation, even in the first iteration, quite reliable information on the boundary

distributions can be obtained at the final recursion of a sub-block MAP decoding. The

situation is similar to the sliding window algorithm for the decoding of convolutional

codes, where the longer the trace back memory the better the performance we get.

5.5 Chapter Summary

In order to increase the decoding speed, the author propsed a parallel scheme of the

forward-backward algorithm, where, instead of using overlaps as was previously

suggested, the forward and backward variables computed at the adjacent sub-blocks in

the previous iteration was used to provide appropriate boundary distributions to each sub-

block MAP decoder. With the proposed algorithm, the computational decoding delay is

divided exactly by M, the number of sub-block MAP processors. Simulation results show

that the scheme asymptotically converges to the optimal performance in almost the same

convergence rate as that of regular turbo decoder, provided that each sub-block is

reasonably long. Compared to a regular turbo decoder, it requires only a small amount of

additional memory, even though the algorithm employs multiple processors. Moreover,

the modularity of the proposed algorithm makes hardware implementation easy; it is a

concatenated structure of identical sub-block MAP decoders, all of which perform

exactly the same operation as that of a regular MAP decoder.
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LINEAR MULTIUSER DETECTION IN RANDOM CDMA

The performance of LDD and MMSE detector is expressed in terms of the so-called

`near-far resistance', defined by a reciprocal of a diagonal component of inverse matrix.

For random CDMA, the near far resistance is regarded as a random variable. Recently,

many papers have dealt with the analysis of multiuser detectors for random spreading

sequences. Ln most cases, however, these analyses derived only the expectations or

bounds for the near-far resistance. Here, an approximate PDF of the near-far resistance is

directly derived, based on Gaussian approximation of cross-correlation between any two

of randomly generated spreading codes.

6.1 Introduction

Throughout the last decade, the linear multiuser detectors such as linear decorrelating

detector [21-241 and MMSE detector [25,161 have been widely studied in various ways.

The performances of those multiuser detectors were expressed in terms of reciprocal of

diagonal components of inverse cross-correlation matrix, which is referred to as near-far

resistance. In most cases, however, the performance analyses for those multiuser

detectors have been performed for deterministic CDMA, in which it is assumed that the

period of the spreading sequences is the same as the symbol interval and hence each

component of the matrix is constant. In such case, the spreading sequence is said to be

time-invariant.

On the other hand, in the currently commercialized or standardized CDMA

systems, the performance has been analyzed for random CDMA system, where the

periods of spreading sequences are much longer than the symbol interval. Although most

multiuser detection schemes require short spreading sequence for reasonable complexity

and practical point of view, the use of short spreading sequences does not necessarily
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means that the analysis must be done for a specific set of spreading codes. There still

exist many causes of the randomness of interference, even for the short spreading

sequence system, such as random selection of spreading codes and/or random time

delays. Considering these kinds of randomness, the author will call it, in general, random

CDMA system, regardless of the type of spreading codes; short or long. With these

reasons, each component of the cross-correlation matrix for random CDMA systems

should be regarded as a random variable.

In more recent literatures [36-40], multiuser detectors have been considered for

random CDMA system. Ln [361, the spectral efficiency of multiuser detectors has been

analyzed for random spreading and provided with an average near-far resistance for

various multiuser detectors. In [37-391, capacity of multiuser detector has been analyzed

and compared with conventional matched filter receiver.

This chapter provides a direct approximation for the PDF of the near-far resistance

of LDD and MMSE detector. Using this, the average BER performance for random

spreading sequences can be obtained. For random CDMA signals, the statistical

characterizations of each component of the inverse matrix are not tractable when the

number of users is large. Therefore, based on the Gaussian approximation in [36,31,321,

an approximate PDF of a near-far resistance for LDD and MMSE detector will be derived

and used to obtain the average BER expression by taking expectation over the near-far

resistance. Although the approach in this chapter is for random CDMA, even for

deterministic CDMA system the cross-correlation has random nature due to the time

variation of channel as well as the random assignment of spreading codes. Hence the

results can also be interpreted as an expected BER performance in deterministic CDMA. 6

6 Even with short sequence system, due to the correlation property of PN sequences, one chip delay of a PN

sequence can make the cross-correlation structure (an whole row of cross-correlation matrix) quite

different. In this case we have to assume that the cross-correlation structure is random. And, we can

calculate the expected BER by taking average over all possible set of cross-correlation. Clearly, the
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6.2 Linear Multiuser Detectors

