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ABSTRACT

ADAPTIVE DS-CDMA MULTIUSER DETECTION FOR TIME
VARIANT FREQUENCY SELECTIVE RAYLEIGH FADING

CHANNEL

by
Xin Tang

The current digital wireless mobile system such as IS-95, which is based on direct

sequence Code Division Multiple Access (DS-CDMA) technology, will not be able to

meet the growing demands for multimedia service due to low information exchanging

rate. Its capacity is also limited by multiple accessed interference (MAI) signals.

This work focuses on the development of adaptive algorithms for multiuser

detection (MUD) and interference suppression for wideband direct sequence code

division multiple access (DS-CDMA) systems over time-variant frequency selective

fading channels. In addition, channel acquisition and delay estimation techniques are

developed to combat the uncertainty introduced by the wireless propagation channel.

This work emphasizes fast and simple techniques that can meet practical needs for

high data rate signal detection.

Most existing literature is not suitable for the large delay spread in wideband

systems due to high computational/hardware complexity. A de-biasing decorrelator

is developed whose computational complexity is greatly reduced without sacrificing

performance. An adaptive bootstrap symbol-based signal separator is also proposed

for a time-variant channel. These detectors achieve MUD for asynchronous, large

delay spread, fading channels without training sequences.

To achieve high data rate communication, a finite impulse response (FIR)

filter based detector is presented for M-ary QAM modulated signals in a multipath

Rayleigh fading channel. It is shown that the proposed detector provides a stable

performance for QAM signal detection with unknown fading and phase shift. It is



also shown that this detector can be easily extended to the reception of any M-ary

quadrature modulated signal.

A minimum variance decorrelating (MVD) receiver with adaptive channel

estimator is presented in this dissertation. It provides comparable performance to a

linear MMSE receiver even in a deep fading environment and can be implemented

blindly. Using the MVD receiver as a building-block, an adaptive multistage parallel

interference cancellation (PIC) scheme and a successive interference cancellation

(SIC) scheme were developed. The total number of stages is kept at a minimum as a

result of the accurate estimating of the interfering users at the earliest stages, which

reduces the implementation complexity, as well as the processing delay. Jointly

with the MVD receiver, a new transmit diversity (TD) scheme, called TD-MVD, is

proposed. This scheme improves the performance without increasing the bandwidth.

Unlike other TD techniques, this TD-MVD scheme has the inherent advantage to

overcome asynchronous multipath transmission. It brings flexibility in the design

of TD antenna systems without restrict signal coordination among those multiple

transmissions, and applicable for both existing and next generation of CDMA

systems.

A maximum likelihood based delay and channel estimation algorithm with

reduced computational complexity is proposed. This algorithm uses a diagonal

simplicity technique as well as the asymptotically uncorrelated property of the

received signal in the frequency domain. In combination with oversampling, this

scheme does not suffer from a singularity problem and the performance quickly

approaches the Cramer-Rao lower bound (CRLB) while maintaining a computa-

tional complexity that is as low as the order of the signal dimension.
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CHAPTER 1

INTRODUCTION

1.1 Wireless Propagation Channel

Unlike a wireline channel, which is stationary and predictable, a wireless radio

channel has random characteristics. It varies with the transmitter and receiver's

locations, their movements, and variations in the surrounding environment. Hence,

its study is typically performed using statistical tools.

A typical phenomenon which has been widely used in wireless communication

system design is called small-scale fading, or simply fading. It represents the rapid

fluctuation of the amplitude of a radio signal over a short period of time or traveling

distance. Fading is caused by the combination of several versions of the trans-

mitted signal, called multipath, which arrive at the receiver at slightly different

times. The random phase and amplitude of the different multipath components

causes fluctuations in signal strength, signal distortion, or both. Multipath propa-

gation extends the time required for the transmitted signals to reach the receiver

and thus, introduces inter-symbol-interference (ISI). Multipath delay spread leads to

time dispersion and frequency selective fading.

If the multipaths do not contain a dominant path, which is usually a line of

sight signal component, the amplitude envelope of the received signal for each path

can be statistically described as a Rayleigh distributed random variable. Otherwise,

when a dominant path is present, as is typically the case in indoor applications,

the envelope of the received signal is more suitably modeled as a Rician distributed

random variable.

Due to the mobile nature of transmitters and receivers, each path experiences

an apparent shift in frequency. The shift is called Doppler shift. A Doppler spread

leads to frequency dispersion and time selective fading, which describes the time

varying nature of the wireless channel.

1
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The uncertainty in the signals received over a time-variant multipath fading

channel increases the difficulty in the design of the receivers. In this work, the

propagation channel is modeled as an asynchronous Rayleigh faded channel. That

is, beside being a Rayleigh faded multipath channel, signals from different users

are non-synchronous in time. The principal objective is to propose adaptive signal

detection and estimation algorithms which can be applied to this wireless channel

with lower computational complexity.

1.1.1 Model for Time-varying Rayleigh Fading Channel

In order to evaluate the performance of the proposed schemes, a correlated time

varying Rayleigh fading channel should be generated. For this, a model defined as

Witter's method [1] is employed. This model is depicted in Figure 1.1.

Figure 1.1 Generating correlated Gaussian process with Witter's method

Here, the input A, are samples of a complex white Gaussian noise process with

E[Pn* Pn+t] = 6(0. In Figure 1.1,'3 = exp(-α/T) and a = 2.146/m, where T is the

time interval between samples, and m is the coherence time, defined as the value of

time T after which the correlation function has decreased to 1/e. The fading rate

is defined as 1/m. The output vn  is then a correlated complex Gaussian sample



3

sequence, with a correlation function approximatly given (for To /T >= 10) by,

where 1 is the sampling distance between the two samples. The norm γn = ||vn||

of the complex Gaussian samples vn is a Rayleigh distributed random variable. In

a multipath time-variant fading channel, the fading on different paths is in general

statistically uncorrelated. Thus, a generator as in Figure 1.1 is used for each path,

such that the fading on each individual path is temporally correlated while uncor-

related with other paths.

The correlation function with To = 1000 and T = 1 is given in Figure 1.2.

The solid line is obtained using the approximation of equation (1.1), and dashed line

using simulation with the model in Figure 1.1.

Figure 1.2 Correlation function vs correlation time 1 (samples)

In this work, the attention is focused on adaptive algorithms for wideband

CDMA systems with a high transmitted data. Without further notice, the channel

is generated with a carrier frequency of 1.9 GHz, a data rate of 1 Mbits/s, and
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receiver velocity of 30 meters/s. In Figure 1.3, a sample of such a channel with two

multipaths is depicted,

Figure 1.3 Time-variant channel in high data rate systems

The figure shows that the signal changes quite slowly over a small number of

symbols, so that, if the processing window size is short, the channel may be approx-

imated as quasi-static. However, for a larger window of time, adaptive tracking of

the channel variation is needed.

1.2 Multiple Access Systems

Wireless communication technology has advanced rapidly during the past decade.

Analog systems have migrated into digital systems, and quickly evolve into high

capacity wideband systems, so as to provide multimedia services to meet market

demands.

The limited resources, particularly the scarce channel bandwidth, make it

desirable that multiple users can communicate simultaneously over the same channel.

As a result, multiple access techniques have been developed. Among these, the
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CDMA technique exhibits unique advantages as a multiplexing method, and has

been widely accepted as a major technology for digital wireless systems.

In CDMA systems, all users utilize the same carrier frequency and may transmit

and receive messages simultaneously. The narrowband messages of all users are

spread by pseudo-random code sequences. The code sequences assigned to users are

distinct and in cases orthogonal to each others. At the receiver, the corresponding

spreading code sequence is employed to decorrelate the desired message from others.

If the orthogonality is maintained among these codewords, there would be no inter-

ference from undesired signals. Users can then share the same channel without

interference.

As mentioned before, the CDMA signals when travelling across the wireless

channel, may experience small-scale fading. If the channel frequency response is

non-flat, then multiple signals will reach the receiver as a result of multipath. In an

uplink channel, the distance between each mobile and base station is different, and

varies in time due to the movement of the mobiles. As a result, it is almost impossible

to have signals from different users arrive at the base station synchronously. Hence,

the orthogonality of the CDMA spreading codes is eliminated due to these inherent

asynchronous and frequency selective fading characteristics of the wireless channel.

In other words, the multiple access signals at the receiver's front end will no longer

be orthogonal to each other, even if originally orthogonal codes were used and were

synchronized at the transmitters. The detector's output may then contains ISI,

and multiple access interference (MAI) from other users, which degrades the desired

output's signal-to-noise ratio (SNR), and hence, reduces the system capacity. The

amount of MAI in the output depends on the cross correlation, and relative delay

between the desired and interfering codewords, as well as on the interference strength.

To overcome performance loss due to MAI, many different directions have

been pursued. Power control has been used in IS-95 CDMA implementations, and
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even more stringent power control schemes have been proposed for 3G systems. As

presented in the next section, MUD techniques have been studied over the past

decade, and proposed in 3G systems as an option for performance improvement.

1.2.1 Multiple User Detection

In a CDMA system, the capacity is mainly limited by MAI due to the co-existence of

multiple access users with non-orthogonal signature codes. The well known near-far

problem is one of the principle obstacles, for which various MUD techniques have

been proposed.

The optimum MUD technique, initiated by Verdu [2], considers MAI not as

additive Gaussian noise, as in previous analysis, but rather as a realistic optimization

problem. For optimal MUD, a maximum likelihood sequence detector was used.

This detector calculates the Euclidean distances between the received matched filter

output sequence and each of the possible transmitted sequences, and chooses the

sequence with the minimum distance. This optimal MUD has extremely high compu-

tational complexity which is exponential in the number of users. Therefore, later

research targeted suboptimum algorithms of practical complexity.

The decorrelator proposed by Lupas and Verdu [3, 4] belongs to a set of

suboptimal linear (linearity in the sense of computational complexity as well)

multiuser detectors. It applies an inverse of the correlation matrix to separate

the multiuser signals, and the detector doesn't require knowledge of the users'

energy information. This makes the bit error rate (BER) performance of this decor-

relator independent of the interfering users' energies. An attractive aspect of such

a detector is that it is inherently immune to the near-far problem. In fact, the

near-far resistance property of the decorrelating detector is optimum [4]. However,

one of its major drawback is that it enhances the noise at its outputs, which causes

a reduction in SNR and loss of performance. Although increasing the desired user's
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transmitting energy would compensate for a decreasing SNR, and theoretically not

result in enhanced MAI to other users, it consumes important system resources in

terms of battery life, particularly on the mobile side.

The decorrelating multiuser detector requires knowledge of the signature

waveforms and timing information of the desired and interfering users, which usually

requires some complexity in the detector. As a result, attention has been focused

on adaptive multiuser detection [5] where only the desired user's information is

required. The minimization of the mean-square-error (MMSE) based adaptive

detector exhibits comparable near-far resistance performance as the decorrelating

detector. However, to achieve multiuser detection, MMSE replaces the complexity

for acquiring information of interfering users with additional training sequences for

every active user.

The challenge then becomes to eliminate the need for training sequences while

maintaining comparable performance to that of the MMSE detector. This can

be accomplished by using a minimum variance technique employed previously in

adaptive array processing [6], and which resulted in the blind adaptive detectors [7, 8].

The minimum variance detector (MVD) is basically the constrained minimum output

energy (MOE) linear detector. It minimizes the output energy in canonical form,

which means using a linear transformation that consists of the desired user's signature

waveform and its orthogonal component. Implementing MOE blindly means that

there is no need for a training sequence. However, in a time-variant fading channel

the performance of such a scheme deteriorates significantly as a result of very low

received energy of the desired user when in a deep fade. In this dissertation solutions

have been developed to overcome this effect of the time varying fading.
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Figure 1.4 FF structure of bootstrap decorrelator with two inputs

1.2.2 Bootstrap Detector

One of the adaptive decorrelating detectors is called bootstrap decorrelator. It is

based on the bootstrap algorithm which was initially proposed for interference cancel-

lation in [9]. It was then applied to cross-polarization for satellite communication

in [10].

The bootstrap is often referred to as a signal separator rather than an inter-

ference canceler because it removes the cross correlation components between output

ports, and results in "cleaned" outputs for all users' signals, a desired property for

multiuser detection applications. There are basically three different structures of

the bootstrap decorrelator: the backward-backward (BB) structure which uses a

minimum power criterion, the forward-forward (FF) structure which utilizes a corre-

lation criterion, and the forward-backward (FB) structure which employs a combi-

nation of the first two structures. Among these three structures, the FF bootstrap

detector has been widely studied and applied to multiuser detection [11, 12, 13]. A

two input-two output FF structure is given in Figure 1.4.
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The comparative study in [14] shows that even though the linear minimum

mean squared error (LMMSE) based multiuser detector and bootstrap multiuser

detector are derived from different criteria, they exhibit approximately equal

performance in CDMA multiuser applications. They differ in that the adaptive

bootstrap detector has no requirement for a training sequence. In this sense, it can

be implemented blindly. On the other hand, the bootstrap detector should have

knowledge of signature codes and delays for all active users.

1.2.3 Interference Cancellation (IC)

Two categories of IC techniques have been studied intensively: parallel interference

cancellation (PIC) and successive interference cancellation (SIC). PIC [15, 16]

suggests to estimate and simultaneously remove all interferences from the received

signals so as to increased the signal-to-interference-plus-noise ratio (SINK) and

hence, improve detection performance. On the other hand, with SIC [17, 18] the

interfering signals are canceled sequentially, i.e. one after the other. SIC first ranks

the interfering signals in terms of their energies or amplitudes, then it estimates and

cancels these interferers starting with the strongest and ending with the weakest.

By removing the stronger interferer, weaker signals are detected more accurately.

It was shown in [19], by simulation, that linear SIC outperforms one and two stage

linear PIC in a flat fading channel. The SIC scheme is not only robust in performing

cancellation but also relatively simple. For both schemes, stronger interference

result in improved detection and more accurate regeneration of these signals, and

therefore, provides better cancellation. Thus, PIC and SIC schemes have superior

near-far resistance when interference-to-signal ratios (ISR) are high. In a low

ISR environment, a poor estimate of the interference may degrade the detection

performance due to the introduction of a large cancellation noise.



