10 research outputs found

    Near Optimum Low Complexity Smoothing Loops for Dynamical Phase Estimation—Application to BPSK Modulated Signals

    Get PDF
    International audience—This correspondence provides and analyzes a low complexity, near optimum, fixed-interval smoothing algorithm that approaches the performance of an optimal smoother for the price of two low complexity sequential estimators, i.e., two phase-locked loops (PLLs). Based on a linear approximation of the problem, a theoretical performance evaluation is given. The theoretical results are compared to some simulation results and to the Bayesian and hybrid Cramér–Rao bounds. They illustrate the good performance of the proposed smoothing PLL (S-PLL) algorithm. Index Terms—Dynamical phase estimation, phase-locked loop (PLL), smoothing algorithm

    On the Impact of Phase Noise in Communication Systems –- Performance Analysis and Algorithms

    Get PDF
    The mobile industry is preparing to scale up the network capacity by a factor of 1000x in order to cope with the staggering growth in mobile traffic. As a consequence, there is a tremendous pressure on the network infrastructure, where more cost-effective, flexible, high speed connectivity solutions are being sought for. In this regard, massive multiple-input multiple-output (MIMO) systems, and millimeter-wave communication systems are new physical layer technologies, which promise to facilitate the 1000 fold increase in network capacity. However, these technologies are extremely prone to hardware impairments like phase noise caused by noisy oscillators. Furthermore, wireless backhaul networks are an effective solution to transport data by using high-order signal constellations, which are also susceptible to phase noise impairments. Analyzing the performance of wireless communication systems impaired by oscillator phase noise, and designing systems to operate efficiently in strong phase noise conditions are critical problems in communication theory. The criticality of these problems is accentuated with the growing interest in new physical layer technologies, and the deployment of wireless backhaul networks. This forms the main motivation for this thesis where we analyze the impact of phase noise on the system performance, and we also design algorithms in order to mitigate phase noise and its effects. First, we address the problem of maximum a posteriori (MAP) detection of data in the presence of strong phase noise in single-antenna systems. This is achieved by designing a low-complexity joint phase-estimator data-detector. We show that the proposed method outperforms existing detectors, especially when high order signal constellations are used. Then, in order to further improve system performance, we consider the problem of optimizing signal constellations for transmission over channels impaired by phase noise. Specifically, we design signal constellations such that the error rate performance of the system is minimized, and the information rate of the system is maximized. We observe that these optimized constellations significantly improve the system performance, when compared to conventional constellations, and those proposed in the literature. Next, we derive the MAP symbol detector for a MIMO system where each antenna at the transceiver has its own oscillator. We propose three suboptimal, low-complexity algorithms for approximately implementing the MAP symbol detector, which involve joint phase noise estimation and data detection. We observe that the proposed techniques significantly outperform the other algorithms in prior works. Finally, we study the impact of phase noise on the performance of a massive MIMO system, where we analyze both uplink and downlink performances. Based on rigorous analyses of the achievable rates, we provide interesting insights for the following question: how should oscillators be connected to the antennas at a base station, which employs a large number of antennas

    Traitement du signal pour les communications numériques au travers de canaux radio-mobiles