In this section, first, the operation and the performance of linear decorrelating detector

and MMSE detector for time invariant CDMA signal will be briefly described. The

Gaussian approximation will then be described in discrete time version to fit into our

framework. Throughout this dissertation, base-band BPSK modulation and rectangular

chip shaping will be assumed for simplicity.

expected BER for short spreading sequence system may be different from actually measured values if the

cross-correlation does not change with time. However, the computation of the expected BER is exactly the

same as that of the average BER for long spreading sequence system. In long spreading sequence system, it

is expected that the average BER is quite close to the actual values even if the channel is time invariant.
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The factor 1/ [R -111 is known as the near-far resistance of LDD. To simplify the

expressions to be derived, we define XLDo as square root of the near-far resistance.

which is a fixed value for deterministic CDMA. Another expression for the near-far

resistance can be found in [201. Dividing the KxK cross-correlation matrix into four block

parts as

where, using the definition in A3), it can be shown that
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6.2.2 Linear MMSE detector

While LDD uses the inverse cross-correlation matrix R -1 , Linear MMSE multiuser

detector uses the following matrix, instead of R -1 [25],

Note that the decision variable of LDD is interference free if the inverse cross-correlation

matrix exists while the output of MMSE multiuser detector contains both the noise and

the interference. Without loss of generality, we will consider the decision variable of the

first user. As described in [101, the decision variable of LMMSE detector for the first user

can be expressed as

where Bk is the leakage coefficient for the kith user, which quantifies the unresolved

interference from the k th user and is given by

And n1 is a random variable, representing the noise enhancement, with mean zero and

variance

When random spreading is used, the leakage coefficients and the noise enhancement are

random variables.
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6.3 LDD in Random CDMA

As mentioned in the previous section, the near-far resistance defined in (6.2) must be

treated as a random variable in R-CDMA system. If the PDF of XLDD, fXwn(X), is known,

the first user's average BER for uncoded system is given by

6.3.1 Synchronous case

The near-far resistance l/[R1 11 for the user 1 can be expressed as det[R]lAd j[pi it With

this expression, however, it is hard to evaluate the PDF of the near-far resistance X2LDD.

However, assuming Elpii l2 << l, we can use the following simple approximation, instead

of the expression in A6.4).

The approximation in (6.12) is equivalent to setting R„ I x_, in (6.3), where 1 K_ 1

is K- 1 xK-l identity matrix, which can be interpreted as follows. The decorrelation is the

projection of the received signal vector onto the vector orthogonal to all the spreading

code vectors except for that of the user under consideration. With the approximation in

(6.11), we have all other spreading sequences, except for that of the first user, are



A comparison of simulated results with the approximated results is shown in Section 6.5.
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6.3.2 Asynchronous case

While the asynchronous LDD has been first introduced in [23), where the use of time

invariant spreading sequences was assumed, the scheme proposed in [79) is suitable more

for our analysis since it can be easily extended to time-varying CDMA. Thus, the ideas of

the previous subsection are applied to analyze the approximate performance of

asynchronous LDD for random spreading sequences, using the model in [791 7 . With this

model, the cross-correlation matrix of the spreading waveforms for one packet is given

by,

' Seemingly, the model in [Ch2.251] is the same as [Ch2.3]. However, the underlying assumption is different

from each other. In [Ch2.3] it was assumed that only the short code is used so that all the diagonal block

components are all the same. On the other hand, in [Ch2.25], they did not assume the use of short codes

considering the possible use of long codes
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where sink(t) is the spreading waveform for mth bit of the user k, which is defined in the

interval [mTb, (m+1)Tb]. Assuming the users are numbered in the order of their time

delays, such that 0<ii<1-2<----<i-K, Rm(1) is an upper and R4-1) a lower triangular matrix

with all the diagonal element equal to zero. Thus, each row and column in the right hand

side of (6.15) contains only 2(K-l) non-zero interfering cross terms (two for each of the

interfering users). Et holds for every bit of every user in the packet, except for the first bit

and last bit in the packet, where only one interfering cross term exists for each interfering

user. However, assuming the packet size is large, the end effect will be ignored in the

BER analysis.

Now, we apply the same idea as for synchronous LDD analysis, described in

Section 6.3.l, to the asynchronous system model. First, we decompose the matrix R into

four parts, as we did in (6.3), and replace the principal submatrix RmxK+k,mxK+k with

for the sake of analysis. As described in Section 6.3.l, it is equivalent to settingIMO K-1,

all the off-diagonal components, except for the elements in the AmxK+k) th row and

column, to zeros. Then, the inverse diagonal component for mth bit of the user k is

approximated as

Since 11,,(+l) and R„,(-1) are upper and lower triangular matrix, respectively, with all the

diagonal element equal to zero, it can be shown that either [R ni(-1)]ki or [ItnA+l)]kc is zero.

