
Faculteit Toegepaste Wetenschappen

Vakgroep Telecommunicatie en Informatieverwerking
Voorzitter : Prof. Dr. ir. Herwig Bruneel

Algoritmes voor Software Radio, geschikt voor gecodeerde
transmissie

Software Radio Algorithms for Coded Transmission

door

ir. Henk Wymeersch

Promotoren: Prof. Dr. ir. Marc Moeneclaey en Prof. Dr. ir. Heidi Steendam

PROEFSCHRIFT INGEDIEND BIJ DE FACULTEIT TOEGEPASTE WETENSCHAPPEN VAN DE UNIVERSITEIT GENT TOT
HET BEHALEN VAN DE ACADEMISCHE GRAAD VAN DOCTOR IN DE TOEGEPASTE WETENSCHAPPEN

Academiejaar 2004-2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55899797?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

This manuscript is the apogee of just under four years spent at the TELIN department. During this time, I was
fortunate enough to have two excellent advisors: Marc Moeneclaey (you the man!) and Heidi Steendam. I owe, more
than I can say, to their continuing guidance, support and insights. Thank U.

I’d also like to thank my colleagues, nay, friends, at the DIGCOM research group: Mamoun Guenach (Mr CDMA
and SAGE enthusiast), Frederik Simoens (my partner in crime), Nele Noels (Computer of the Holy CRB) and Frederik
Vanhaverbeke (maker of desserts extra-ordinaire, and proof-reader of this thesis). Thank U.

Kudos to my circle of friends, mainly for putting up with me all this time. It can’t have been easy. A special
mention for Diter Wuytens (proof-reader of many chapters, quod non). Thank U.

Most importantly, my family: without them, I would not be where I am today; I simply wouldn’t be. I love you
all.

And finally, everyone who was directly or indirectly involved with my research, and whom I’ve forgotten to
thank explicitely: you know who you are and I thank you.

Henk Wymeersch - May 9th 2005.