    Get PDF
    This manuscript of ''Habilitation à diriger les Recherches'' (Habilitation to conduct researches) gives me the opportunity to take stock of the last 14 years on my associate professor activities and on my research works in the field of signal processing for digital communications, particularly for radio-mobile communications. The purpose of this signal processing is generally to obtain a robust transmission, despite the passage of digital information through a communication channel disrupted by the mobility between the transmitter and the receiver (Doppler effect), the phenomenon of echoes (multi-path propagation), the addition of noise or interference, or by limitations in bandwidth, in transmitted power or in signal-to-noise ratio. In order to recover properly the digital information, the receiver needs in general to have an accurate knowledge of the channel state. Much of my work has focused on receiver synchronization or more generally on the dynamic estimation of the channel parameters (delays, phases, amplitudes, Doppler shifts, ...). We have developed estimators and studied their performance in asymptotic variance, and have compared them to minimum lower bound (Cramer-rao or Bayesian Cramer Rao bounds). Some other studies have focused only on the recovering of information (''detection'' or ''equalization'' task) by the receiver after channel estimation, or proposed and analyzed emission / reception schemes, reliable for certain scenarios (transmit diversity scheme for flat fading channel, scheme with high energy efficiency, ...).Ce mémoire de HDR est l'occasion de dresser un bilan des 14 dernières années concernant mes activités d'enseignant-chercheur et mes travaux de recherche dans le domaine du traitement du signal pour les communications numériques, et plus particulièrement les communications radio-mobiles. L'objet de ce traitement du signal est globalement l'obtention d'une transmission robuste, malgré le passage de l'information numérique au travers d'un canal de communication perturbé par la mobilité entre l'émetteur et le récepteur (effet Doppler), le phénomène d'échos, l'addition de bruit ou d'interférence, ou encore par des limitations en bande-passante, en puissance transmise ou en rapport-signal à bruit. Afin de restituer au mieux l'information numérique, le récepteur a en général besoin de disposer d'une connaissance précise du canal. Une grande partie de mes travaux s'est intéressé à l'estimation dynamique des paramètres de ce canal (retards, phases, amplitudes, décalages Doppler, ...), et en particulier à la synchronisation du récepteur. Quelques autres travaux se sont intéressés seulement à la restitution de l'information (tâches de ''détection'' ou d' ''égalisation'') par le récepteur une fois le canal estimé, ou à des schémas d'émission / réception spécifiques. La synthèse des travaux commence par une introduction générale décrivant les ''canaux de communications'' et leurs problèmes potentiels, et positionne chacun de mes travaux en ces termes. Une première partie s'intéresse aux techniques de réception pour les signaux à spectre étalé des systèmes d'accès multiple à répartition par codes (CDMA). Ces systèmes large-bande offrent un fort pouvoir de résolution temporelle et des degrés de liberté, que nous avons exploités pour étudier l'égalisation et la synchronisation (de retard et de phase) en présence de trajets multiples et d'utilisateurs multiples. La première partie regroupe aussi d'autres schémas d'émission/réception, proposés pour leur robustesse dans différents scénarios (schéma à diversité pour canaux à évanouissement plats, schéma à forte efficacité énergétique, ...). La seconde partie est consacrée à l'estimation dynamique Bayésienne des paramètres du canal. On suppose ici qu'une partie des paramètres à estimer exhibe des variations temporelles aléatoires selon une certaine loi à priori. Nous proposons d'abord des estimateurs et des bornes minimales d'estimation pour des modèles de transmission relativement complexes, en raison de la distorsion temporelle due à la forte mobilité en modulation multi-porteuse (OFDM), ou de la présence de plusieurs paramètres à estimer conjointement, ou encore de non linéarités dans les modèles. Nous nous focalisons ensuite sur le problème d'estimation des amplitudes complexes des trajets d'un canal à évolution lente (à 1 ou plusieurs bonds). Nous proposons des estimateurs récursifs (dénommés CATL, pour ''Complex Amplitude Tracking Loop'') à structure imposée inspirée par les boucles à verrouillage de phase numériques, de performance asymptotiques proches des bornes minimales. Les formules analytiques approchées de performances asymptotiques et de réglages de ces estimateurs sont établies sous forme de simples fonctions des paramètres physiques (spectre Doppler, retards, niveau de bruit). Puis étant donné les liens établis entre ces estimateurs CATL et certains filtres de Kalman (construits pour des modèles d'état de type marche aléatoire intégrée), les formules approchées de performances asymptotiques et de réglage de ces filtres de Kalman sont aussi dérivées