Hence, one of the three terms in the bracket in A6.16) is zero. To simplify the notation, we

rewrite (6.16) as follows



distribution with mean 0 and variance 2/3N, by taking average of the variance on & This

leads to the classical result of Standard Gaussian Approximation in [341.

Contrast to the synchronous case, the PDD of Z cannot be obtained easily because

k depend on the same random variables Dk and 4. Note that, given Dk and

Elk in (6.17) are conditionally independent of each other. Thus, from (6.18)

and A6.19), the PDD and the characteristic function of Zk conditioned on Dk and 4 are

given by
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where * denotes the convolution operator and xm2  (z, a 2 ) is chi-square distribution

function with M degree of freedom, defined as in (6.13). Using (6.20) and A6.21), the

marginal PDD of Zk can be expressed as a mixture density function

Finally, the PDF of the near-far resistance of asynchronous LDD can be approximated to
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With this simplification, the PDF of the near-far resistance XLDD is obtained by (6.25)

with fzi,DD(z) given in (6.27).

6.3.4 Expected Near-far Resistance of LDD
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The result for synchronous system is identical to the bound obtained in [201 for average

near-far resistance of MMSE multiuser detector. For asynchronous systems, however, the

result in this chapter differs in that there is an additional scaling factor of 1/3. The

validity of our result in (6.27) is verified via simulation results in Section 6.5.

6.4 MMSE detector in Random CDMA

Since LDD output is interference free 9, it was enough to take only the noise enhancement

into account in LDD analysis. At the output of the MMSE detector, however, there exist

both the enhanced noise and the unresolved interference, so that it is required to take both

into account. Using the Central limit theorem, we will assume in the derivation of MMSE

detector performance that the unresolved interference is Gaussian, even when the

spreading codes are deterministic. As it will be shown later, this assumption simplifies

the derivation.

9 When the inverse of the cross-correlation matrix exists.
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As mentioned earlier in Section 6.3, when random spreading is used, the leakage

coefficients Bk's and the noise enhancement of MMSE detector, n '1, are random

variables. To simplify the analysis of MMSE receiver, the same approch as in the

previous section is employed; i.e. it is assumed that all the spreading code vectors of

interfering users are orthogonal to each other such that RI, —> I K_ 1 . With this assumption,

simple expressions for B1, Bk's and var(n I) can be obtained from (C.7), (C.9) and (C.11)

in Appendix C, respectively

Using the Central Limit Theorem, we apply the Gaussian approximation as in [331 to the

second term in the right hand side of (6.7). Then, the bit error probability for uncoded

system is obtained by taking averaging on (6.32) as follows
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Although these results are only approximation, it can give us helpful insight into the

property of LMMSE detector and, due to the simple structure of the expression, the PDF

of the SNIR for LMMSE detector can be easily obtained. Similar to (6.12), we define a

random variable YMMSE as

And for synchronous CDMA system, the expected BER of LMMSE detector is given by
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Also, similar to the analysis of LDD in asynchronous

system and through the same derivation, the following is obtained for asynchronous

system.

As defined in [201, the near-far resistance of LMMSE detector is expressed as the

same form as that of LDD since it is defined with the assumption of infinite signal to

background noise ratio. Lt is also true in our approach; as the signal to background noise

ratio, A2/02,, approaches infinity, the PDF in (6.38) approaches to that in (6.27).

Similar to the argument in Section 6.3.4, it also easy to show that the expectation of

X2MMSE is given by
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6.5 Simulations and Numerical Results

In this Section, the approximate approach is verified by comparing with simulated results.

The probability densities of the near-far resistance and the expected BER for uncoded

system are compared with those of the simulated results. The results for the conventional

detector and the single user bound are also shown for comparison. In all simulations,

base-band BPSK signaling and AWGN channel were considered for simplicity.

Figure 6.l shows a comparison of the PDF of near-far resistance of linear multiuser

receivers. As noted in [10], the near-resistance of LMMSE receiver is expressed as the

same form as that of LDD and, thus, only those of LDD are shown. Using processing

gain N = 63 and K = 10, 10 and 30, Figure 6.l shows a comparison of approximated

analytical results for synchronous system, using (6.14), with the results obtained from the

simulation. Figure 6.2 and 6.3 also compare the PDF obtained from the simulation with

those obtained by approximate analysis for asynchronous system, using (6.15) with (6.16)
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and with (6.17), termed Approx. 1 and Approx. 1, respectively. The parameters were set

N = 63 and K = 10, 10 and 30 in Figure 6.2 and N = 15 and K = 3, 6 and 9 in Figure 6.3.