3

Contents

I Introduction 13

1 Introduction 15
1.1 An evolution in communications . 15
1.2 Multi-mode transmission and Software Radio . 16

1.2.1 Concept . 16
1.2.2 Practical issues . 17

1.3 Iterative techniques . 17
1.4 Overview . 18

2 System Model 19
2.1 Introduction . 19
2.2 Transmitter . 19

2.2.1 Signal generation . 19
2.2.2 Mono-mode and multi-mode transmission . 20

2.3 Receiver . 21
2.4 Channel model . 22
2.5 Receiver tasks . 22

2.5.1 Adaptation . 23
2.5.2 Estimation . 24

2.6 Main Points . 24

3 Factor Graphs 25
3.1 Introduction . 25
3.2 Factor graphs and the sum-product algorithm . 25

3.2.1 Factor graphs: representation and terminology . 25
3.2.2 The sum-product algorithm . 27

3.2.2.1 Remarks . 27
3.2.2.2 Example . 28

3.2.3 Factor graphs with cycles . 28
3.2.3.1 Example . 29

3.3 Receivers as factor graphs . 29
3.3.1 Principle . 30
3.3.2 Sequence detection . 31

3.4 Examples: codes on graphs . 31
3.4.1 Some basic building blocks . 32
3.4.2 A generic error-correcting code . 33

3.4.2.1 Definition . 33
3.4.2.2 Factor graph . 33
3.4.2.3 Sum-product algorithm . 34

3.4.3 Mapper . 35
3.4.4 Convolutional Code Generator . 36

3.4.4.1 Definition . 36
3.4.4.2 Factor graph . 37
3.4.4.3 Sum-product algorithm . 38

3.4.5 Convolutional Code . 38
3.4.5.1 Definition . 38
3.4.5.2 Factor graph . 38

5

3.4.5.3 Sum-product algorithm . 38
3.4.6 Turbo code . 39

3.4.6.1 Parallel and serial concatenation . 39
3.4.6.2 Illustration . 41

3.4.7 Further applications . 41
3.4.8 Some important practical considerations . 41

3.5 Main Points . 42
3.6 Appendix . 43

3.6.1 The Sum-product algorithm . 43
3.6.2 Convolutional Code Generator: sum-product algorithm . 44

II Multi-mode receivers: adaptation 47

4 Basic Principles: Signals and Filters 51
4.1 Introduction . 51
4.2 Continuous-time signals . 51

4.2.1 Signal representation . 51
4.2.2 Filtering . 51

4.3 Discrete-time signals . 51
4.3.1 Signal representation . 51
4.3.2 Filtering . 52

4.4 Two important digital filters . 54
4.4.1 Interpolation filters . 54
4.4.2 CIC filters . 56

4.5 BER degradation . 57
4.5.1 Principle . 57
4.5.2 Example . 58

4.6 Signal Representation . 59
4.6.1 Principle . 59
4.6.2 Application . 59

4.7 Main points . 60
4.8 Appendix: BER degradation . 61

4.8.1 Definitions . 61
4.8.2 Semi-analytical approach . 61

5 Factor graphs, equalization and data detection 63
5.1 Introduction . 63
5.2 Receiver operation . 63

5.2.1 The received signal revisited . 63
5.2.2 Data detection: principle . 64

5.3 Observation models . 65
5.3.1 Observation model 1: matched filter detector . 65
5.3.2 Observation model 2: whitening matched filter . 66
5.3.3 Observation model 3: over-sampling detector . 67

5.4 Equalizers . 67
5.4.1 Sum-product equalizers . 68
5.4.2 Augmented equalizers . 70

5.5 Main points . 71

6 Transmit mode adaptation 73
6.1 Introduction . 73
6.2 Transmit Mode Parameters . 73

6.2.1 System Model . 73
6.2.2 Modes . 74

6.3 Symbol rate adaptation . 75
6.4 Main points . 77

6

7 Low-Complexity receivers 79
7.1 Introduction . 79
7.2 Design issues in multi-rate receivers . 79
7.3 Sample rate conversion . 80
7.4 Low-complexity matched filter receivers . 80

7.4.1 System description . 81
7.4.1.1 Receiver front-end . 81
7.4.1.2 Receiver alternatives . 81
7.4.1.3 IF-sampling receiver: operation . 83

7.4.2 Aliasing . 84
7.4.2.1 Interpolation . 85
7.4.2.2 Digital anti-aliasing filter . 85

7.4.3 Performance measure . 86
7.4.4 Performance analysis . 87

7.4.4.1 IP + MF . 87
7.4.4.2 MF + IP . 88

7.4.5 Receiver Design Parameters . 88
7.4.5.1 Baseband sampling receivers . 89
7.4.5.2 IF-sampling receivers . 89

7.4.6 Numerical Results . 91
7.4.7 Complexity comparison . 94
7.4.8 Remarks . 95

7.5 Coded transmission . 95
7.6 Main Points . 96

III Multi-mode receivers: estimation 97

8 Basic Principles: Estimation 101
8.1 Introduction . 101
8.2 Problem formulation . 101
8.3 MAP and ML estimation . 101

8.3.1 Maximum A Posteriori estimation . 101
8.3.2 Maximum Likelihood estimation . 102
8.3.3 Two problems . 102

8.4 Estimation on factor graphs . 102
8.4.1 Drawbacks . 103
8.4.2 Pragmatic approach . 103

8.5 The EM algorithm . 103
8.5.1 Principle . 103
8.5.2 Complete data and missing data . 104
8.5.3 EM-based estimation using factor graphs . 104

8.6 The SAGE algorithm . 105
8.6.1 Principle . 105

8.7 An example . 106
8.7.1 Problem formulation . 106
8.7.2 ML estimation . 106
8.7.3 EM estimation . 107
8.7.4 SAGE estimation . 107

8.8 Main points . 107
8.9 Appendix: Convergence of the EM algorithm . 109

9 Code-aided estimation: the big picture 111
9.1 Introduction . 111
9.2 Conventional estimation techniques . 111

9.2.1 Frequency-selective channel . 111
9.2.1.1 Method 1: the unstructured estimator . 113
9.2.1.2 Method 2: the structured estimator . 114