10

To obtain a clean decision output, PIC and SIC are usually implemented in

multistage structures. An example was described in [20] where a multistage SIC

was arranged in a matrix structure. It was shown in [21] that a linear (linear in the

sense that the signal cancellation is performed with a linear transformation, while

non-linear means interference is re-generated using a non-linear transformation, for

example using hard decision outputs) multistage SIC's performance becomes asymp-

totically close to that of the decorrelator when the number of stages increases. The

non-linear multistage SIC outperforms the linear multistage SIC, especially in a

frequency selective fading channel. In a multistage PIC scheme each stage uses the

tentative decisions of all users from the previous stage to produce more accurate

decision outputs. However, as shown by Divsalar [22], this is not necessarily a good

approach, particularly when the interference estimation is poor at the early stages.

Total cancellation of the estimated interference may introduce a significant cancel-

lation error. Instead, cancellation of a portion of the estimated interference at thoses

stages would lead to a more reliable performance.

1.2.4 Transmit Diversity (TD)

Transmit diversity, with multiple transmission antennas was initially introduced

in [23]. TD is attractive for the downlink in current cellular systems as well as

in the forthcoming 3rd generation wideband systems, due to the increase in channel

capacity without sacrificing bandwidth, although at the expense of computational

complexity. Moreover, it can be implemented in the existing system infrastructure

without significant modification.

A number of different TD techniques have been proposed. With delay transmit

diversity (DTD) [23], the same information is transmitted over all the antennas with

different transmission delays. This approach artificially creates a dispersive channel

such that the receiver can take advantage of diversity gain. This method, which is
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particularly suitable for a small time dispersion channel, such as with indoor wireless

applications, is attractive due to its simplicity. For real performance advantage, the

relative delays between different transmission, need to be chosen carefully [24]. Also,

as shown in [25], DTD has limited performance gain due to loss of orthogonality

among transmissions.

Orthogonal transmit diversity (OTD) [26] simulcasts the information over

different antennas to obtain code diversity. In order to maintain orthogonality

among the transmitted information, a unique orthogonal code (e.g. Walsh codes) is

assigned to each different transmit antenna. The code length is usually doubled (for

a two-antenna case) to maintain the same effective number of codes as for a single

transmit antenna scheme [27]. A doubled chip rate is then required to transmit the

information data at the same rate which results in a loss of bandwidth efficiency.

Also, to preserve orthogonality between different transmissions, the OTD scheme

requires signals from different antennas to be synchronous.

In [28] Alamouti proposed a simple space-time transmit diversity (STD) scheme

which exploits both spatial and temporal diversity for a synchronous situation. This

scheme is also of the OTD kind because two consecutive symbols are coded on a two-

dimension orthogonal basis. Unlike other OTD techniques in CDMA that use two

codes per user for two transmit antennas, this scheme requires only one spreading

code per user. As was shown in [29], the Alamouti scheme yields the same diversity

order as one transmit antenna and two receive antennas with MRC combining when

perfect channel estimation is assumed. However, it is significantly more sensitive to

the accuracy of the channel estimation. If perfect channel estimation is not available,

the two transmit/one receive antenna scheme provides inferior performance to that

of a one transmit/two receive antenna scheme with MRC combining.

In [30], differential detection was implemented with the two transmit antennas.

It requires neither knowledge of the channel nor the pilot signal, while its performance
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suffers a 3dB loss compared to that in [28]; the channel was assumed synchronous

flat fading.

An overview of these TD techniques shows that the multiple transmissions

should be well coordinated, or synchronized. When signals travel through a frequency

selective fading channel, and particularly when TD antennas are mounted at different

site locations, it results in multipath and asynchronous reception. Consequently, this

will violate the synchronization condition required by the aforementioned schemes,

and hence deteriorate the receiver's performance. Therefore, in such an environment

these TD techniques require channel equalizers at the receiver to overcome signal

distortion, increasing the receiver complexity. How to combat the effect of multipaths

with reduced computational complexity is an important topic to be discussed in this

work.

1.2.5 Channel Parameter Estimation in Time-variant Fading Channel

To obtain sufficient performance gain, accurate knowledge of the channel and user

parameters is necessary for most proposed MUD schemes. This includes parameters

such as propagation delay, user's spreading codes, complex channel response, etc [7].

Even though knowledge of the transmitted signal's energy is not required for

many detectors, it becomes necessary when M-ary quadrature amplitude modulated

(M-QAM) signals [12, 31] are used. Then, a sorter, which can detect levels in M-

ary signal constellation, is used for decision making instead of the hard limiter for

BPSK modulation. When M-QAM signals go through the propagation channel,

their constellation may be distorted by channel fading. At the receiver, the detector

requires sufficiently accurate information of the channel response to correctly recover

the original signal constellation. In a multipath channel, the response corresponding

to each path can be exploited to maximize the receiver performance by using MRC
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combining. Therefore, channel gain estimation in a time-variant channel environment

is a major subject of wireless signal detection.

M-ary quadrature signals may suffer phase distortion (a form of phase rotation)

in the propagation channel. In addition, the local coherent detector at the receiver

can also add a phase error to the outputs. Phase shift estimation and correction

is crucial for M-ary quadrature signal detection. Furthermore, due to the time-

variant nature of the channel, these phase errors change in time. Thus, an adaptive

phase correction process before the decision-making will significantly improve the

performance of M-ary modulated signal detection.

Knowledge of path delays is another important condition for high performance

MUD. Almost all multiuser detectors assume knowledge of the propagation delays for

all users or at least the desired user. Detection performance is, in general, sensitive

to a propagation delay estimation error [32], especially in a near-far situation. Thus,

propagation delays should be estimated with as accurately as possible. A robust

receiving technique which can tolerate a large delay error is preferable.

In [33, 34], path delays were estimated using MUSIC algorithms, assuming

the number of users and the noise covariance matrix are known. The total number

of users should be limited to maintain a large enough noise subspace dimension.

Special codes were designed by Missiroli [35] to estimate both delay and channel

phase shift at the expense of implementation complexity. Another popular estimator

based on the Maximum-Likelihood (ML) algorithm was shown in [36], which made

use of a whitening process such that the interference becomes approximately white

and Gaussian.

These estimation schemes require knowledge of the covariance or autocorre-

lation matrix, which is in general unknown and should be estimated from observation

samples. For an accurate estimate, a large number of samples is required. However,

in a time-variant channel the number of samples used for estimation should be kept
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small to avoid significant channel change during the estimation. On the other hand,

an insufficient number of samples will result in an erroneous estimate of the covariance

or autocorrelation matrix, and introduce a timing error.

Considering the importance of the channel response and propagation delay in

MUD, their estimation in a time-variant channel is an important part of this work.

The parameter estimation is based on the received observation samples, either with

or without pilot reference signals. This work focuses on estimation schemes that

use a limited number of samples, making them suitable for practical systems with a

requirement for low computational complexity and fast estimation.

1.3 Low-pass Signal Model over Time-variant Frequency Selective
Rayleigh Fading Channel

Assuming the information symbols, from user k, are spread by the signature code

ck . Then, the n-th transmitted symbol of user k is given by

where ak is the signal transmitted energy of user k, and T is the symbol interval.

Spreading codes ck , k =1,• • • , K, are given by

where the chip interval T, = TIN, N is the processing gain, gk (j) is the j-th chip

of the codeword for user k, and p(t — jTc) is the chip pulse-shaping filter, which

is assumed rectangular. Transmitted signals experience independent asynchronous

selective fading channels. Let Lk be the number of resolvable discrete multipath

components associated with the transmission, then, the multipath channel impulse

response is,
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where Tkl is the delay of the l-th path of user k. In a time-variant channel, Tkl varies

in time. However, its variation is usually slow, such that, for simplicity, it is assumed

fixed. Without loss of generality, it is assumed that 0 < Tkl < 7-k2 < • • • < 71cLk7 and

min{τk1} = 0. Also, γkl(n) is the independent channel fading experienced by user k

on the /-th path at the n-th symbol. The received signal may be represented as

Consider all active users and multipath transmissions. Then, the equivalent low-pass

received data sequence at the input of the receiver's front end is the superposition

of all transmissions, which is given by

where K is the number of total active users. v(t) is a zero-mean Gaussian noise with

variance a 2 . Without further mention, this work assumes that the n-th symbol of

the 1st user is the desired symbol of the desired user.

Expression (1.6) represents the equivalent baseband asynchronous received

signal in a time-variant frequency selective fading channel. This model should be

modified in accordance with the specific environment. For example, in a downlink

channel, the signals for different users may suffer the same channel fading and propa-

gation delay as they travel through a common path. As such, the fading γkl (n),

number of multipath Lk, and delay τkl will be the same for all users, such that the

subscript k can be dropped.



Figure 1.5 One-shot matched-filter receiver

1.3.1 One-shot and Multi-shot Matched Filter for Asynchronous Channel

At the matched-filter (MF) bank of the receiver front end there are basically two

methods for signal processing, termed "One-shot" [37, 38] and "Multi-shot" [39],

respectively.

Figure 1.5 is the "One-shot" processing structure, where the MF bank is

synchronized to the first path of user 1, and all path delays are assumed within

one symbol interval T. This structure requires 4 / (0 and 4 1 (0, where

and

for 1 =1,• • • ,L and k =1,- • • , K, which are used to correlate the received signal for

the l-th path of user k during [0, T]. Since the outputs for all multipaths, except the

first, contain only part of the desired signal, the output corresponding to 4 / (0 can

be combined with the next symbol's output corresponding to ckl^l(t) to obtain better

performance. Another potential problem for the "One-shot" approach is the fact

that for some spreading codes and delay patterns, the "partial correlation matrix"
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Figure 1.6 Multi-shot matched-filter receiver

between these partial codes may be singular. This condition can give difficulties to

MUD detection.

Instead of a single correlation window as in one-shot MF, a "Multi-shot" MF

uses multiple correlation windows, as shown in Figure 1.6. In the "Multi-shot" MF,

each delayed version of the different codes is synchronized to each path of every user.

For the l-th path of user k, the MF correlates the received signal with signature ck (t)

synchronized to [nT +Tkl ,kl 7 (n+1)T+ Yu ]. This approach doesn't require an additional

delay-and-combining process. To explore all information, a few information bits of all

paths of all users must be stacked together. The extended correlation matrix, which

corresponds to the stacked data, is non-singular and in general diagonal dominant.

In this work, "Multi-shot" MF is used to handle the received signal.

1.4 Overview of the Dissertation

The application of high data rates to wideband CDMA brings new challenges in

terms of MAI and ISI suppression due to the fact that, in comparison to "regular"

CDMA, the delay spread is no longer a few chips but could be significantly more.
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Most current literature on multiuser detection is focused on algorithms that are not

suitable for channels with large delay spread without high computational/hardware

complexity.

In Chapter 2, a de-biasing based MUD detector is derived. By exploiting the

structure of the extended correlation matrix, a simplified algorithm is proposed,

which effectively removes redundancy in the signal processing without loss in

performance. An adaptive symbol-based signal separator, based on multi-shot

MF, which is suitable for the asynchronous large delay spread fading channels, is

presented.

M-ary quadrature modulation is an efficient approach to increase the trans-

mitted data rate while preserving the radio spectrum resource. However, the trans-

mission of M-ary modulated signals is more sensitive to channel variations. The

received signal constellation may be distorted and rotated due to the channel fading

and phase shift, which dramatically degrades the receiver's performance.

In Chapter 3, an FIR decorrelating receiver is proposed that has low implemen-

tation complexity. Together with an adaptive channel gain estimator and a bootstrap

based adaptive phase corrector, a blind detector is obtained. This blind detector is

shown to provide promising performance in a time-variant fading channel if the phase

error is limited within a certain range. It is worth emphasizing that the proposed

structure is suitable for to both PSK and M-ary QAM modulated signals.

In Chapter 4, the MVD based receiver is presented. To overcome the

performance loss due to the time-variant fading channel, a decision aided adaptive

channel estimator is derived, which is shown to be insensitive to MAI and ISI if

low BER condition is satisfied. With the proposed channel estimator, the MVD

receiver has a performance comparable to that of a linear MMSE receiver in a

time-variant Rayleigh fading channel. Since the MVD receiver is basically a single

user detector, and its performance approaches that of linear MMSE, adaptive MVD
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based multistage PIC and SIC schemes are proposed, in which the MVD receiver

is used as the building-block. The proposed schemes provide sufficiently accurate

estimation at the first stage, such that the following stage is able to remove a

significant amount of interference. As a result, the required number of stages will be

small.

If power control is used the received signal energy, and thus the SINK, of all

users is maintained at an equal level. As a result, their BER performance is at the

same level. Consequently, an SIC scheme whose operation is based on signals' level

ordering, may not provide performance improvement for detection of the remaining

signals after interference is canceled, since it could enhance the interference with

a probability comparable to the BER before cancellation. However, a sufficient

condition is derived that ensures the SIC scheme work in a strict power control

situation. It is shown that when the BER is very small and this sufficient condition

is satisfied, the SIC scheme, which cancels interference in arbitrary order, is able to

improve detection performance for users in a successive order.

With the MVD receiver, a new transmit diversity scheme, called TD-MVD,

is proposed. Most transmit diversity schemes assume the channel is flat fading,

or require a channel equalizer when the channel is selective fading. However,

the proposed TD-MVD is inherently suitable for an asynchronous multipath

environment. This provides a significant design convenience for practical imple-

mentation of transmit diversity. Signals can be transmitted from diversity antennas

located at the same base station or at separate base stations without sophisticated

coordination for synchronization.

As was emphasized earlier, this dissertation focuses on the development of

algorithms for a time-variant fading channel. This means signal acquisition should

be performed within a small processing window, otherwise the channel may have

changed significantly, resulting in erroneous outputs. This is particularly important
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in time-variant channel acquisition for real time processing. The effect of a delay

error on the adaptive bootstrap receiver's performance is analyzed in Chapter 5.

And in Chapter 6, a simplified maximum likelihood (ML) channel response and

delay estimation scheme is developed. The simplification is a result of the reduced

correlation between different elements of the signal samples when transforming the

received temporal data into frequency domain data. It is shown that, when using

an oversampling technique on the temporal data, the proposed estimator exhibits

a performance close to the CRLB besides its reduced computational complexity.

Furthermore, with this scheme the processing window size can be made smaller than

the dimension of the sample vector. In comparison, a traditional ML estimator

can't function correctly in such a situation, because the correlation matrix becomes

singular due to insufficient data samples. Therefore, the proposed estimator is very

suitable for a time-variant channel where fast acquisition is required. Chapter 7

presents conclusions based on the work in the previous chapters.