The results for asynchronous system show that the latter (Approx.2) is closer than the

former (Approx.l). This is an unexpected result because Approx.2 is a simpler

approximation than Approx.l. The author believes that it is due to the Gaussian

approximation in (6.17) and (6.19). As can be expected, the Gaussin approximation is not

applicable to those cases where Dk is small in (6.17) and the contribution of these portion

in (6.11) and (6.13) make Approx.l more deviated from actual PDF. Although there are

some deviations for both the approaches, one can say in general that the smaller the

number of users (relative to the processing gain N) the closer the approximated results to

the simulated values.

Figure 6.4 and 6.5 shows the BER performances in AWGN channel, each for the

conventional matched filter detector, LDD, MMSE detector and single user bound,

respectively. Assuming the perfectly power-controlled condition, the signal to

background noise ratio (SbNR) were set to 10 dB for all the users, and the processing

gain N was set to 63. The analytical BER is computed by (6.11), (6.15) and (6.17) for

LDD and by (6.36), (6.15) and (6.35) for MMSE detector. The analytical BER of both

LDD and MMSE detector appears to be fairly close to the simulated values. Figure 6.6

and 6.7 shows the same results for N = 15. Comparing with Figure 6.4 and 6.5 (N = 63),

the approximation is not as close to the simulation results as that in the previous case

shown in Figure 6.4 and 6.5.

As shown in the comparisons, the deviations from actual values grow as the

number of user increases. These deviations are mainly due to the Gaussian approximation

and the orthogonality assumption on the cross-correlation between interfering users.

While the deviation caused by the Gaussian Approximation is negligible if the processing

gain is large enough, the deviation due to the orthogonality assumption limits the

applicability of the approximate approach. However, even with these deviations, the

approximate approach derived in this chapter can be successfully applied provided that
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the processing gain is large enough, saying larger than 32, and the number of users is less

than half the processing gain.

6.6 Chapter Summary

In this chapter, using the Gaussian approximation of a cross-correlation between the

spreading waveforms, an approximate PDF of near-far resistance of LDD and MMSE

detector was derived for random spreading waveforms. The simulation results show the

validity of the approximate analysis. As can be inferred from (6.27) and (6.29) for LDD

and from (6.37) and (6.39) for MMSE, for synchronous system, the PDF of the near-far

resistance of LDD and its MMSE counterpart could be approximated as a reversed and

shifted Chi-square distribution function with (K-1) degrees of freedom. For asynchronous

system, the expression of the PDF is more complicated. However, a simpler but more

accurate expression could be obtained when adding further but reasonable assumption

that pLik and Rik are independent of each other. The pdf is then expressed in the same

form as those for synchronous system; i.e. a reversed and shifted Chi-square distribution

function with 2(K-l) degrees of freedom.

While the approach proposed in this chapter can be successfully applied when the

number of users K is less than about half the processing gain N/2, it is not enough for

heavily loaded wireless channel, where there are so many delayed replicas of original

signal. Due to the autocorrelation property of PN sequences, these replicas can be

regarded as independent interferers and, hence, the effective number of interfering signal

become much larger than that of the actual number of system users.



CHAPTER 7

CONCLUSION

7.1 Contributions

In this dissertation, coded CDMA systems were reinvestigated in terms of packet data

communications terminology. Contributions of the work can be summarized as follows.

• Using the improved union bound, the performance of turbo coded CDMA system

with hybrid ARQ was evaluated in deterministic environment.

• A generalized analytical framework, named as Queuing Network Model, has been

devised to analyze CDMA based ALOHA system that employs Hybrid type-II ARQ.

• The model was applied to CDMA slotted ALOHA with Packet Combining and the

effectiveness of the model verified by comparing with simulation results.

• The throughput bounds of CDMA Unslotted ALOHA with hybrid type-IL ARQ using

RCPT codes were also investigated.

• As an implementation issue, an efficient parallel scheme for low latency turbo

decoding has been proposed, based on Pearl's belief propagation algorithm.

• For linear multiuser receivers in random spreading environment, an approximate PDF

of output SLR of linear decorrelating detector and MMSE receiver was directly

derived using Gaussian approximation. The resulting expressions are as simple as that

of the conventional matched filter receiver and quite close when the number of users

is less than half of the processing gain.