9.2.2 Frequency-flat channel . 115

7

9.2.2.1 Data-aided estimation . 115
9.2.2.2 Other estimation algorithms . 115

9.3 EM-based code-aided estimation . 117
9.3.1 Frequency-selective channel . 119

9.3.1.1 Method 1: the unstructured approach . 119
9.3.1.2 Method 2: structured approach . 120

9.3.2 Frequency-flat channel . 121
9.3.3 Two extreme cases . 122

9.3.3.1 Data-aided estimation . 122
9.3.3.2 Uncoded transmission . 122

9.4 Sum-product code-aided estimation . 122
9.4.1 Example . 123

9.5 Main points . 124

10 Code-aided estimation: the smaller picture 127
10.1 Introduction . 127
10.2 Computational complexity . 127

10.2.1 The EM algorithm . 127
10.2.2 The SAGE algorithm . 128
10.2.3 Further approximations . 129

10.3 Convergence properties . 129
10.3.1 Convergence characteristic . 129
10.3.2 Example: phase estimation . 130
10.3.3 Conclusion . 130

10.4 Extensions of the EM algorithm . 130
10.4.1 The parallel EM algorithm . 130

10.4.1.1 Applications . 133
10.4.1.2 Complexity . 134

10.4.2 The discrete EM algorithm . 134
10.4.2.1 Applications . 134
10.4.2.2 Complexity . 134

10.5 Main points . 134

11 Estimation of discrete parameters 135
11.1 Introduction . 135
11.2 Mode detection . 136

11.2.1 System model . 136
11.2.2 Symbol rate detection . 136

11.2.2.1 Cyclic correlation-based algorithm . 137
11.2.2.2 Low-SNR approximation . 137
11.2.2.3 Discrete EM . 137

11.3 Code-aided estimation of discrete synchronization parameters . 138
11.3.1 Phase ambiguity resolution . 138

11.3.1.1 System model . 138
11.3.1.2 ML approach . 138
11.3.1.3 EM approach . 138
11.3.1.4 Overall factor-graph approach . 139
11.3.1.5 Performance results . 140

11.3.2 Frame synchronization . 140
11.3.2.1 System model . 140
11.3.2.2 EM approach . 141
11.3.2.3 Overall factor graph approach . 141
11.3.2.4 Performance results . 141

11.4 Other code-aided hypothesis testing algorithms . 142
11.5 Main points . 143
11.6 Appendix: Rate detection - low-SNR method . 144

8

12 Code-aided estimation: performance results 147
12.1 Introduction . 147
12.2 Performance measure . 147

12.2.1 Measures . 147
12.2.2 Benchmarks . 147

12.3 Channel estimation: frequency-flat channel . 147
12.3.1 System set-up . 147
12.3.2 Genie receiver . 148
12.3.3 Phase estimation . 148
12.3.4 Delay estimation . 153
12.3.5 Joint delay and phase estimation . 158

12.4 Channel estimation: frequency-selective channel . 158
12.4.1 System set-up . 158
12.4.2 MSEE performance . 161
12.4.3 Error rate performance . 161

12.5 Rate detection . 162
12.5.1 System Model . 162
12.5.2 Rate detection algorithms . 162
12.5.3 Performance results . 163

12.6 Main Points . 167

IV Concluding Remarks 169

13 Open Issues and Loose Ends 171
13.1 Introduction . 171
13.2 Parameter estimation . 171

13.2.1 Static parameters . 171
13.2.2 Time-varying parameters . 171
13.2.3 Discussion . 172

13.3 Link adaptation . 173
13.4 Main Points . 173

14 Conclusions 175
14.1 Introduction . 175
14.2 Adaptation . 175
14.3 Estimation . 176
14.4 Publications . 177

9

Notations

p(x |y) notational shorthand for pX|Y (X = x |Y = y)∑
∼{A} f (B) sum over B \A∑
a:ak

f (a) sum over all a for which the k-th component equals ak

Ex [f (x, y, z) |z] expectation of f (x, y, z) w.r.t. x, conditioned
on z :