CHAPTER 2

MULTI-SHOT CANCELER FOR WIDEBAND CDMA SYSTEMS

Due to its potential for increased system capacity, CDMA has become a major

technology for wireless communication in the past decade. However, the performance

and capacity of CDMA systems significantly deteriorate when MAI is present. Verdi',

in [2], proposed a way to combat MAI that employs the knowledge of the correlation

between code words. A number of single-stage suboptimum receivers using decorre-

lating detectors and linear transformations of the matched filter outputs have been

discussed in [3] while a multi-stage detector was discussed in [40].

Due to the increasing demand for multimedia services, CDMA technology is

applied to higher data-rate applications. As a consequence, the delay spread in

multipath propagation channels, in terms of symbol intervals, becomes larger. In

most of the literature, the maximum assumed delay spread is limited to within one

symbol interval. However, in wideband CDMA (WCDMA) delay spread can be larger

than one symbol interval, resulting in significantly increased ISI and MAI, and hence,

deteriorated system performance. Combating these effects is an important aspect of

WCDMA receiver design.

The "Bootstrap" algorithm, presented in [41], provides an efficient approach

to adaptive separation of multi-user signals without the use of training sequences.

As described in [11], this algorithm features low-complexity and quite satisfactory

performance for CDMA applications. The linear transformation controlled by the

algorithm is obtained by minimizing the correlation between the transformed outputs

and the estimated data.

Multi-shot approaches to CDMA signal separation, shown in [42], use a de-

biasing method based on diagonal dominance properties of the extended cross-

correlation matrix. These multi-shot detectors have been shown to improve

21
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performance. In previous work, however, maximum path delay was taken to be

less than one bit time.

In this chapter, the effect on the performance of increased path delay, to more

than one symbol, is examed. Simplified decorrelating structures are derived, which

reduce the computational burden without loss of detection performance by elimi-

nating redundant operation. The adaptive Bootstrap receiver is also proposed.

To combat channel fading, an adaptive channel gain estimator, similar to the one

introduced in [43] is used.

2.1 Multi-shot Matched Filter Receiver

Assuming perfect phase tracking at the input of the multi-shot matched filter bank,

and number of multipath is same for all users, i.e. Lk = L for all k, we define the

combined multipath signature Cck for user k as

This combination of multipath signals associated with user k is also depicted in

Figure 2.1.

Figure 2.1 Combined multipath signature for user k
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Assume the maximum path delay is less than mT , m integer. Then, apply a

matched filter to correlate the received signal from τm in  to T + τmax, where τmin and

Tmax are the minimum and maximum delays respectively among all delays τkl. The

output of the matched-filter sampled at the n-th symbol is
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where, the correlation matrix P of dimension MK x MK is diagonal dominant due

to the correlation property of the signature codes. A three-users example of 2, with

M = 5, in = 2 and L = 3 is given in Figure 2.2, which depicts diagonal dominance.

Figure 2.2 An example of the extended correlation matrix, showing diagonal
dominance

Equation (2.6) indicates that if the sequence length M is large enough, the

midterm of x(:, n), i.e. x(n), has zero bias. It is obvious that the signal data can be

recovered by taking the inverse of matrix P and applying it to x(:, n):
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Due to the diagonal dominant property of matrix 2 -1- , bias has the smallest

effect on the midterm of y(:, n), y(n). We call performing P ^-1(x(:, n)) and choosing

its midterm a de-biasing detection.

To achieve de-biasing detection, the symbol stack M must increase when the

delay m increases. As a result, the calculation of the inverse of P becomes more

challenging. When m is not very large, it is proposed to use a block matrix approach

to simplify this calculation as described in section 2.2.

2.2 Simplified De-biasing Method for Small Maximum Path Delay m

Here, two cases of m are discussed.

Using equation (2.6) and for a delay Tmax < 2T (m = 2), it can be shown that, to

minimize the bias effect to y(n), the minimum number of stacked symbols M is 5.

In this case, only the mid-term of the bias is zero, and is given as,

To simplify the inverse matrix calculation, P is grouped to form a new block



Using the partial matrix inverse lemma, a simplified expression can be derived,

where, y(n) is the de-biasing detection of [yT (n — 1) , yT (n) , yT (n + 1)F. The mid-

term vector of y(n), of dimension K, i.e. y(n), is the de-biasing detection output. It

can be sent to a hard limiter for the final symbol decision when BPSK modulation

is employed.

The output y(n) contains redundant information about the desired data. In

fact, the data stream might be arranged into a matrix form:

Back diagonal averaging for de-biasing output y(n) will make use of the desired

information contained in the different positions, and may provide improved detection

performance.

Extending the same approach to a maximum path delay less than 3T (m = 3) is

straight forward. Here, the structure of the block matrix is presented.

From equation (2.6), it can be shown that the minimum number M is 7 to

minimize the bias effect to y(n). To simplify the calculation of the inverse matrix

P- ', the block matrix inverse lemma is used. The matrix P is grouped as follows,

26
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where the elements of the block matrix P are:

and P is given as before. Then, the detector's output becomes:

The final decisions are therefore based on the detector's outputs.

2.3 Iterative Solution

Consider again the linear relation in equation (2.6):

a few iterative methods can be applied for solving the linear equations. Unlike the

decorrelating detector, which requires cumbersome inverse matrix computation of

the correlation matrix P, iterative algorithms provide computational simplicity with

promising detection performance provided that the algorithms converge fast enough

to the steady-state solution.

2.3.1 Richardson's Method

One iterative method to solve the linear equations is by Richardson [44] in which the

(p+ 1)-th iterative output for the n-th symbol is given as:

where, it is a step size, that controls the convergence rate. When equation (2.16)

reaches the steady state, the detection output is the hard decision of y p+1 (:, n).

The iterative Richardson's algorithm can also use the Gauss-Seidel method to

improve the convergence rate. Instead of using the p-th iterative output y p (:, n) in
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equation (2.16), the Gauss-Seidel method suggests using the most recent estimates

of yp+1 (:, n) to replace previous estimates during the (p + 1)-th iteration:

for 1 = 0, 1, ..., MK— 1. The x(/, n) and yp(l, n) refer to the l-th element of vector x(:

, n) and yp (:, n), respectively. The convergence rate comparison of the two algorithms

is shown in Figure 2.3, where 3 users, each with 3 paths are used. It is clear that

the Richardson + Gauss-Seidel method converges faster than Richardson's method

because it exploits more available information.

Figure 2.3 Convergence rate comparison with two algorithms

2.3.2 Convergence Analysis

Since matrix P is invertable, we can define y*(:, n) by
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At each stage of iteration, the estimation error ep is equal to ep = yp (:, n) — y*(:, n).

Using equation (2.16), it is easy to obtain that

The matrix P is Hermitian, i.e. P = PH . By applying eigenvalue decompo-

sition (EVD), the matrix P can be written as

where the diagonal matrix Ap = diag ([λo, λ1, ..., λMK- 1 ]) with A i the eigenvalues of

P, and the column vectors of the matrix Qp are the corresponding eigenvectors,

which satisfies Qp^HQp = I. Therefore, equation (2.19) becomes

For convergence, equation (2.21) should approach zero when p increases. This

results in the following condition

Therefore, u must satisfy,

2.4 Bootstrap Adaptive Detection and Gain Estimation for Wideband
Rayleigh Fading Channel

From the above derivation, it is clear that due to the inversion of the extended

correlation matrix P the calculation complexity of the debiasing decorrelator grows

rapidly with increasing M. Also, due to the fading channel characteristics, it is very

difficult to track changes of the channel for updating the matrix P. It is suggested

to use the adaptive bootstrap decorrelator instead of the fixed decorrelator for a

wideband fading channel.



Figure 2.4 Bootstrap structure for maximum delay less than 2T and M=5

The bootstrap structure has been shown to be a robust decorrelator in low

signal to interference and noise ratio environments [41]. It is an adaptive algorithm

that requires no training sequence. For a multiuser system with a multipath channel,

it is represented in matrix form as,

where, ST(:, n) is the decorrelator output and x(:, n) is the output of multi-shot

matched filters with M symbols stacked. I is the MK x MK identity matrix.

W is an MK x MK matrix with diagonal elements equal to zero. The recursive

algorithm for the other elements in W is,

In [43], a simplified channel gain estimation scheme was proposed, which uses

the correlation of each path's matched filter output xkl with bit decision bk to estimate

each path's channel fading 7k1 . The block diagram for such an estimation is given in

Figure 2.5.
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Figure 2.5 Receiver structure with channel gain estimation algorithm. 3 multipaths
are assumed, and M=5.

where, it is assumed that the probability of error of user k, i.e. Pek, is sufficiently small

such that bk (n) ti bk (n) and MAI is suppressed due to its approximate uncorrelation

with bk (n). The correlation pli is,



the estimation of the channel gain for each path. The estimation accuracy depends

on the partial correlation between different paths, and Pek . They need to be small to

ensure an acceptable estimate. To adaptively track the time variant fading channel,

the following recursive equation is proposed:

In the steady state, the mean E[γkl(n)] = E[xkl (n — 2)4(n — 2)]/(1 — A) =

E[xkl(n)bk(n)]/(1 — A). When channel fading varies according to section 1.1.1, the

recursive algorithm in equation (2.30) provides the estimation of channel gain γ kl(n).

The coefficient (1 — A) is the same for different paths of user k, and can be removed

with normalization before γkl (n) is used for MRC combining.

2.5 Simulation Results and Conclusion

In simulations, three users with three paths for each user were used. Gold codes with

length N = 15 were chosen as signature waveforms. The bit signal-to-noise ratio of

the desired user, defined as

was set to 8 dB. Considering the spreading gain with a code length of 15, the chip

SNR is about 11.8 dB lower. For simplicity, the channel was assumed invariant for

the de-biasing detector such that the delays remained constant and the extended

correlation matrix P remained unchanged.

Different detection methods were compared. De-biasing (mid) detection made

decisions based on the mid-bit of de-biasing output vector y(:, n). De-biasing (ave)

detection used a diagonal averaging process. As a comparison, the bootstrap detector

was also applied to the same channel. A random delay distribution was used in the

simulations and all the results were based on averaging over the different delays.
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Figure 2.6 De-biasing and bootstrap approach with maximum delay< 2T. SNR(1)
is desired user's signal-to-noise ratio and SNR(2) and SNR(3) is of interference

Simulations for the bit error rate were run for M = 5 and M = 7 symbol

stacks for a maximum delay of 2T or 3T respectively. Figure 2.6 and 2.7 show

that de-biasing detection and bootstrap detection have better performance than the

conventional matched filter over a large range of interference strength. Note that,

even when the interference energy is very small, the proposed detection algorithms

have a significantly lower BER than the conventional detector. The reason is that

when the delay spread is assumed to be more than one symbol interval, there is the

1

possibility that the delay difference between different paths of the desired user is an

-- 7k/ 2integer multiple of the symbol interval, i.e. |Tkl1 = jT, 1 1 12 and j is integer. In

such a situation, the matched filter detector suffers a dramatical performance loss due

to severe ISI, while the proposed de-biasing detectors or bootstrap detector, which

exploits the correlation between different paths and users, can effectively remove the

ISI. As a result, the proposed detectors significantly outperform the matched filter

detector.



Figure 2.7 De-biasing and bootstrap approach with maximum delay< 3T

This explanation is emphasized in Figure 2.8. Here, the maximum path

delay spread was limited to within one symbol interval while for the de-biasing

detector it employed the scheme assuming maximum delay< 2T. Since the delay

difference |Tkl1 — Tkl2| < T,the most detrimental delay pattern, i.e. integer multiples 1

of the symbol interval, does not occur. Therefore, the conventional detector and

de-biasing detector both approach the same BER when the interference energy

decreases. However, the latter still exhibits significantly greater near-far resistance.

In conclusion, the de-biasing detector provides improved performance in large delay

spread environments at the expense of complexity. Figure 2.9 depicts detection

performance with the Richardson + Gauss-Seidel method. It provides comparable

performance with de-biasing and bootstrap algorithm as shown in Figure 2.6 and 2.7.

Clearly the performance of the de-biasing detector can be improved by reducing

the effect of the bias, which is achieved with a large stacking size M. In Figure 2.10,



Figure 2.8 Apply maximum delay< 2T de-biasing detector to maximum delay< T

Figure 2.9 Detection performance with Richardson and Gauss-Seidel methods
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Figure 2.10 Comparison of maximum delay< 2T detector with different stacking
length M

the performance of the de-biasing detector is shown for different M with a maximum

delay< 2T. The selection of M is a trade-off between detector performance and

complexity.

If the maximum delay is over 3T, the calculation of the correlation matrix P

and its inverse become prohibitively complicated. Fortunately, the signals with larger

delay usually suffer significant propagation attenuation and can thus be ignored for

most applications.

In Figure 2.11, the bootstrap detector with the channel estimator given

in section 2.4 was also evaluated using a time-variant channel as described in

previous chapter. The BER performance is compared using equal gain combining

(EGC), maximal ratio combining (MRC) with the actual channel gains, and MRC

with adaptive gain estimation. The bootstrap detector with actual channel gain

used shows comparable performance as the detectors in Figure 2.6 for the time

invariant channel. However, the bootstrap detector with MRC and adaptive channel



Figure 2.11 Bootstrap with equal gain, maximum ratio combining and combining
with estimated channel gain in Rayleigh fading environment. Maximum delay< 2T

estimation only works well when the interference is not very high. When the inter-

ference SNR is more than 5dB greater than the desired user's SNR, the estimation

loop of the desired user's channel gain becomes unstable causing the detection

performance to degrade quickly. A reason for such instability is that with stronger

interference, the correlation outputs of the adaptive estimator contain a large residue

of the interference, which introduces positive feedback into the adaptive estimation

process. If MAI at the matched filter output can be reduced before performing

channel estimation, the aforementioned instability could be eliminated. It will be

shown later that with a minimum variance based channel gain estimator a stable

and accurate estimation can be obtained even in a high near-far ratio environment.



CHAPTER 3

M-ARY QAM RECEIVER IN TIME VARIANT FREQUENCY
SELECTIVE RAYLEIGH FADING CDMA ENVIRONMENT

Third generation systems with bandwidths as large as 5MHz have been proposed

by UMTS/IMT-2000 [45, 46], in which a mix of data transmission types should be

supported to provide high data rate services. M-ary quadrature modulation may be

used in a CDMA system to achieve high spectral efficiency [47, 31].

The challenge in an asynchronous time variant frequency selective fading

environment is that of handling amplitude and phase shift variation caused by the

channel. Particularly, with an M-ary modulated signal these variation will distort

the original signal constellation and thus deteriorate the receiver performance. To

correctly detect the M-ary signals it is essential to recover and use the channel gain

and phase shift in the detector.