7.2 Remarks

Achievable Spectral Efficiency of Turbo coTed CDMA: Apparently, due to the multiple

access interferences, the CDMA system with only matched filter receiver is useless
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without coding. Well-designed FEC coding and ARQ scheme is crucial in CDMA

systems for packet data transmission. As shown numerically, using a turbo codes of rate

1/3, one can obtain a spectral efficiency around 1.1 bits/Hz/sec. By employing multiuser

detection, the spectral efficiency could be even higher than 1.6 bits/Hz/sec.

MF vA. LMMSE receiver: The results in Ch.2 show that the spectral efficiency with

linear MMSE receiver saturates at a code rate of about 4/5, i.e. does not improve further

with lower rate coding, while, for matched filter receivers, better performance can be

obtained with lower code rate. Theoretically, as the system load goes to infinity, the

spectral efficiency of linear MMSE receiver converges to that of matched filter receiver.

In practical situation, however, there exists a noticeable performance gap between the

two receivers unless a very low rate code is used. Certainly, multiuser detections can

improve the system capacity for given rate of coding options, but the efficiency can also

be improved with lower rate channel coding, even without multiuser detection. As the

number of users K-) .0, the spectral efficiency of MMSE receiver converges to that of

the conventional matched filter receiver. Hence we may consider lower rate turbo coding

in favor of multiuser detection if the latter requires more complicated hardware than that

needed for implementing lower rate channel coding/decoding.

HybriT Type-II ARQ aA a mean of TecentralizeT Automatic Rate ATaptation: It is

well known that Code Combining Hybrid type-IT ARQ that uses RCPC or RCPT codes is

a decentralized code rate adaptation. While, it was not generally recognized that Packet

combining hybrid type-T1 ARQ can be regarded as a mean of decentralized Spreading

factor adaptation. Ln connection oriented CDMA systems, the system resources, such as

Power, Spreading factor and Code rate, can be controlled in centralized fashion to

optimize the system utilities. While, in packet based cellular system or Ad hoc network,

where traffic changes unpredictably and/or the transceivers know little about the entire

system, decentralized resource control would be preferable to the centralized.
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Effectiveness of our Analytical Framework: The results in Ch.5 verify the

effectiveness of the analytical framework introduced in this dissertation, even with

immediate retransmission.

ADMA ALOHA with variable length traffic: In most cases, fixed length traffic is

not a practical assumption. For variable traffic length, there exists correlation between the

nearby slots. To this case, one can extend the iterative procedure and the bounding

technique introduced in Ch.4.2 to analyze CDMA unslotted ALOHA. The only difference

is that for unslotted system the state transition occurs at any time while for slotted or

slotted-offset ALOHA system transition occurs at slot boundaries.



APPENDIX A

PDF OF MF RECEIVER OUTPUT SNIR IN L-PATH FADING CHANNEL

In this appendix, the PDD of matched filter output SNIR is derived for L-path Rayleigh

fading channel.

Consider a CDMA system that consists of K active users, all of which have the

same number of multipath L. Assume that each path signal is independent and identically

distributed with exponential distribution whose average per-path signal to background

noise ratio, ES/N0, equals B/L, such that the total average E/N0  is equal to B. That is, the

PDF of the input signal to background noise ratio for the lath path of the kth user, So, can

be expressed as
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APPENDIX B

DETAILS ON THE IMPROVED UNION BOUND

This appendix provides some detailed derivations of the improved union bound used in

Chapter 2.
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Note that in (B.5) and (B.6), h(r, w), g(r) and g(s) are in turn a function of vi(y).

Therefore, to find ii(y) that maximize (2.20), the implicit equation (B.6) should be

solved. However, instead of finding a closed form solution of (B.6), one can find the

constant k and a that satisfy (B.7.a) and (B.7.b) by dynamic programming method.

Nevertheless, as will be shown later, it is not needed to find k, as it will be cancelled out

in (2.20). Thus, setting k = 1 and using (2.17.a) and (2.17.b) lead to



APPENDIX C

GAUSSIAN APPROXIMATION

This appendix provides a detailed description of the Gaussian approximation used in

Chapter 6, based on the random spreading assumption.

In Random CDMA, it is assumed that the spreading codes vary randomly from

symbol to symbol and hence a cross-correlation between any two of random spreading

code vectors is regarded as a random variable. As it will be shown here, it can be

approximated by a Gaussian random variable with sufficiently large processing gain.

Let us define the random variable L as the number of chips having equal sign

between any two of random spreading code vectors. Then, the pdf of L can be expressed

as a binomial distribution function,
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