∫
p (x| z) f (x, y, z) dx

V arx [f (x, y, z) |z] variance of f (x, y, z) w.r.t. x, conditioned on z
={x} the imaginary part of x
<{x} the real part of x
x∗ complex conjugate of x
x̂ an estimate of x
x a vector x

xk the k-th element of some vector x

X a matrix X

XT the transpose of X

XH the transpose complex conjugate of X: XH = (X∗)T

Xn,m element at row n, column m of X

‖x‖ norm of x: ‖x‖ =
√∑

k |xk|2
X (f) the Fourier transform of the signal x (t)
X
(
ej2πfTs

)
the discrete Fourier transform of
the sample sequence {x (kTs)}

x
.
= y x is a notational shorthand for y (or vice versa)

x ∝ y x is proportional to y: x is equal to y up to irrelevant
additive and multiplicative terms

x ∼ N
(
µ, σ2

)
x is a real random variable drawn from a Gaussian
distribution with mean µ and variance σ2

x ∼ CN
(
µ, 2σ2

)
x is a complex random variable,
with independent real and imaginary
parts, such that <{x} ∼ N

(
µ, σ2

)
and ={x} ∼ N

(
µ, σ2

)

(n,m)8 n and m in octal notation
[a, b] a continuous interval from a ∈ R to b∈ R

1N×M an N ×M matrix of ones
0N×M an N ×M matrix of zeros
IN an N ×N identity matrix
arg (x) the phase of the complex number x
arg maxx f (x) the value of x that maximizes f (x)

10

Glossary

A amplitude
α complex path gain
CIC (R,L) CIC filter with decimation factor R and order L (Chapter 4 and 7)
de the parameter vector to be estimated (Chapter 8)
dn the nuisance parameter (Chapter 8)
dc the complete data (Chapter 8)
dm the missing data (Chapter 8)
dh the hidden data (Chapter 8)
δ (t) the Dirac distribution:

∫
h (t) δ (t− t0) dt = h (t0)

δk Dirac delta: for k ∈ Z: δ0 = 1, δk 6=0 = 0
Es energy per transmitted symbol
Eb energy per information bit
Ec energy per coded bit
fc carrier frequency
fIF intermediate frequency
g (t) obtained by matched filtering h (t): g (t) =

∫
h∗ (−u)h (t− u) du

hBB (t) baseband channel impulse response
h (t) overall impulse response: h (t) =

√
Es

∫
p (u)hBB (t− u) du

θ carrier phase
I [P] indicator function: I [P] = 1 when P = true and I [P] = 0 otherwise
L number of paths in multi-path channel
M number of points in the signaling constellation Ω
µf→a (a′) message from function node f to variable edge a, evaluated in a′
µa→f (a′) message from variable edge a to function node f , evaluated in a′
N oversampling factor (Chapters 5-7)
Nb number of information bits per burst
Ns the number of symbols per burst
N0 AWGN power spectral density
Nc number of coded bits per burst
Ω the signaling constellation
p (t) the transmit pulse
pI (t) the interpolation pulse
q (t) obtained by matched filtering p (t) :q (t) =

∫
p∗ (−u) p (t− u) du

rX (t) received signal, with X the baseband, IF or bandpass representation
sX (t) transmitted signal with X the baseband, IF or bandpass representation
σ2 noise variance per real dimension, often σ2 = N0/ (2Es)
t time
T the symbol duration (1/T is the symbol rate)
1/Ts the sampling rate
τ propagation delay
y (t) obtained by filtering r (t) with p∗ (−t): y (t) =

∫
p∗ (−u) r (t− u) du

Sometimes: obtained by filtering r (t) with h∗ (−t): y (t) =
∫
h∗ (−u) r (t− u) du

11

Abbreviations and acronyms
AAF Anti-Aliasing Filter

ADC Analog to Digital Conversion (or Converter)

APP A Posteriori Probabilities

ASP Analog Signal Processing

AWGN Additive White Gaussian Noise

BB BaseBand

BER Bit Error Rate

BP BandPass

CDMA Code Division Multiple Access

CIC Cascaded Integrator Comb

DAC Digital to Analog Conversion (or Converter)

DTFT Discrete-Time Fourier Transform

DSP Digital Signal Processing

DS/SS Direct-Sequence/Spread-Spectrum

EM Expectation Maximization (as in the EM algorithm)

FER Frame Error Rate

FT Fourier Transform

IF Intermediary Frequency

iid Independent and identically distributed

IP InterPolator

MF Matched Filter

MSEE Mean Squared Estimation Error

MMSE Minimum Mean Squared Error

PSD Power Spectral Density

PSK Phase Shift Keying (e.g, M -PSK, BPSK, QPSK)