In this chapter, the focus is on a z-transform based decorrelating detector [48]

for M-ary modulated signal detection. Unlike the regular decorrelator which stacks

a number of symbols and calculates the inverse of the extended correlation matrix,

only the inverse of a partial correlation matrix, which has a reduced dimension, is

used. Also, the required truncation of an infinite-impulse-response (IIR) structure,

to a practical length finite-impulse-response (FIR) structure causes no significant

performance loss. To reduce the phase distortion blindly, the use of a bootstrap phase

corrector is proposed. Again, the decision aided channel estimator of Chapter 2 is

also used here for MRC combining. However, to avoid possible positive-feedback,

it is moved from the input of the bootstrap decorrelator to the output of the FIR

decorrelator. This modification results in a stable channel estimate in severe near-far

situation, though at the expense of increased complexity of the decorrelator.

38
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3.1 M-ary Quadrature Amplitude Modulated Signal

To mathematically deal with M-ary QAM modulation, the signal will be represented

in complex form. The I and Q rails of the signal are spread by different codes and

carry independent data streams. The received signal is

where bk (n) is complex valued with its real and imaginary part belonging to the set

{—(\/M — 1), —(\/M — 3), ...., (V M — 3), (\/M — 1)1. In addition, ck (t) is a complex

signature waveform of the form ckI(t) H-jckQ(t), where ckI (t) and ckQ(t) are spreading

codes used for the k-th user's I and Q rails. Let k1 be the phase shift associated with

the l-th path of the k-th user. The phase shifts of all paths from one particular user

are assumed to be the same, i.e. θk. This is reasonable as the difference among these

phase shifts, caused by different path delays, can be compensated at the matched

filter stage since the delays are assumed known. To fairly evaluate the performance,

the real fading coefficient -yid is normalized [48] such that the signal-to-noise ratio

remains unchanged:

Here, it is assumed that the delays of the received signals, 'r id , are known

accurately and that the maximum path delay (max TO is less than T. The scheme

can be extended to larger delay spreads in a straight forward manner. Using a

multishot matched filter bank [39], to correlate the received signal during the interval

[TkI , T + Tkl] for each path and each user with the corresponding code, its output is

as follows:
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where matrix A is defined in Chapter 2, F(n) is a real valued channel gain matrix

which contains the amplitudes of the channel gains:

And, x(n) = [x11(n),...,x1L(n),...,xic1(n),...,xKL(n)F, where xkl is the multi-

shot matched filter output of the l-th path of the k-th user. Phase matrix

0 = diag(ei e ' , e002, ..., ei°K) which is assumed static during adaptive phase correction

period.

Assume cT (t) = [c i (t — Tn.), • • • , ci(t — Yu), e2 (t — T21), • " , CK(t — TKL], then

the correlation matrix is

and the noise output is

where the coefficient 1" is to normalize the auto-correlation to 1. The channel

given in Chapter 1 doesn't fade fast such that F(n — 1), F(n), and F(n + 1) could be

treated as the same, i.e. F(n — 1) = F(n + 1) = F(n). Taking the Z-transform of

equation (3.2), the matched filter output x(n) then becomes,

where [FAA:1](z) is the combined z-transform of [FAA3](n). Assuming that each

of the received signals corresponding to different propagation paths is independent,
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exists and can be used to decorrelate the

matched filter outputs x(z). That is, the z-transform y(z) of the output y(n) =

vo (z) = H(z)v(z) is the noise output. With an estimate of the channel gain F(n),

the output of the MRC combiner is:

3.2 FIR Decorrelator

Since the correlation matrix P is non-singular, the transfer function H(z) can be

expanded into an infinite series form with the relation

It is obvious that the time response of the decorrelator is noncausal. In practice,

such a noncausal IIR filter can be replaced by an FIR filter through delay and

truncation. This truncated FIR version of the decorrelator is realizable, however,

inevitably introduces decision errors which affect its performance.

Let kt > 0 denote the delay for the truncation, then
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This structure is shown in Figure 3.1, and H 1 is shown in Figure 3.2. The

choice of kt is a trade-off between the detector's performance and system complexity.

It will be shown that when k t = 4, the detector provides almost flat near-far resistant

performance within a wide range of interference energy.

Figure 3.2 H1 structure

3.3 Channel Gain Estimate for M-ary QAM Signals

Here, the channel estimator used in Chapter 2 is extended to M-ary QAM modulated

signals. As in Figure 2.5, the estimator uses a correlation between the lth path of

the kth user's MF output, xkl , and the MRC output. Here, however, the combining

is done at the outputs of the decorrelator (see Figure 3.4). The MRC output is b k

with an unknown phase shift 0k , or ei °44, such that the output of the correlation is

given by,



The derivation of (3.11) is given in Appendix A, and uses the fact that data

symbols are independent of each other and the noise.

The real part in equation (3.11) can be used to estimate the channel gain of

path 1 of user k if the phase shift θk is within {-7/2,71/2}. The estimation accuracy

is acceptable as long as the correlation, pml , between the different paths is small. A

recursive algorithm for '/k1 can be found in equation (2.30).

3.4 Phase Shift Correction

If the phase shift k is not equal to zero, the constellation of the decorrelator's

output will be rotated, causing errors in the symbol decision. Hence, to make a

correct symbol decision, this phase shift should be removed, before applying it to the

decision stage, i.e. the sorter. Let the detector's output be a phase shifted version:

The bootstrap algorithm has been used in [49] to correct a frequency offset in

an OFDM system. Here, it is applied to remove the effect of θk . Its structure is



Equation (3.15) indicates that the phase shift has been eliminated while an amplitude

change is introduced. Unlike BPSK, for M-ary QAM modulation, this amplitude

change introduces detection errors. For a fading channel, this amplitude distortion

can be corrected together with readjusting the channel gain.

The weight W is updated using the following adaptive algorithm:

where the sorter(.) gives multi-level hard decision for M-ary signals. It was found

that using sorter(.) to replace sgn(•) in [12] results in faster convergence and better

performance. A major reason lies in the fact that more information about the desired

signals is involved in the sorter's outputs which increase the convergence rate.



45

3.5 Symbol Sorter

The transmitter and propagation channel's gain is unknown to the receiver. Hence,

an Mary quadrature modulated data symbols' constellation will be distorted in

amplitude when they travel over the radio channel. An amplitude equalizer is therefor

needed at the receiving side to return the constellation to its original size. Note that,

the phase distortion of the channel is compensated separately through phase shift

correction. Thus, the only remaining distortion is an unknown amplitude gain gk for

user k. In time-variant fading channel, gk will be a time-variant coefficient.

Let zk be the k-th user's input to the sorter, which is an un-equalized complex

signal. The unknown factor gk is equal to

To estimate gk in a time-variant environment, a time sliding window with M

inputs of zk is used:

The constellation is then normalized by dividing zk by the estimation value gk ,

and the constellation size is corrected to its original value. The detector's structure

incorporating all above functions is shown in Figure 3.4.

3.6 Simulation Results and Conclusions

In the simulations, three active users each with three paths are used. Length 31 Gold

codes are chosen as the signature waveforms. The signal to noise ratio of the desired

user to AWGN is set to 12dB for a 16-QAM signal. Also, random delay spread was



Figure 3.4 Receiver structure

used in simulations with maximum delay within one symbol interval, and the results

are based on averaging over the different delays.

Figures 3.5 and 3.6 show the result of phase correction using the bootstrap

algorithm, with a phase shift θk = 0.2rad/s. The phase was corrected blindly.

Figure 3.7 depicts the near-far property of the proposed FIR detector with

phase corrector. The phase shift was set to k = 0.2rad/s. The detector with

k t = 4 provides a pretty flat near-far resistance property. With kt = 4, the detector

uses two more sub-blocks of H1(z) than the detector with kt = 2. The computa-

tional requirements linearly increases with the number of sub-blocks, and the stored

information bits. While due to the need of inverting of the extended correlation

matrix, the computational requirements of time domain decorrelator, discussed in

the previous chapter, increases exponentially to the stacked data size. Therefore, the
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Figure 3.5 Received 16-ary QAM signal before phase correction
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Figure 3.6 Received 16-ary QAM signal after phase correction
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detector proposed in this chapter provides a better solution for balancing performance

and complexity.

Figure 3.7 BER vs. near-far ratio for a 16-ary QAM signal receiving in Rayleigh
fading channel with 0.2rad/s phase shift

In Figure 3.8, interference users' energies were set to be the same as that of the

desired user. With both kt = 2 and kt = 4 the detectors present similar performance.

This means that, with perfect power control, the performance is less sensitive to kt

than in a severe near-far situation. If the BER performance requirement is not

stringent, the detector could use a smaller kt to obtain a simple implementation.

As the conclusion, the proposed scheme is able to detect M-ary quadrature

modulated signals in a time-variant channel with computational complexity increase

with the calculation of correlation matrices P and P1 . It brings implementation

simplicity when kt is small. Comparing to Chapter 2, performing MRC combining

for decorrelator's outputs presents stable performance under strong interference

environment. Obviously, this improvement is at the expense of increased complexity.
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Figure 3.8 BER vs. SNR for 16-ary QAM signal receiving in Rayleigh fading
channel with 0.2rad/s phase shift (all signals at same SNR)



CHAPTER 4

MINIMUM VARIANCE DECORRELATING CDMA RECEIVER IN
TIME VARIANT FREQUENCY SELECTIVE RAYLEIGH FADING

CHANNEL

The minimum variance beamforming criterion has long been applied in adaptive array

processing [6, 50]. It minimizes the interference power present in the output, while

its constraint allows signal distortion. In [8] on the other hand, a linear decorrelating

multipath constraint was used with the goal to separate the desired signal without

distortion. A subspace minimum variance decorrelating (MVD) receiver which has

reduced complexity by limiting the operation in signal subspace only is derived in [51].

Its performance, however, is sensitive to the estimation accuracy of signal subspace.

An advantage of the MVD receiver is that it requires only a desired user's

signature waveform and timing information. It was shown that the MVD receiver,

which is in fact a minimum output energy (MOE) [7] based receiver, provides similar

performance as an linear MMSE receiver [52] in a quasi-synchronous (delay spread

is much smaller than spreading code length) CDMA environment wherein delay is

a multiple of chip intervals. However, in practical situations the delay can be much

more than just a few chip intervals and non-integer multiples of chip interval. In

addition, the channel can suffer deep fading which dramatically deteriorates the

performance of the MOE algorithm.

In this chapter, a more general asynchronous situation is considered and it

is assumed that the delays are uniformly distributed over one symbol interval. To

combat performance loss due to deep channel fading, the MVD based decision aided

channel estimator is also derived, which can be shown to be near-far resistant and

recover multipath fading if the BER of the decision outputs is small. After decoupling

the multipath signals, the transmitted signals can be regenerated using the available

information including codewords, delays, and decision outputs. Then, MVD based

50
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adaptive PIC and SIC interference cancellers are applied in this chapter. An MVD

based transmit diversity (TD) scheme, named TD-MVD, is also proposed. This

scheme enables the multiple transmit antennas to be placed at arbitrary locations

even though the signals transmitted from different antennas are asynchronous as long

as the path fading remains independent.

4.1 Chip Rate Matched-filter Outputs

Consider the signal model in equation (1.6). It is assumed that the desired signal's

delays, τ1l , are limited to within one symbol interval, and not necessarily a multiple

of the chip duration. This assumption can be easily extended to more than one

symbol interval. Let 7-1/ = (m l + SOT, and T11 = 0, where m 1 = L T j is the largest

integer no more than τ1l. And, let p = 13141, where |x| is the smallest integer which

is no less than x. It is assumed that the delays are known at the receiver and that

the channel phases are perfectly tracked.

The chip rate MF, which aligns with the first path, samples the entire desired

as shown in Figure 4.1.

Figure 4.1 Chip rate MF samples of the received signal with misalignment for
multipaths except the first path



52

Then, the output vector x(n) of the MF at the n-th symbol is given by,

where Г(n)L×1 is defined as the desired user's channel response vector, which is

Matrix C is the desired signal's code

matrix, whose columns are the desired user's code sequences of length N shifted

where the coefficients 1— (5 i and 6, are the misalignment of the chip rate MF with the

multipath signals except the first. Each column in the code matrix C contains the

propagation delay information corresponding to the related multipath component.

Since no multipath signal from one transmit antenna has the same delay, the matrix

C has full column rank.

The noise vector u(n) is composed of ISI, MAI and AWGN. The MVD receiver

applies a set of weight coefficients Iv / to decouple the multipaths of the desired signals.

That is, the weight matrix W = [w 1 , w2 , wL](N+p)×L should satisfy the following

linear decorrelating constraint,

With condition (4.2), the decorrelator output y(n) is given by



To achieve the best performance, the weight matrix W, besides satisfying the

constraint of (4.2), is chosen to maximize the output SNR. Let

where it is assumed that the desired symbol of user 1 is uncorrelated with its adjacent

information symbols and other users' information symbols. We also defined the noise

auto-correlation matrix R u (n) = E[u(n)u^H(n)], and used E[b1^2(n)] = 1 for BPSK

modulated signals. The output SNR is obtained from (4.4),

Since the numerator does not depend on the weight matrix, maximizing the

SNR is equivalent to minimizing the noise output energy tr{W^H Ru (n)W}. From

equation (4.4), it is noted that the output energy of the MVD receiver, tr{Ry (n)} =

tr{Г(n)Г^H(n)} + tr{W^H Ru (n)W}. Therefore, minimizing the noise output energy

is equivalent to minimizing the decorrelator output energy tr{Ry (n)}. So, the

decorrelating receiver is basically a constrained MOE receiver. Estimation of the

matrix Ru (n) requires a desired signal silence period, which needs heavy coordi-

nation between the base station and each mobile user. Particularly in a time-variant

channel, such coordination should be repeated periodically. Utilizing the claim of

the following proposition, instead, SNRX which includes the desired signal can be

used.

Proposition: Assume the SNR of the output of the MVD receiver in the

presence of the desired signal is SNRX , and the SNR in the absence of the desired

signal is S N Ru . Then, with perfect estimation of both Rx (n) and Ru (n), SNRX =

S N Ru .
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Proof: see Appendix B.

The advantage of using Rx (n) instead of R„ (n) is obvious. Estimation of

Rx (n) can be directly obtained from the chip-rate MF output vectors x(n), which is

preferred from an implementation point of view.