    Reduced Complexity Sequential Monte Carlo Algorithms for Blind Receivers

    Get PDF
    Monte Carlo algorithms can be used to estimate the state of a system given relative observations. In this dissertation, these algorithms are applied to physical layer communications system models to estimate channel state information, to obtain soft information about transmitted symbols or multiple access interference, or to obtain estimates of all of these by joint estimation. Initially, we develop and analyze a multiple access technique utilizing mutually orthogonal complementary sets (MOCS) of sequences. These codes deliberately introduce inter-chip interference, which is naturally eliminated during processing at the receiver. However, channel impairments can destroy their orthogonality properties and additional processing becomes necessary. We utilize Monte Carlo algorithms to perform joint channel and symbol estimation for systems utilizing MOCS sequences as spreading codes. We apply Rao-Blackwellization to reduce the required number of particles. However, dense signaling constellations, multiuser environments, and the interchannel interference introduced by the spreading codes all increase the dimensionality of the symbol state space significantly. A full maximum likelihood solution is computationally expensive and generally not practical. However, obtaining the optimum solution is critical, and looking at only a part of the symbol space is generally not a good solution. We have sought algorithms that would guarantee that the correct transmitted symbol is considered, while only sampling a portion of the full symbol space. The performance of the proposed method is comparable to the Maximum Likelihood (ML) algorithm. While the computational complexity of ML increases exponentially with the dimensionality of the problem, the complexity of our approach increases only quadratically. Markovian structures such as the one imposed by MOCS spreading sequences can be seen in other physical layer structures as well. We have applied this partitioning approach with some modification to blind equalization of frequency selective fading channel and to multiple-input multiple output receivers that track channel changes. Additionally, we develop a method that obtains a metric for quantifying the convergence rate of Monte Carlo algorithms. Our approach yields an eigenvalue based method that is useful in identifying sources of slow convergence and estimation inaccuracy.Ph.D.Committee Chair: Douglas B. Williams; Committee Member: Brani Vidakovic; Committee Member: G. Tong zhou; Committee Member: Gordon Stuber; Committee Member: James H. McClella

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    Near MAP Dynamical Delay Estimator and Bayesian CRB for Coded QAM Signals

    No full text
    International audienceThis paper presents an off-line algorithm for dy-namical time delay recovery for which the whole observation block is used. The time offset varies over the observation interval following a random walk model. The proposed synchronizer applies to data-aided (DA), non-data-aided (NDA) and code-aided (CA) modes. Theoretical performance of the off-line technique is derived and compared to simulation results. The Bayesian Cramer-Rao Bound (BCRB) is also evaluated for DA, NDA and CA modes and for both the off-line and on-line scenarios. Simulation results show the improvement brought by the off-line and the CA schemes. The presented algorithm outperforms the conventional on-line estimator, which only takes into account the current and previous observations, and its MSE approaches the BCRB

    GNSS/5G Hybridization for urban navigation

    Get PDF
    Over the past few years, the need for positioning, and thus the number of positioning services in general, has been in constant growth. This need for positioning has been increasingly focused on constrained environments, such as urban or indoor environments, where GNSS is known to have significant limitations: multipath as well as the lack of Line-of-Sight satellite visibility degrades the GNSS positioning solution and makes it unsuitable for some urban or indoor applications. In order to improve the GNSS positioning performance in constrained environments, many solutions are already available: hybridization with additional sensors or the use of signals of opportunity for example. Concerning SoO, mobile communication signals, such as the 4G Long Term Evolution or 5G, are naturally envisioned for positioning. Indeed, a significant number of users are expected to be “connected-users” and 5G systems offers promising opportunities. 5G technology is being standardized at 3GPP; the first complete release of 5G specifications, Release-15, was provided to the community in June 2018. 5G is an emerging technology and its positioning performance, as well as a potential generic receiver scheme to conduct positioning operations, is still under analysis. In order to study the potential capabilities provided by 5G systems and to develop a 5Gbased generic positioning module scheme, the first fundamental step is to develop mathematical models of the processed 5G signals at each stage of the receiver for realistic propagation channel models: the mathematical expression of the useful received 5G signal as well as the AWG (Additive White Gaussian) noise statistics. In the Ph.D., the focus is given to the correlation operation which is the basic function implemented by typical ranging modules for 4G LTE signals, DVB signals, and GNSS. In fact, the knowledge of the correlation output mathematical model could allow for the development of optimal 5G signal processing techniques for ranging positioning. Previous efforts were made to provide mathematical models of received signals at the different receiver signal processing stages for signals with similar structures to 5G signals – Orthogonal ²Frequency Division Multiplexing (OFDM) signals as defined in 3GPP standard. OFDM signal-type correlator output mathematical model and acquisition techniques were derived. Moreover, tracking techniques were proposed, analyzed and tested based on the correlator output mathematical model. However, these models were derived by assuming a constant propagation channel over the duration of the correlation. Unfortunately, when the Channel Impulse Response (CIR) provided by a realistic propagation channel is not considered to be constant over the duration of the correlation, the correlator output mathematical models are slightly different from the mathematical models proposed in the literature
    corecore