RF Radio Frequency

SAGE Space Alternating Generalized EM algorithm

SP Sum-Product (as in the SP algorithm)

SR Software Radio

SRC Sample Rate Conversion

12

Part I

Introduction

Chapter 1

Introduction

1.1 An evolution in communications
In the last decade, the way we communicate, access and distribute information has changed dramatically. The Inter-
net is now virtually ubiquitous. Cell-phones, digital cameras, laptops, GPS and portable media players are becoming
commonplace, and are constantly transforming, changing, merging. There is a powerful economic drive to recom-
bine existing techniques and standards, to create wireless devices that people can use for a variety of tasks (an idea
aptly referred to as ’convergence’). One of the goals is a device that is able to support different standards (such
as GSM, DECT, CDMA, UMTS, WiFi), is upgradable to future standards, can support heterogeneous services (e.g.,
narrow-band voice and broadband data services, entertainment, GPS, etc.), at low cost. Furthermore, this device
should be able to operate under the most adverse conditions, with very low power consumption, using the least
possible bandwidth, and so forth [1,2]. An important aspect is that of adaptivity: how, and according to which criteria
can the transmission-parameters (e.g., transmit power, data rate, etc.) be changed over time in an efficient manner?
Many current standards strive to meet at least a subset of the abovementioned requirements.

In the meantime, the communications research community is developing new ideas at an ever increasing pace.
Although the bulk of this research will most likely become nothing more than historical record, every once and a
while a truly remarkable idea shakes up the community, creating entire new fields of research and connecting ex-
isting ones. In the field of digital communications, it all started around the time (for a historical overview, see [3])
of Claude Shannon’s 1948 landmark paper: ’A Mathematical Theory of Communication’ [4]. Not only did Shannon
singlehandedly create the field of Information Theory, he also changed the way people thought about communic-
ation. Rather than considering the transmission of electromagnetic waves, Shannon envisaged digital information.
The concept of sending information in digital form (e.g., as bits) was formalized at that time. Shannon also derived a
bound, now known as the Shannon Bound, relating a channel to the information rate; the Shannon Bound basically
states how many bits per second one can reliably transmit over a given channel. This bound is still used as a bench-
mark for state-of-the-art communication systems [5]. By defining a new communication paradigm, Shannon helped
in laying the foundation for a large set of related problems, many of which are still relevant today. For instance, the
field of coding theory, concerned with how we can protect the bits that are to be transmitted over the channel. The
field of multi-user communication, where one allows multiple users to share the same channel. And of course other
topics, too many to list here.

Probably the most groundbreaking contribution in the late 20th century is the concept of iterative processing
(turbo-processing). Although this idea has been latently present since the early 1960s [6], it took until 1993 [7] before
its potential was fully recognized, and before the processing power was available to implement the corresponding
algorithms. The idea is conceptually simple: a complex task is divided in simple sub-tasks. To solve the complex
task, one solves the sub-tasks, exploiting information available from the solutions of other sub-tasks. Although
deceptively straightforward, the reader should appreciate the enormous impact the turbo-concept has had in the last
decade. For instance, the idea was originally applied to the problem of channel coding, resulting in the development
of a novel type of code (a turbo-code, naturally). For the first time since Shannon’s 1948 paper, a research group was
able to create a practically implementable code, that could approach the Shannon Bound1! Later, the turbo-principle
was applied in virtually every area of digital communications, leading to techniques such as turbo-synchronization,
turbo-multi-user-detection, turbo-equalization, etc. The turbo-principle was originally developed in a rather ad-
hoc way. Only recently a mathematical framework was proposed confirming, up to a point, the validity of these
algorithms. This framework goes under the name of ’factor graphs’ [8, 9], and provides insightful ways to develop

1At the International Communications Conference in 1993, where Claude Berrou et al. first presented their turbo-codes, the idea was met with
significant scepticism. Only when the results had been independently verified, was the turbo-concept fully accepted.

15

C
H
A
N
N
E
L

bits
DSP DAC ASP ASP ADC DSP

estimate channel

estimate ModeSet of Rules
other criteria

detected bits

transmitter receiver

transmission mode
select

Figure 1.1: A generic Multi-Mode Transceiver

iterative algorithms, based on a graphical representation of a problem or system.