From equation (4.3), Ry (n) = W H Rx (n)W . Hence, to maximize the SNR

choose W such that,

Using the Lagrange multipliers as in [6], we define

The optimum solution Wo for this constrained minimizing problem is found by

taking the derivative of equation (4.7) with respect to W I' and equating to zero:

which implies,

With constraint WoH C = I,

Replacing A/ in equation (4.8) with (4.9), the optimum solution is finally obtained

as,

In [8], an adaptive update of W via a standard LMS algorithm was presented.

Let the output power of the l-th path
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The gradient of the output power is given by

where, for simplicity, the correlation matrix Rx (n) was approximated by the single

sample outer product x(n)xH (n). Considering the constraint W HC = I, the search

direction is restricted to the constrained subspace, which is obtained by using the

projection of the gradient in (4.12) onto the subspace orthogonal to C. With the

orthogonal projection matrix PI = I — C(CHC)-1CH , the recursive algorithm is,

It can be written in matrix form as

It was stated in [8] that using the pseudoinverse of C as the initial value, W(0),

W(n) converges to its optimum value (4.10) with probability 1.

The output vector y(n) consist of the L paths' outputs, which can be combined

to obtain a better performance. For MRC combining, the combination coefficients

should be found. In [8], the output energies are used as the combination coefficients

assuming the output SNRs are very high at all paths.

However, in a time-variant fading channel, using the single sample's outer

product x(n)xH(n) to approximate the autocorrelation matrix Rx(n) will introduce

a large uncertainty, and dramatically deteriorate the detector's performance. The

SNR of the decorrelated multipath outputs can be very low when a channel suffers

a deep fade. Thus, using the output energies as combination coefficients will result

in performance degradation. As an improvement, here Rx (n) is estimated by an AR

low-pass filter with its initial value being R.(0) = 0.
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Therefore, the recursive algorithm for updating W(n) becomes,

For faster convergence of the recursive updating of weight matrix W(n), the

initial value of W(n) is not set to the pseudoinverse of C. Instead, equation (4.10)

is used to get the initial value of W(n) after an accurate estimate of Rx is reached

using equation (4.15). Thereafter, for every new sample, equation (4.15) is used to

update the estimate of Rx , and then, W(n + 1) is updated according to (4.16).

The performance is affected by the length of the initial stage to estimate the

Rx . Also, in [8], using the pseudoinverse of C as the initial value requires an initial

stage with W(n) converged to its optimum value. In Figure 4.2, the convergence rate

for both schemes is compared. Eight users are assumed, each with the same energy.

The SNR is 8dB, and the delays are not an integer multiple of the chip interval. It is

shown that the proposed scheme converges faster than the scheme in [8]. In 250 to

300 bits, the BER of the proposed scheme approaches its stable value. Apparently,

the improved performance is at the expense of increased computational complexity.

4.2 MVD Based Channel Estimation and MRC Combination

As mentioned before, in [8] the output energy of all paths was combined to

approximate MRC under the assumption that the interference and noise were
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Figure 4.2 Convergence comparison

sufficiently suppressed. However, in a time-variant channel, multipath signals may

suffer deep fading, which significantly reduces the output SNR, causing instability

in the energy measurement, and hence, deteriorating the combining performance.

Instead, a channel gain estimator is derived here to achieve an optimal combination

of the outputs.

In equation (4.3), the first term contains the channel response information

corresponding to each propagation path. The second term W Hu(n) consists of the

MAI, ISI and background noise, which are uncorrelated with b 1 (n) and have zero

mean. Due to this extra term, the output energy contains some residue that affects

the performance. When applying the decision aided channel estimator, as described

in previous chapters (see Section 3.3), a better estimate of the multipath fading

coefficients may be obtained, resulting in improved performance.
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Let Pe be the output error probability, and consider a BPSK signal. Taking

the expectation of the product of b i (n) and the MVD outputs y(n),

The second term in equation (4.18) is negligible because different users,

symbols, and paths are uncorrelated, resulting in,

where E[b1^2(n)] = 1. If the BER is small, there is an improvement over the results in

previous chapters since the ouput contains no fading residues from other multipaths,

as is the case in equations (2.29) and (3.11). Therefore, the MVD based channel

estimator may be able to provide a more accurate estimate.

The decorrelated desired multipath signals in the output vector y(n) are

combined using the estimated channel gain Г (n). If the desired symbol b 1 (n) is a

BPSK signal, the final decision is made by

For M-ary quadrature modulated signals, a sorter operation should take place. The

receiver structure with MRC combining is given in Figure 4.3.

The recursive I' (n) estimate algorithm is similar to (2.30). Using the correlation

in (4.19), it gives

A sample of the estimated channel gain is presented in Figure 4.4, where the

ISR is set to 14dB. In initial 200 bits, fading Г(n) is set to be equal for EGC



59

Figure 4.3 Decision feedback estimator and MRC combiner

combining. It shows that the MVD based adaptive algorithm accurately tracks the

channel fading. Using an ISR of 14dB suggests that the estimator works well in

the presence of MAI. Since the channel estimator provides decorrelated multipath

fading, its outputs can be used for further processing, such as signal reconstruction

for interference cancellation which will be added later.

In Figure 4.5, a comparison is shown for the proposed MVD receiver using

channel estimator outputs or output energy as combining coefficients. The estimate

of Rx based on equation (4.15) is used in both schemes. The figure shows that the

proposed channel estimator improves the performance in a fading channel.

Note that in the aforementioned discussion, it is assumed that the propagation

channel phase response has already been recovered. In case it is not, there are

basically two approaches to recover the unknown channel phase shift. One is to

periodically use a known sequence instead of the decision output 6 1 (n), which is

not available in case of an unknown phase shift exist. This approach requires the

channel phase shift to be quasi-static between two training sequences. The other is



Figure 4.4 Adaptive Channel Gain Estimate (ISR=14dB)
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Figure 4.5 Comparison of using channel estimator or output energy in fading
channel
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to use differentially encoded symbols b(n). This approach, however, may result in a

performance loss.

4.3 Performance Comparison

With perfect channel estimation as MRC combining coefficients, and the optimum

weight matrix Wo , the MVD receiver's output at the final decision stage is equal to

Then. the SNR at the output is.

The outputs of the conventional matched-filter receiver are obtained by taking the

receiver's weight matrix WMF = C. Using MRC combining, the output is given as

The SNR of the MF output is,

Let WMMSE be the linear MMSE receiver's coefficient vector, which is obtained

by minimizing the output mean-square-error (MSE).
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Therefore,

Taking the derivative of the MSE with respect to w*, and equating the result to

zero, it gives

which results in the MMSE solution as

So, the output of the linear MMSE is given by,

From (4.30), the corresponding output SNR is given by,

According to [8], the SNRMVD is upper bounded by SNRMMSE, or

Comparing equations (4.23) and (4.31), it is found that the equality in equation (4.32)

only holds when

One particular case assumes only a single path. As a result, the code matrix C

becomes the vector c1, the code word of user 1, and the channel response vector I' (n)
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becomes the fading coefficient 7 1 (n) of this path. Then, using Woodbury's identity

Replacing equations (4.23) and (4.31) with (4.35), it can be shown that both

SNR are same, or

The result is reasonable because, for the single path case, the condition in

equation (4.33) is always satisfied. It also implies that the linear MMSE and

MVD receiver are equivalent in a single path fading channel.

4.4 Performance Evaluation

In this section the performance of the proposed MVD receiver that uses the

estimation of Rx (n) as well as the adaptive channel estimation for MRC combining is

compared with several other receivers: MF, MMSE receivers, and Liu's scheme in [8],

which employed the output path energies for MRC combining and a single sample's

outer product to replace Rx (n) . The performance is compared through simulations.

Eight simultaneous active users, each with three paths, are used. Length N = 15

Gold codes are chosen as the spreading codes. The channel is time-variant using the

model described in section 1.1.1. All results are averaged over different combinations

of delays that are assumed uniformly distributed in [0,T).

Figures 4.6 and 4.7 show a BER comparisons between the proposed MVD

receiver and other receivers as a function of the desired user's SNR. In Figure 4.6
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delay is distribution continuous over one symbol interval while in Figure 4.7 the delay

is in integer multiples of the chip interval. All interfering users have the same signal

energy as the desired user such that the ISR = 0dB. Comparing Figures 4.6 and 4.7,

shows that the MVD receiver suffers more performance loss than the MMSE receiver

when the delays become continuously distributed. However, its performance is still

close to the MMSE receiver for both delay distributions, and better than the MF

and Liu's scheme [8]. The proposed MVD receiver exploits the same information as

the MF receiver, i.e. the desired user's signature waveform and timing information,

and does not require a training sequence as is needed by the MMSE receiver.

In Figures 4.8 and 4.9 the receivers' performance is compared in a more severe

interference environment where the interference is 14 dB stronger than the desired

user. Due to the error in estimating Rx (n) using a single sample, the performance

of Liu's scheme [8] deteriorates dramatically while the performance of the proposed

MVD receiver remains close to the performance of the MMSE receiver.

4.5 Performance Improvement Using the Modified Autocorrelation
Matrix Estimation

The previous section stated that using the autocorrelation matrix Rx instead of 17,,

is more convenient to implement because Rx can be estimated from the chip MF

outputs. It was shown in [53] that the detection performance of the MVD receiver

is highly dependent on the estimation accuracy of the autocorrelation matrix. In

a time-variant channel, the estimated Rx may suffer a large estimation error due

to the limited processing window size, and thus, significantly degrade the receiver's

performance.

However, it was shown in [54] that the estimate of the autocorrelation matrix

Rx (with the desired signal present) leads to a significant decrease of the SNR at

the MVDR output when a limited number of samples is used. With the aid of a
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Figure 4.6 Bit error rate vs the desired user's SNR with ISR=OdB (delay not
integer multiples of chip interval)

Figure 4.7 Bit error rate vs the desired user's SNR with ISR=OdB (delay being
integer multiples of chip interval)
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Figure 4.8 Bit error rate vs the desired user's SNR with ISR=14dB (delay not
integer multiples of chip interval)

Figure 4.9 Bit error rate vs the desired user's SNR with ISR=14dB (delay being
integer multiples of chip intervals)
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pilot, the performance was improved by estimating the desired signal absent matrix

Ru . This motivates the use of the estimation matrix Ru instead of Rx to improve

the MVD receiver performance. Obviously, the improvement is at the expense of

computational complexity because the estimate of Ru is not obtained directly.

Consider the desired user's multipath fading is provided by the channel

estimator, then the desired signal can be reconstructed by exploiting the existing

information, which includes the desired signal's spreading code, the multipath

delays and the decision outputs. To enhance the performance while minimizing the

complexity, it is suggested to not use the estimate of Ru that has to be obtained in

the absence of the desired signal. Instead, estimate R„, and therefore the channel

response, at an initial stage from which the desired signal is reconstructured.

Subtract the estimated desired signal from the received signal to estimate Ru . Then,

the weight matrix is obtained from Ru . This approach removes the complicated

coordination between base station and associated subscribers, while making full

use of the existing information provided by the proposed MVD receiver. The

computational requirements are not significantly increased.

In Figure 4.10, the MVD receiver's performance using an estimated Rx and

Ru is compared, where six users are assumed and the delays are integer multiples of

the chip interval. The interference energy is equal to the desired signal. Figure 4.10

shows that the proposed Ru estimation scheme provides a performance enhancement

in a time-variant fading channel.

The corresponding MVD receiver structure is given in Figure 4.11.

4.6 MVD Based Adaptive Multistage PIC and SIC Detectors

In many references, the building-blocks in multistage structures use rake receivers.

Although it is relatively simple, the overall complexity of the receiver is high as it



Figure 4.10 Performance comparison with Rx and Ru estimations.
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Figure 4.11 MVD receiver with Ru estimation
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requires many stages to achieve better performance, due to the inferior performance

of the rake receiver in a MAI environment.

Instead, adaptive MVD receiver based multistage IC detectors are proposed

here. Since the MVD receiver is a single user detector, and provides an accurate

estimate of the multipath fading, it can recover each interfering signal and remove

them with an IC scheme. Accurate estimation can be obtained at the first stage as

its performance is comparable to a linear MMSE detector. As a result, the following

stage will be able to remove a significant amount of interference. Hence, this reduces

the number of stages that is required. Also, to keep low implementation complexity,

the MVD receiver given in Figure 4.3, not as in Figure 4.11, is used as the building-

block.

In this section, after defining the MVD building block, both PIC and SIC

based structures are developed separately. Recall that SIC needs to rank the signals

in power, which raises a question regarding the use of the SIC structure with perfect

power control. In that case, the signal energies of all users are the same, or, equiv-

alently, all SINRs are the same. Hence, there is no significant interference for SIC

to cancel first to improve the detection performance for the other users. Therefore,

cancellation of any user may not improve the detection performance of the others.

Nevertheless, a sufficient condition, for which SIC still performs even with perfect

power control will be given in this section.

4.6.1 MVD Building-block Model

Considering the required processing power and the implementation complexity,

multistage PIC and SIC schemes are most likely adopted at the base station to

simultaneously detect multiple transmitted signals. The channel is then modeled as

an asynchronous frequency selective fading channel. For simplicity, it is assumed

that the number of resolvable discrete multipaths, L, is the same for all the users.
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For each user, say user k, the chip rate MF samples the interval in which the

n-th symbol is present: [nT +  τk1 , (n + 1)T +  τkL]. Then, the output vector x(n) of

the MF at the n-th symbol is given by,

This is the same as in section 4.1 except that here the code matrix Ck is given by,

as shown in Figure 4.3, is then used to detect and re-generate the signal for each

user.

4.6.2 PIC Structure

The MVD based multistage PIC structure is shown in Figure 4.12. At the first stage,

MVD detectors are employed to detect all user signals. The decision variables b1,k,

k = 1,- • • , K, combined with the channel gain estimates, are used to generate an

estimate for every user's signal. All regenerated signal estimates for i = I, . • • , K,

except i = k, are subtracted from the received signal r(t). The resulting signal at the

i-th branch consists of the i-th user's signal, the background noise, and error noise

caused by incorrect interference signal re-generation. This signal is then passed to

the next stage for further processing.



Figure 4.12 PIC structure, each MVD detector with L multipaths.

where γm-1,kl(n) is the estimation of the channel gain /..tk ryki (n) at the (in — 1)-th

stage.

With good estimation, it is expected that the SINR in the remainder signal

rm,k(t) is improved. Thus, each subsequent stage of the MVD detector is expected

to provide better detection performance than the previous one.

Reviewing Figure 4.12, it is clear that the processing delay of every stage is a

single symbol interval, and the total delay for an M-stage PIC scheme is M symbol

intervals. It is also clear that the processing delay for every user is same.

4.6.3 SIC Structure

The structure of a multistage SIC scheme is given in Figure 4.13, where two successive

stages are shown. For the first stage, rm (t) = r1(t) = r(t), and other inputs to

the adders are set to zero. The signal from every user is detected, re-generated,
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and subtracted from the input signal, in a descending order of the different signals'

energy, if applicable, or arbitrarily if perfect power control is assumed. After the j-th

cancellation at the first stage, what remains are the cancellation noise V, =1{sk(t) —

sk(t)}, where it is assumed that sk (t) is the received signal of user k and sk(t) is

its estimate, the background Gaussian noise, and the remaining signals. After all K

users are canceled, what remains at the outputs of the first stage are the background

noise and the compound value of the cancellation errors Er_dsk (t) — sk(t )}. At the

following stage, the estimates signal sk(t) of the preceding stage is restored to the

input, and the original signal sk (t) is recovered. However, the total noise is reduced

provided accurate cancellation of the interference took place at the preceding stage.

Therefore, detection and estimation at the following stage is better, which further

reduces the cancellation noise.

In most of the literature dealing with the SIC scheme, the different signals are

assumed to have different energy levels. As a result of ordering the interference by

energy level, the SIC is supposed to cancel the strongest interference first. Such

cancellation is performed in sequence until all the users are detected and canceled.

By canceling the strong interference, the detection performance of the weak desired

signal is improved.

However, there is an issue in applying such a SIC scheme to a practical systems.

To keep the interference plus noise floor as low as possible, so as to maximize the

system capacity, current and future CDMA cellular systems designers make efforts on

uplink channel to obtain stringent power control. Therefore, received signal energies

from all active users are kept the same at base stations, making the aforementioned

assumption of having different level signal for SIC invalid.

Since the SINK for every user is the same, their BER performance will be

similar. This contrasts with a situation without power control, where the BER for

the stronger signal is significantly lower than that of weaker signals. Then, the



Figure 4.13 SIC structure, each MVD detector with L multipaths.
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possibility of incorrect interference cancellation can be ignored. With perfect power

control, however, the chance of incorrect interference detection and cancellation is

comparable to the BER of the remained users with no cancellation. Thus, it is

possible that in such an environment the SIC scheme may not improve the detection

performance, but rather could worsen it. For a practical power control systems, this

becomes interesting to know if an SIC scheme can improve the performance and

under what conditions. A sufficient condition for BER improvement using an SIC

scheme in the presence of perfect power control is given next.

Proposition: With perfect power control, that is when all users' received signals

have equal energy, or SINR. Let the corresponding BER at the output of the

detector be Pel(SINR), 1 = 1,• • • , K. The Pel (SINR) is not necessarily be equal

for all 1. Assume user 1 through user (k — 1) have been detected and canceled in

succession, and assume their corresponding BER after cancellation Pet , l = 1, • . • , k-

1 is not worse, i.e. Pa < Pei(SINR). If Pei (SINR) << 1, then a sufficient condition

for BER improvement for the k-th user using an SIC scheme is

where Pei, (SINR) is the k-th user's BER before cancellation. SINR is the SINR

of user k when preceding users (user 1 to user k — 1) are canceled correctly, while

SINR is the SINR of user k when one of the preceding users is canceled incorrectly.

Proof: see Appendix C.

If the SINR loss due to a single incorrect cancellation can be compensated by

all the other correct cancellations for some k, the resulting SINRk^e is larger than the

SINR. Then, Pek(S I N R) > Pek(SINRk^e) , and the ratio in (4.40) is greater than

unity. Therefore, if Pel(SINR) << 1 is satisfied, their summation is far less than

unity, and condition (4.40) is satisfied, meaning performance improvement occurs

for the k-th user and beyond using an SIC scheme. With perfect power control, the
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value of k is not very large because SINR loss due to one user's error cancellation is

easily compensated by a relatively small number of users' correct cancellation.

In general, the BER Pek(SINR) as a function of SINR, depends on the

codewords and correlation among them, and the delay patterns. A simple example

is given here. Assume three synchronous users with equal energy a at the receiver

front end, then, the received signal r (t) is

where n(t) is the background white Gaussian noise. The MF outputs of user 1 and

2 are given as

where the correlation p 31 between code c3 (t) and c1(t), and p32 between code c3 (t)

and c2 (t) are different which result in different MAI and output SINR of x 1 and x2,

and their BER's are not equal.

When the number of users is large, the interference may be approximated as a

Gaussian distributed signal, with the similar MAI output for all users. Then, their

detection performance is approximately the same, i.e. Pek(SINR) = Pe (SINR) for

every k. In that case, the sufficient condition in equation (4.40) is further simplified

to (see Appendix C):

From equation (4.43), when BER Pe (SINR) << 1, and Pe(SINRk^e) << 1,

the right hand side approaches unity when k is not extremely large. The condition

becomes Pe (SINR) > Pe (SINR), which is obviously always satisfied. That means

that in general an SIC scheme will help to reduce the BER in the presence of perfect

power control.
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4.6.4 Simulations and Conclusions

To evaluate the proposed non-linear (using hard decision outputs to estimate the

signals) MVD based multistage PIC and SIC schemes, three active users are assumed.

They are spread by length N = 7 goldcodes, with g1 = [1, 1, 1, —1, —1, 1, —1],

g2 = [-1, 1, 1, 1, 1, —1, —1], and g 3 = [1, 1, —1, 1, 1, 1, 1]. The signal of each user

is composed of three independent Rayleigh fading channels. The delays are integer

multiples of the chip interval and the maximum delay is less than a single symbol

interval. The BER of user 1 is evaluated and averaged over these different delays.

For the PIC scheme, interference cancellation is performed at the outputs of the first

stage which may improve the performance for the following stages except the first.

The performance of the PIC scheme is shown in Figures 4.14 and 4.15, where

the SNR of user 1 is set to 8dB. Users 2 and 3 are equally strong with the ISR set to

0dB, and 8dB, for Figures 4.14 and 4.15 respectively. With interference cancellation,

the second and third stages provide a lower BER than the first stage, where no inter-

ference cancellation is performed before detection. With strong interference situation,

as in Figure 4.15, the second and third stages exhibit a comparable performance that

is close to the single user bound. This implies that using an MVD receiver as the

ICU, the interference can be effectively canceled with a small number of stages.

Figure 4.16 depicts the near-far resistance performance of PIC. It shows that

the proposed scheme has excellent near-far resistance performance when the ISR is

higher, and the BER gets close to the single user bound. When the ISR is less than

0dB, desired user 1 is stronger than user 2 and 3. In that case, the estimate of user

2 and 3 are poor at the first stage, which results in a large cancellation noise at user

l's input to the second stage. However, the noise is low at the inputs of user 2 and

3 due to better estimation and cancellation of the strongest signal, i.e. user 1. The

second stage is then able to provide better detection and estimation for user 2 and
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Figure 4.14 BER of User 1 vs. SNR for PIC scheme with ISR=0dB

Figure 4.15 BER of User 1 vs. SNR for PIC scheme with ISR=8dB



Figure 4.16 Near-far resistance performance of user 1 for PIC scheme (SNR=8dB)

3. Consequently, the third stage provides better detection of user l's signal than the

second stage due to the reduced cancellation noise.

In Figures 4.17 and 4.18, the detection performance of user 1 is investigated

for different positions in the SIC structure. The I S R is set to 0dB and 8dB for

Figures 4.17 and 4.18 respectively. In these figures, "One user canceled" means

only user 2 is canceled before the desired signal, user 1, is detected, and "Two users

canceled" means both user 2 and 3 are canceled before detecting user 1. Compared to

Figures 4.14 and 4.15, SIC scheme with one stage ("Two users canceled, 1st stage")

provides comparable performance to PIC scheme with two stages ("2nd stage").

Also, the performance of SIC with "Two users canceled, 2nd stage" is close to PIC

with "3rd stage" . Therefore, SIC is more robust.

However, an advantage of multistage PIC over multistage SIC is that PIC

has less processing delay, M symbols delay for an M-stage PIC. In comparison,

the processing delay for an M-stage SIC scheme, varies between (M — 1)K + 1 and
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Figure 4.17 BER of User 1 vs. SNR for SIC scheme with ISR=0dB

Figure 4.18 BER of User 1 vs. SNR for SIC scheme with ISR=8dB
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MK symbol intervals depending on where the particular user's detection takes place.

This delay increases linearly with the total number of users and stages. Therefore, a

multistage PIC scheme is more suitable when the application demands a small delay,

especially when the number of users is large.

Reviewing Figure 4.17, where all users are equally strong, shows that when

the SNR is high (about 4dB or more), the BER is much smaller than unity. Thus,

the detection performance is improved with each cancellation. However, for low

SNR, a performance improvement with the SIC scheme is not guaranteed, which is

in agreement with the sufficient condition for SIC with perfect power control stated

earlier.

4.7 TD-MVD Transmit Diversity Scheme

In existing systems, power control and multiple receiving antennas are employed

to increase the uplink capacity. Multiple antenna reception at the mobile side is

impractical due to its limited physical size. However, multiple antenna transmission

from the base stations is easily implemented for the downlink. As a result, transmit

diversity at the base stations is an alternative solution to balance the capacity of the

downlink and uplink.

To maximize the spatial diversity gain, independent transmission, i.e. fading

independent, among different transmit antennas and propagation paths is required.

For this, the transmit antennas should be mounted far apart. In some cases, antennas

that belong to different base stations can be used to achieve TD. For example,

current IS-95 systems have the ability to support such a transmission scheme when

a subscriber initializes soft handover.

It is obvious that synchronization is an essential condition for existing TD

schemes to operate. However, with the distant location of the transmit antennas, the

downlink propagation channels are no longer synchronous, but rather asynchronous,
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and frequency selective. The presence of multipaths will further destroy the orthog-

onality between the transmitted signals and hence, the receiver performance is

degraded. Therefore, many existing TD techniques are not able to deliver the

suggested performance.

To combat the loss of orthogonality, due to the asynchronous frequency selective

characteristics of the TD downlink, it is suggested to use a simulcasting transmit

diversity (STD) scheme. Since orthogonality can't be maintained in an asynchronous

environment, the simulcasting information symbol is spread by linearly independent

Gold codes at each transmission branch instead of using orthogonal codes to separate

different antenna transmissions. As will be shown, such a structure will lead to a code

matrix with a full column rank. The cross correlation property of the Gold codes

allows the receiver to distinguish between duplicate transmissions of the desired

signal in an asynchronous multipath propagation channel. At the receiver, the MVD

receiver is proposed for these different transmissions. To obtain a better receiving

performance, the MVD receiver uses the structure based on desired signal absence

autocorrelation matrix Ru as given in Section 4.5.

4.7.1 TD-MVD System Model

Consider a wireless communication system with 2 transmit antennas at the base

station, and single receive antenna at the mobile. Each information symbol bk (n)

of user k is copied to both transmission branches, spread by a different codeword

ck(i) , i = 1, 2, for each branch and added to the signals intended for other users, before

being transmitted by the corresponding antennas, as shown in Figure 4.19.

The signal model needs to be modified for multiple transmit antenna appli-

cations. In a downlink scenario, the signals of different users originating from the

same antenna suffer the same fading and path delay as they travel through the same

propagation channel. Consequently, they have an identical number of multipath
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Figure 4.19 Two antennas simulcasting transmit diversity system structure.

components. The transmitted signal at the n-th symbol of user k from antenna i is

given by

where ak(i) is the energy of the transmitted signal on antenna i. The spreading codes

c are different at each antenna.

Let L i be the number of resolvable discrete multipath components from the

The output vector x(N+p)x1 (n) of

chip rate MF at the n-th symbol has the same form as in equation (4.1), with a
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For better receiving performance, the structure of the MVD receiver shown

in Figure 4.11 is used to interpret the TD signals. As a result, estimation is

performed. Corresponding to the transmission structure, the weight matrix W has

a dimension (N p) x (L 1 + L2 ), and is obtained as in section 4.1.

The receiver's structure with the decision aided channel estimator, MRC

combining and Ru estimation is given in Figure 4.20, where, BPSK signals

are assumed such that decision making is implemented with sgn(•). For M-ary

quadrature modulated signals, a sorter•) will be used.

Figure 4.20 Decorrelator structure with channel response estimator and MRC
combiner

4.7.2 Numerical Study and Simulation

To evaluate the performance of the proposed two antenna TD-MVD scheme in an

asynchronous receiving TD fading channel, length N = 15 Gold codes are used as

spreading signatures for different users and different antennas. Five simultaneously

active users are assumed and the signals transmitted from each antenna experience
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independent multipath channels with two paths, i.e. L 1 = L2 = 2. It is assumed that

the transmission of all users is with the same signal energy. The receiver performance

is obtained by averaging over a random selection of delays, of the paths from all

antennas, chosen within one symbol interval [0, T).

For a fair comparison between receivers' performance, the corresponding

Rayleigh fading coefficients, γl(i ) are normalized such that the total received power

remains the same,

Besides the method shown in (4.15), another most common estimation

algorithm for Rx and Ru estimation is the sample outer product averaging algorithm.

Suppose there are M samples of the vector x(n), the estimate Rx is given by

Under the assumption that the received samples of x(n) are independent,

identically distributed (iid), the averaging algorithm is the maximum likelihood

estimation [55].

The effect of processing window size M on the receiver's performance is further

investigated by using the Rx estimation given in equation (4.47). The channel is

assumed to be static during the processing window. This is a reasonable approxi-

mation for a wideband channel as long as M is sufficiently small. Moreover, if the

proposed scheme results in a performance that is not sensitive to the size of the

processing window, it may also be applied to a time-variant channel because the use

of a shorter window size will not cause significant performance loss.

In Figure 4.21, the performance of the proposed system, as given in Figure 4.20,

is depicted, and compared to the same system except for an MLE based channel

estimator, both for M = 20N and 30N. In both cases the estimated channel

responses were used to reconstruct the desired signals. Judging from the results,



Figure 4.21 Performance comparison using different channel estimators.

it is concluded that the proposed decision aided channel estimator makes better use

of the information on the desired signal than the MLE estimator, which is simply

based on the received random signal vectors.