Let us take a step back. On the one hand there is a need from the industry to create powerful, adaptive devices
(requiring powerful, adaptive algorithms). On the other hand, a plethora of new iterative algorithms and techniques
from the communications research community are available. In this dissertation, we will forge some links between
iterative processing and adaptive transceivers.

In the remainder of this chapter, we will give a brief description of the transmission schemes under consideration,
and place them in their proper context. A number of practical problems related to such receivers will be touched
upon. We end with an overview of the organization of this dissertation.

1.2 Multi-mode transmission and Software Radio

1.2.1 Concept

In adaptive transmission, the transmitter can decide, based on a set of rules, to change the way digital information
is transmitted. For instance, the transmitter could increase the transmit power depending on the channel conditions,
to ensure a target quality of service (QoS). The transmitter could also adapt the data rate, depending on the type
of content that needs to be transferred [10]. The different regimes under which a transmitter can operate will be
named the transmit modes. Determining a set of rules according to which modes should be selected is referred to
as link adaptation, and deals mainly with information-theoretic aspects of multi-mode transmission. The process of
modifying (through filters or software) the transmitter and receiver to operate in a given mode will be referred to as
mode adaptation.

A generic multi-mode transceiver is shown in Fig. 1.1. The transmitter selects a transmit mode, according to the
link adaptation strategy. For instance, the transmitter could decide to adapt the transmit power and modulation
based on certain channel state information, in order to reduce the overall transmit power and thus increase battery
life. The transmitter can obtain the channel state from the receiver through some separate channel (shown in dashed
in Fig. 1.1). Once a transmit mode has been selected, a sequence of bits is converted to a signal corresponding
to that mode. The signal is generated through a combination of Digital and Analog Signal Processing (DSP and
ASP, respectively), separated by a Digital to Analog Converter (DAC). Both analog and digital components may
depend on the transmit mode. Then, the signal is transmitted to the receiver over a channel, in this example using
an antenna2. The signal propagates through the channel and arrives at the receiver, corrupted by thermal noise. The
main goal of the receiver is detecting the bits. Often the most efficient way to do this, is first estimating the channel
state (and possibly the transmit mode), and only then detecting the bits, assuming the estimates to be correct. In
some scenarios, the transmitter can forward the transmit mode to the receiver through some separate channel (again

2Or some other means, such as optical fiber, coax cable, telephone line etc.

16

shown in dashed in Fig. 1.1). Similar to the transmitter, the receiver also has analog and digital components, now
separated by an Analog to Digital Converter (ADC).

1.2.2 Practical issues
As with many ideas, the concept of adaptive transmission is not new. At the time of its conception (some 40 years
ago), there was only very limited interest [11, 12]. Only recently, with the availability of suitably powerful hardware,
has adaptive transmission been put back on the agenda (see [13] and references therein).

Despite the presence of powerful hardware, mode adaptation at the transmitter and the receiver should be per-
formed in an efficient manner. It would not do to design transceivers with different analog and digital components
for each possible mode - the cost would simply be prohibitive. In fact, mode adaptation should be performed, as
much as possible, in the digital rather than the analog part of the receiver: analog components cannot easily be
adapted, cannot benefit from Moore’s law and are generally less reliable and less cost-effective than their digital
counterparts.

Shifting tasks to the digital domain goes hand in hand with the concept of Software Radio (SR) [14]. Originally
conceived for military applications, the idea of Software Radio is to digitize signals close to the antenna and let all
processing be performed by digital signal processors, programmable by software, operating on a suitable hardware
platform. Adapting the radio to operate in a new mode (or even a new standard), simply requires loading different
software. Some critical functionalities of Software Radios are [15]:

• Analog to digital and digital to analog conversion: when the ADC is moved closer to the antenna, the digitization
bandwidth needs to be increased, as well as the dynamic range. Additionally, power consumption of ADC and
DAC components may be an issue. Problems related to ADC and DAC are outside of the current scope.

• Sample rate conversion: different parts of the receiver may operate at different rates. The process of converting
samples at one rate to samples at another rate is known as Sample Rate Conversion (SRC).