It is found that the performance using Ru is not as sensitive to M as when an

MLE channel estimator is used. The effect of different estimation window sizes, M =

10N, 20N and 30N, on the BER performance is further investigated in Figures 4.22

and 4.23, using Rx and Ru respectively. It is clear that using a larger window size

results in better performance due to more accurate estimation of the autocorrelation

matrix. Also, it is found that, besides a lower BER, the proposed TD-MVD scheme

using Ru exhibits a performance that is less sensitive to the estimation window size.

In other words, its performance is more robust to the estimation error of R u , and

thus, preferable for application in a time-variant channel.

Spatial diversity gain, using the proposed TD scheme, is evaluated in Figure 4.24.

Three transmit diversity scenarios are compared: two transmit antennas, each with



Figure 4.22 Comparison with difference window sizes using R u as described.
Decision aided channel estimator is employed for Ru estimation.



Figure 4.24 Spatial diversity comparison.

two propagation paths; one transmit antenna with two propagation paths; and one

transmit antenna with four propagation paths. All multipath channel fading is

assumed independent. In the first scenario, one of the propagation paths from each

transmit antenna is dominant. The fading profile of the two multipath channels

for both antennas follows the assumed distribution [1, 0.5]. In the second scenario,

the same fading profile is used for the sole transmit antenna. In the third scenario,

one dominant path is assumed and the fading profile of [1, 0.5, 0.28, 0.2]. Clearly,

as shown in the figure, both scenario 1 and 3 should present better performance

than scenario 2 due to larger diversity gain. However, in scenario 1, there are two

dominant paths compared with only one dominant path in scenario 3. Therefore,

the latter is more sensitive to the channel fading and thus, the former has better

performance. In the figure, when P, is about 10-2 , the first scenario provides more

than 1dB diversity gain over scenario 3, and more than 2dB diversity gain over

scenario 2.
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As a conclusion, the proposed TD-MVD is suitable for practical application of

TD techniques, with low implementation complexity for frequency selective fading

channel. Other existing TD schemes have degraded performance in such channel

due to a loss of synchronization. The TD-MVD can be extended to more transmit

antennas, to obtain larger diversity gain, in a straightforward manner.



CHAPTER 5

EFFECT OF SYNCHRONIZATION ERROR ON THE
PERFORMANCE OF ADAPTIVE BOOTSTRAP MULTIUSER

DETECTION

In the previous chapters, it was assumed, as is customary, that the MF has perfect

knowledge of the signal timing information, and either bit rate or chip rate MF's are

well aligned with the received signal timing. However, almost all timing estimation

algorithms, for example [33], can not satisfy such a strict assumption. As a result,

the detector's performance deteriorates due to residual ISI and MAI. For a practical

implementation it is crucial to evaluate the effect of delay estimation errors on the

detector's performance to design reliable detectors.

In this section an analytical evaluation of the performance of the adaptive

bootstrap detector, in the presence of timing estimation errors, is presented. This

performance is compared with the performance of a linear MMSE detector with

the same timing errors. It is shown that the performance of both detectors remain

comparable when timing estimation errors exist. This proves that the performance

of the adaptive bootstrap detector remains near optimal in a linear sense in the

presence of a timing synchronization error. In addition, the bootstrap detector has

the ability to perform blind detection. Furthermore, a modification of the bootstrap

algorithm is proposed, which minimizes the residual ISI caused by timing errors.

5.1 Signal Reception in the Presence of a Timing Error

Consider a downlink frequency flat fading channel. Then, signal delays from all users

are the same, i.e. τk = τ , for k =1,-. • K, and the estimated delay f- = T + 6, with

error 0 < 6 < Tc . In fact, most timing algorithms will provide delay estimate with

an error far smaller than Tc . The MF bank then correlates the received signal within
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Here, the channel fading 7 is assumed to be

the modified correlation matrix with P1 introducing

inter chip distortion



and Q is given by,

In general, the matrix P is not Hermitian. The noise vector v ti N(0, σ2P ).

If 6 is negative, matrices P and Q are replaced by their transpose, and b(n + 1)

becomes b(n — 1).

5.2 Adaptive Bootstrap Detector

Bootstrap detectors suppress MAI by applying a matrix V = 1—W to equation (5.2).

Then,

where the additive Gaussian noise ti N(0, σ2VPVH). The elements of matrix W

are chosen according to the decorrelating criterion:

where yk (n) is the vector y(n) without the k-th element. Assuming the SINR is

large, or sgn(yk (n)) bk (n) for any k, the above equation becomes:

where bk (n) is b(n) without the k-th element. Such a condition will be termed SINR

in the limit (LSINR). From equation (5.5),

where wk^T is the k-th row of W without the k-th element. x k is x without k-th

element, and
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where Pk is the k-th row of P without the k-th element. The vector qk is the k-th row

of Q. The matrices Pk, Ak and Qk are the corresponding matrices without their k-th

row and column. The vector ix is the k-th column of P without the k-th element.

The vector vk is the noise vector v without the k-th element.

The matrix W can be derived by applying equations (5.8) and (5.9) into (5.7)

and assuming that the data information from different users is uncorrelated as well

as uncorrelated for different symbol intervals of one particular user:

Then, the signal energy of the desired bits of all users is given by,

where the fact is used that I — W diagonalizes the correlation matrix P. The energy

Ei of the MAI and /S/, and the energy En, of the noise are given by

Then, the SINK of desired user 1, is given as

From equation (5.5) and (5.10),



5.3 Performance of a Linear MMSE Detector with Timing Error

Let the signal vector 9(n) = Ab(n), then the linear MMSE based multiuser detector

decisions are given by [14]:

with the linear MMSE estimator ii obtained from [56]:

where x(n) is defined in (5.2), and from which,

With these terms, equation (5.18) becomes

wo



and with (5.2), it becomes
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Hence, (5.19) is given by

When detecting user 1, the desired signal, an error can happen in two scenarios,

where bias i (n) is the first element of the bias vector in equation (5.21). Thus, the

bit error rate of the desired user is given as follows
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where b1  (n) is vector b(n) without b 1 (n). ac, is the variance of the first element of

vector ζ(n), which is equal to σ2w01Pw01^H, and wo1 is the first row of Wo .

5.4 Improved Adaptive Detector

It is clear from equation (5.2) that the MF outputs in the presence of a timing

synchronization error will contain ISI. The effect of ISI can be minimized by stacking

three or more bit sequences and choosing the mid-term which suffers minimum bias.

That is,

The bootstrap detector can then be applied to detect the whole sequence. This

structure is also applicable for a negative timing estimation error, 6. In that case

the block correlation matrix P becomes its transpose and the first element of bias

in (5.23) is replaced by QAb(n — 2), while the last term becomes 0. The middle

term x(n) is used as the output as it suffers the minimum bias for either positive or

negative timing error.

5.5 Results and Conclusion

In the simulations length N = 31 Gold codes were used and the fading was assumed

constant. The analytical performance of the bootstrap detector was evaluated and

simulated within the LSINR situation, i.e. condition in (5.7) is valid for all signals.
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Figure 5.2 shows the analytical performance of bootstrap detector and linear

MMSE detector as a function of delay error, and compared to the simulation results.

Figure 5.3 depicts the analytical performance of bootstrap detector and linear MMSE

detector as a function of desired user's SNR, and the performance of bootstrap

detector is compared to the simulation results in Figure 5.4. It is found that

the analytical performance of the bootstrap detector is almost the same as the

performance of the linear MMSE detector even when a timing estimation error exists.

For the bootstrap algorithm, the numerical simulation results match the mathe-

matical analysis. It is clear from the figures that a smaller timing estimation error

is important as the performance deteriorates approximately an order of magnitude

for every 0.2 chips.

Results for the modified bootstrap detector are shown in Figure 5.5. The

improvement is noticeable, particularly when the code length is 15. That is, with

short codes, the improved detector is robust to a delay estimation error. If a longer

code (N=31 or greater) is used, the improvement is smaller because the ISI part

in (5.2) becomes smaller compared to the desired signal at the MF output.

In conclusion, it is noted that with a timing error 6, the MF desired bit output

is reduced in amplitude and contains ISI and inter chip distortion P 1 . When the

timing error is large, the detector's performance will become unacceptable due to

excessive ISI and a significant reduction in amplitude of the desired signal. However,

as shown in this work, when the timing error remains sufficiently small in comparison

to the chip interval, the bootstrap detector can still provide comparable performance

to a linear MMSE for the LSINR situation.
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Figure 5.2 Performance versus Delay Error (3 users, desired user's SNR=8dB, ISR
ratio=14dB ). Simulation was conducted for Bootstrap detector.

Figure 5.3 BER versus SNR (3 users, SNRW-SNR(1)=14dB, (i=2,3 are interference
users) )
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Figure 5.4 Bootstrap detector with three bits stack using different code lengths (3
users, near-far ratio=14dB, 6 = 0.2T0

Figure 5.5 Comparison of bootstrap detectors with different code length (N=15,
31)



CHAPTER 6

MAXIMUM LIKELIHOOD DELAY AND CHANNEL ESTIMATION
WITH LIMITED SAMPLES

As discussed in the previous chapter, a timing error can significantly reduce the

output SINK. The BER performance of the bootstrap and linear MMSE detectors

deteriorates approximately an order of magnitude for every 0.2 chips. Therefore, the

key issue for any timing algorithm is to provide an estimation error that is as small

as possible. In a time-variant channel, usually only a limited number of samples

are available. Therefore, how to develop a fast, and sufficiently accurate timing

algorithm is a very important topic for practical applications.

As a result of the asymptotically uncorrelated property of the received signal in

the frequency domain, as shown in [58, 59], the observation samples become asymp-

totically uncorrelated and Gaussian distributed in the frequency domain. Due to the

uncorrelated property, it is proposed, in this chapter, to use a diagonal matrix approx-

imation (DMA) to improve the performance of the maximum likelihood estimation

(MLE) in a time-variant environment. In addition, the computational complexity

of the inverse covariance matrix is reduced to the order of the sample dimension, or

only 0(N) operations.

Another advantage of DMA is the possibility for the estimator to use a singular

covariance matrix. This is particularly useful for over sampling techniques. With an

over sampling factor of Q, theoretically Q times more samples are required to keep the

covariance matrix full rank. Thus, the computational burden of the matrix inverse

increases exponentially with Q. So, the increased signal dimension, N x Q, and the

number of required samples, prevent the application of over sampling techniques to

a time-variant environment.

However, using DMA eliminates the conflict between fast channel estimation

and the singularity problem. One can use insufficient samples to estimate the
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covariance matrix while keeping the estimation performance close to the CRLB.

DMA provides an effective way to overcome the conflict between estimation speed,

complexity and accuracy.

6.1 MF Output with Unknown Path Delay

Since multipath delays and the associated channel response are unknown to the

receiver, the multipath signals are customarily treated the same as signals from

different users. As a result, the channel used in the estimation scheme is described

as asynchronous frequency flat fading. Without loss of generality, all delays are

assumed within one symbol interval, or 0 < τk < T, for k = 1, • • • , K.

The unknown parameters include the desired user's channel response 71 , delay

Ti. and information symbols b 1 . The joint estimation of these unknown parameters is

extremely complicated, and practically impossible. To reduce the estimation burden,

it is assumed that the desired user transmits identical data symbol during the channel

acquisition period. The channel is assumed quasi-static such that the channel fading

can be approximated as a constant within the channel acquisition period, provided

this period is short enough.

To simplify the mathematical expression with over sampling, a new spreading

codeword of user 1, s1 , is defined as s 1 = c 1 0 1. "0" is Kronecker product and 1 is

an all l's vector with dimension Q x 1. For code c 1 = [g1(0), g 1 (1), • • • , g1 (N — 1)1 T ,

and Q = 2, s 1 is the vector [g 1 (0), g 1 (0), g1 (1), g 1 (1), • • • , g1 (N — 1), g 1 (N — 1)1 T with

dimension of 2N x 1. Then, for a given starting point t = 0, Ti is defined as the

propagation delay of user 1 corresponding to this point, which can be written as

Ti. = (m1  + 61 ) 7-:d-, where m 1 = [τ1/Tc/Q] denotes the largest integer not greater than

τ1/Tc/Q and 0 < 81< 1. It is equivalent to (m1+ 5i) chips delay of codeword s1.Tc/Q

The MF samples the received signal over one symbol interval [0, T) at a

sampling rate of N x Q starting from t = 0 as shown in Figure 6.1.
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Figure 6.1 Received data frame at chip matched-filter with an over sampling factor
Q

The output of the MF contains the cycshift version of s 1 . To express such shift

in an equation, a permutation matrix Dm is defined as,

which, when muliplied by S i , rotates downwards the vector s 1 by m chips. Then the

MF output vector x(n) is given as,

where h 1 = √a1γ1b1 is the complex channel response corresponding to the desired

user. The values 61 and (1 — 61 ) result from the partial occurrence of s 1 at each MF

sampling output.

Vector u(n) is comprised of noise and MAI from other users. In general, u(n)

is not Gaussian distributed, particularly when the number of MAI users is small.

Also, these elements are correlated in time due to asynchronous transmission and

over sampling.

To exploit the asymptotically uncorrelated property of the signal in the

frequency domain, x(n) is converted to the frequency domain using the DFT. Define



the DFT transform matrix as

Then, the DTF transform of s 1 is

Using circular time shift properties, the DFT of the cycshift vesion of s1, Dm' Si,

is given by

where "diag(wm1)" produces a diagonal matrix with diagonal elements equal to the

vector Wm1.

With the above relations, the NQ-point DFT (which can be efficiently imple-

mented using an FFT algorithm) of equation (6.2) can be expressed as

where xn and un are the DFT of x(n) and u(n) respectively. The delay information

is contained in -§('r).

The additive noise u is asymptotically (with increasing NQ) uncorrelated

among its frequency components, and approximately Gaussian distributed:

N(0, C), with the diagonal elements of C, 	 1 = 0, 1, 	 NQ — 1, equal to [58]:

where, "*" is conjugate. The approximated Gaussian distribution property allows

estimation of the channel using an MLE algorithm.
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6.2 Maximum Likelihood Channel Estimate

To use an ML algorithm to estimate the unknown channel parameters, one should

first find the pdf of the received signal. Utilizing the Gaussian distribution approxi-

mation, the pdf of xn is given as

The desired user's unknown channel response h 1 can be found by equating the

partial derivative of the log-likelihood function to zero:

This results in the estimate of channel response h 1 as

and the MLE of the delay 7-1 is given by [6]

Usually, a global search using equation (6.8) is required to find the delay.

The channel response h 1 can be obtained by replacing τ1 with the estimated

in equation (6.7). The unknown covariance matrix C should be determined before

estimating the delay Tl and channel gain h 1 . Assume xn, n = 1, M, are received

signal sample vectors of M-symbol intervals. Then, considering identical information

symbols are transmitted through desired user's channel, one can obtain an estimation

of the mean of the desired signal h1S(τ1) by sample averaging:

and the MLE of C using a sample covariance matrix is:



104

As mentioned previously, the interference and noise samples u n become

approximately uncorrelated Gaussian distributed variables. That implies that the

covariance matrix C is approximately a diagonal matrix, with its diagonal elements

Thus, the estimation of covariance matrix

C in (6.10) can be simplified by estimating its diagonal elements only. Then, the

non-diagonal elements are set equal to zero. As a result, the DMA may cause

loss of information, borne by the non-diagonal elements, because they are in fact

non-zero. However, when M is small, insufficient observation samples used to

estimate C will unavoidably introduce error. Particularly, when the SNR is low,

a larger estimation error in mX can result in a significant estimation bias for the

non-diagonal elements because these elements are very small due to the uncorre-

lating property. In many cases, the errors may even be larger than the actual values

of these non-diagonal elements. Therefore, ignoring the non-diagonal elements can

result in improved estimation performance besides having the advantage of lower

computational complexity.

With DMA, the matrix C is replaced by its diagonal elements. The compu-

tational complexity of its inverse matrix, and the estimation algorithms in (6.7)

and (6.8) are then reduced to the order of its dimension, NQ. Considering a total of

M samples, to get a better estimate, the average of xn is used to replace the signle

vector in equations (6.7) and (6.8). Then, they are simplified as follows:

where g(7-1 , 1) is the l-th element of vector §(7-1 ), and x(l) is the l-th element of the
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where - 72 (/) is the l-th element of the observation sample vector x ii .

6.3 Cramer-Rao Bound

From the signal model in equation (6.3), the MAI plus noise vector fin is assumed

independent from the desired signal and satisfies the uncorrelated condition:

where 6„, n2 is Kronecker delta. Estimation is based on a sample vector i n , n =

and using equation (6.5), the log-likelihood

function of X is given by [33](eq.10):

The unknown parameters of the likelihood function include the desired user's

complex amplitude h 1 = √a1γ1b11, propagation delay τ1, and noise covariance matrix

C.

If only the vector /3 = [h 1 , τ1 ] T is considered unknown, and it is assume that

the channel h 1 is real, otherwise its phase should be considered as another unknown,

the gradient ∂lnL(X)/∂β  is:
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The derivative with respect to τ1 in equation (6.18) is equivalent to a derivative

with respect to 6 1 , which yields,

where the diagonal matrix D = diag(wm1+1 — wm1  ). If 6 1 = 0, the derivative gives

zero, meaning equation (6.18) is not suitable for such a case. Considering delays with

(51 = 0 are very scarce in simulations, the CRLB can still be used for performance

evaluation. Using equation (6.19), equation (6.18) becomes

Then, the corresponding Fisher information matrix is

To obtain the matrix I, first it is noticed that for any complex vector p and q,

the following general expression is valid:

If assuming uncorrelated noise, that is E[un(i)un*(j)]=0, for i j, and without

loss of generality assuming that the real and imaginary part of un(i)) are uncorrelated

with same variance, it is easily shown that E[un , (i)un( i )] = 0. Then, the first and

fourth terms in EH of (6.22) become zero. Then, the expection becomes,



Fro:

Similarly, using equations (6.20), it can be shown that

If the propagation delay τ1 is the only unknown, the Cramer-Rao bound for

estimation of 7-1 is given as

A different derivation of the CRLB could be found in [60], which is based on the

extended Bang's formula for the generalized covariance matrix C case, and results in

the same solutions as (6.25). It should be noted that the bound in (6.26) becomes

poorer when more unknown parameters are taken into consideration, for instance

the channel gain h 1 and the noise covariance matrix C.

6.4 Performance Evaluation

Defining the root mean square (RMS) estimation error o-, as

As shown in the previous chapter, the detector's performance deteriorates

approximately an order of magnitude for every 0.2 chips timing error. To minimize

the performance loss, it is decided that a delay acquisition error occurred when the

■■■
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estimation error E > E max = 0.2T. Then, the acquisition probability is the percentage

of estimations with e <= 0.2Tc, among all the independent simulation runs.

In the simulations, the code length N was set to 15. The channel fading was

assumed to be quasi-static within the channel training period. The desired user's

SNR per symbol was equal to 8dB. All users transmit the same energy as the

desired user, i.e. ISR = 0dB. A total of 500 Monte Carlo runs, each with a different

delay profile, were performed for each simulation. The results were averaged and

investigated.

In Figures 6.2 and 6.3, the acquisition probability and the RMS estimation

error as a function of the number of users, respectively is depicted for two sampling

factor values: Q =1 and 2. The length of the training sequence was set to 50 bits.

The proposed DMA scheme which uses the diagonal covariance matrix outperforms

the scheme which uses the whole matrix C. So, besides its lower computational

complexity, the DMA approach effectively reduces the timing error caused by

erroneous non-diagonal elements.

Figure 6.2 Acquisition probability vs different number of users.
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Figure 6.3 RMS estimation error vs different number of users.

In Figures 6.4 and 6.5, the acquisition probability and RMS timing error are

shown as a function of the SNR. For the simulation, six users and 50 bits of acquisition

time were assumed. For Q = 1, the RMS of DMA is smaller than that of the full

matrix scheme in the low SNR region, i.e. 8dB and less. An increased SNR results in

a better estimation of C, and thus, estimation performance using the whole matrix

outperforms DMA for higher SNR. However, with an over sampling factor, Q = 2,

the output SNR of the MF is reduced due to the shorter integration interval, making

the estimate of the non-diagonal elements unreliable. Consequently, the region where

DMA exhibits better performance was extended to 14dB. Therefore, DMA with the

over sampling technique improves the performance even when the SNR is high.

In Figures 6.6 and 6.7, the acquisition probability and the RMS estimation

error, respectively as a function of the acquisition time is shown. Six users were

assumed and SNR was set to 8dB. The size M should be sufficiently large such

that for the full matrix scheme, the estimated C remains non-singular. Otherwise,
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Figure 6.4 Acquisition probability vs SNR of desired user.

Figure 6.5 RMS estimation error vs SNR of desired user.
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the singularity of C can severely deteriorate the estimation performance. From

equation (6.10), the theoretical minimum number of samples required for a non-

singular C is M = NQ. In practice, M should be somewhat larger than NQ.

Figures 6.6 and 6.7 show that the full matrix scheme, using over sampling Q = 2,

has poor performance when M < 30 bits because in this case, the minimum number

of samples required is 15 x 2 = 30. However, the DMA still works well even for M

as small as 20 bits. This is because by treating C as a diagonal matrix, it remains

non-singular, even when M is less than NQ. Therefore, the DMA scheme provides

the capability to estimate the delay with a short acquisition time as well as improved

performance with over sampling.

It is worth mentioning that the CRLB's given in the figures were derived

assuming the propagation delay was the only unknown parameter. The actual

CRLB's should be even closer to the corresponding RMS curves because the channel

response was also unknown in the simulations.

As a conclusion, the proposed DMA ML estimator, together with over sampling,

provides faster and more accurate delay estimation compared to the regular ML

estimator. Hence, it is more suitable for timing acquisition in a time-variant channel.
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Figure 6.6 Acquisition probability vs length of acquisition time.

Figure 6.7 RMS estimation error vs length of acquisition time.



CHAPTER 7

CONCLUSIONS

With high data rate communications, higher chip rates are used. The increased chip

rate results in increased delay spread in terms of the chip interval, in a multipath

environment. Also, due to the higher data rates the channel fading becomes slow

in terms of the symbol interval. Most of multiuser detectors consider only small

delay spread, usually less than one symbol interval. Although some of them can be

extended to a large delay spread situation, the increased computational complexity

may restrict such applications. As a result, the reduced complexity detector was

proposed that is simplified by exploiting the diagonal dominant property of the corre-

lation matrix. The so-called de-biasing technique significantly reduces the compu-

tational redundency without performance loss. The adaptive bootstrap algorithm

was also used to combat the large delay spread problem. It was shown to provide

good near-far resistance with EGC or MRC without a requirement for a training

sequence, a promising approach for adaptive implementation in a time-variant fading

environment for channel variation tracking.

M-ary quadrature modulation is another common approach to achieve high

data rate transmission. A paramount advantage of M-ary quadrature modulation

is that the increase in information data rate is not at the expense of greater

bandwidth. However, the detection of M-ary quadrature modulated signals in a

time-variant fading channel becomes more challenging as the modulation order

increases. The transmitted signal constellation could be distorted and rotated due

to the channel. The proposed detector, which is based on an FIR digital filter,

jointly with an adaptive channel gain estimator and phase corrector, was shown to

provide promising performance for any M-ary quadrature modulated signal with

relatively low complexity. The signal distortion was effectively removed by the

proposed detector. It should be mentioned that the phase corrector may not blindly
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compensate an arbitrary phase shift. In case the phase shift is outside the correction

range, additional measurements should be taken, for example employing a training

sequence.

The proposed Minimum Variance Decorrelating (MVD) receiver presents

performance close to the linear MMSE receiver in a time-variant fading channel.

Its implementation is relatively simple and has the ability to detect the signal

blindly. The MVD receiver focuses on single user detection and provides decoupled

multipath fading. These features enable the MVD detector to be applied to various

situations. As a consequence, it was extended to adaptive interference cancellation,

and transmit diversity applications.

With the decoupling of multipath signals, the MVD receiver provides an

efficient way to estimate and regenerate the interfering signals, and remove them

from the received signals. Although the complexity of each building block is

increased, compared to linear Parallel Interference Canceler (PIC) and Succesive

Interference Canceler (SIC), the MVD based adaptive multistage PIC and SIC reduce

the complexity of the receiver by keeping the number of stages at a minimum. As

was shown, the whole receivers with 1 to 2 stages give the performance close to the

single user bound because the MVD receiver provides an accurate estimate of the

interference signals at the earliest stage.

Unlike other Transmit Diversity (TD) schemes, the proposed TD-MVD scheme

can work in asynchronous channels, which is more practical. As a result, TD can

be conveniently implemented for the downlink because the transmit antennas can be

mounted at any place, even in different base stations, to obtain full spatial diversity

gain without careful coordination of the multiple transmissions for synchronous

reception. The proposed scheme is also robust to variations in the number of

multipaths. The dominant multipath signals coming from each transmitted antenna

will be selected and decorrelated. This selection can be dynamic, i.e. the number
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of multipaths selected and associated with each antenna can vary to maximize the

receiver performance. In addition to the convenience and flexibility provided by

the MVD detector, the performance is further improved by using R„ instead of

R„ without a significant increase in complexity. Moreover, the performance is less

sensitive to the estimation accuracy of Ru , which enables the MVD receiver to operate

with a small number of samples, a nice property for applications in a time-variant

channel.

It is shown that MLE with Diagonal Matrix Approximation (DMA) results

in fast path delay estimation and channel acquisition. The estimation accuracy

approaches the CRLB using an oversampling technique, while the computational

complexity is reduced to the order of signal dimension. Another important property

is that the requirement for a non-singular covariance matrix is relaxed. So, the

estimator can work using smaller number of samples while keeping the performance

close to the CRLB. It implies that the proposed estimator is suitable for quick channel

acquisition, and thus, suitable for a time-variant fading channel environment.



APPENDIX A

DERIVATION OF QAM CHANNEL ESTIMATION

Assume an Mary QAM signal of user k, bk = bkR + jbks, where bkR and bks take

values from the set {1, 3, ..., -√M — 1}. The estimated bk = bkR + jbks is the output

of decorrelator.

since bkR and bks, as well as bks and bkR are assumed uncorrelated. Also,

If the noise in the I and Q branches is AWGN with zero mean and variance Q2 , then

the outcome of
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APPENDIX B

PERFORMANCE EVALUATION USING Rx AND Ru

According to equation (4.10), the SNR with the optimal solution of the weight matrix

for both cases is given as

From equation (4.1) it is clear that

Let Tx = CH Rx^-1(n)C and Tu = CH Ru^-1(n)C, and multiply equation (B.4) on the

left side by CH and on the right side by C, it becomes

Comparing equation (B.1) and (B.2) shows that the difference is in the inner part of

their denominators. Their relation is obtained following
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Equation (B.5) can be rewritten as

Replace equation (B.6) using equation (B.7),
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Apply equation (B.8) to equation (B.1), which gives



APPENDIX C

SUFFICIENT CONDITION FOR SIC WITH PERFECT POWER
CONTROL

1. The BER for the 1st user is Pei (SINR).

2. For the 2nd user, its SINR has two possible values:

• SINR2^c (> SINR) with probability 1-Pe1(SINR) when the 1st user is

detected and canceled correctly.

• SINR2^e (< SINR) with probability Pei (SINR) when the 1st user is

detected and canceled incorrectly.

The BER Pe2 is given as

To improve performance with SIC, it is required that Pe2 < Pe2(SINR). Or

3. For the 3rd user, its SINR has four possible values. They are

• SINR (> SINR) with probability [1 — Pe1(SINR)][1 — Pe2] = 1 —

Pe1(SINR) — Pe2 + o(Pe^2 ) when both the 1st and 2nd users are detected

and canceled correctly.

• SINR3^e1 with probability Pei (SINR)[1— Pe2]1 = Pe1 (S I N R)± 0 (Pe2) when	 Pe1

detection and cancellation for 1st user is incorrect but correct for 2nd user.

• SINR3^e2 with probability [1 — Pe1 (SINR)] PPe2 = Pe2 + O(Pe^2) when

detection and cancellation for the 1st user is correct but incorrect for the

2nd user.
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the 1st and 2nd users are detected and canceled incorrectly.

With perfect power control, canceling either the 1st or 2nd user's signal will

equally enhance or reduce the SINK of user 3. Thus, it is assumed that

SINR3^e1=SINR3^e2=SINR3^e.Ignoring the higher order items, we get the

BER Pea of user 3 as

Rewriting equation (C.3), it becomes

4. The same proof applies in the case of more users.

If the BER performance is assumed the same for all users, the subscript k in

Pek can be dropped. Then, equation (4.40) becomes

With simple manipulation, we can re-write equation (C.5) as
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