• Channelization: isolating independent communication channels contained within a signal. Out-of-band as well
as in-band interferers should be suppressed, either in the digital or in the analog domain.

It is expected that future multi-mode receivers will be implemented as Software Radios. For that reason, we will not
distinguish between these two types of receivers.

From the exposition above, it has become clear that the task of receiver and transmitter are somewhat asymmetric:
the transmitter has perfect knowledge of the data and transmit mode, but only imperfect (or no) knowledge of the
channel state. The receiver, on the other hand, does not know the data, has only imperfect knowledge of the channel
state and may or may not know the transmit mode. In general, the task of the receiver is much more complex than
that of the transmitter.

1.3 Iterative techniques
The (multi-mode) Software Radio described above does not really require any advanced estimation or detection
algorithms. Standard approaches [16,17] will do just fine: one would first estimate the transmit mode and the channel
parameters. Then, the receiver is adapted to the transmit mode, so that standard operations such as equalization and
timing correction can be performed. Finally, the bits are detected.

However, when we include the aspect of coding, everything changes dramatically. Powerful codes have the
property of achieving very reliable transmission with very low transmit power. Very low transmit power results in
very low received power. Unfortunately, conventional algorithms, which have satisfactory performance for uncoded
transmission (requiring high transmit power for reliable transmission), are now unable to cope: due to the low
power at the receiver, these algorithms become very unreliable. Since state-of-the-art error-correcting codes are not
very robust against estimation errors, new approaches are called for.

A way around this problem is applying the turbo-principle to equalization, data detection and estimation [18,
19]. Roughly speaking, one employs a set of standard algorithms to roughly estimate, equalize and perform data
detection. We then have some additional information regarding the transmitted data. This information can then
be used to improve the reliability of estimation and equalization algorithms. This in turn results in more reliable
information to be provided to the decoder, and so forth. Such iterative techniques have been applied since the
advent of turbo-codes in the early 1990s. However, most iterative estimation algorithms were developed in an ad-
hoc way, and are only useful for very specific applications. A mathematical framework was still missing. Developing
such iterative estimation techniques for multi-mode transceivers is an important topic and covered in part in this
dissertation.

17

1.4 Overview
This dissertation deals with two important tasks of the receiver. First of all, the receiver has to determine the channel
state and the transmit mode. Subsequently, the receiver has to adapt to the channel state and transmit mode in an
efficient manner. Although we will mainly focus on receiver algorithms, some sections dealing with receiver design
may also be applied to the transmitter.

The text consists of four parts. The main contributions are in Part II and III, which can be read (more or less)
independently from one another. Each part starts with a chapter dealing with some background information, useful
to fully appreciate the contributions in later chapters of that same part. This way, the reader can read through the
chapters without getting distracted by the mathematical details.

Part I

In the first part, we will introduce a mathematical description of the system model (Chapter 2) for the coded multi-
mode transmission scheme under consideration, followed by a more detailed look into some problems that are the
main motivations for this research. The first part ends with a description of factor graphs, which form a unifying
framework for many iterative algorithms (Chapter 3), and which will be heavily relied upon throughout this manu-
script.

Part II

The second part deals with adaptation, i.e., how can a receiver which perfectly knows the transmit mode and channel
state efficiently detect the data? We start with some basic material, pertaining to analog and digital signal processing
(Chapter 4) which will be useful for the remainder of Part II. This is followed by a description of how a receiver can
cope with adverse channel conditions (Chapter 5). We then move on to some aspects related to mode adaptation,
exposing the critical issue of rate-adaptation (Chapter 6). A separate chapter is devoted to the comparison of different
multi-rate receivers in terms of performance and complexity (Chapter 7).

Part III

Part III considers the problem of iterative estimation. We start again with some basic material (Chapter 8), describ-
ing general estimation techniques. This is followed by a detailed description of so-called code-aided estimation
algorithms in Chapter 9. As these algorithms tend to exhibit problems related to convergence and computational
complexity, we devote Chapter 10 to show how these issues can be resolved. As a by-product, we will describe
a powerful algorithm for estimating discrete parameters (Chapter 11). Part III ends with a presentation of some
relevant performance results (Chapter 12).

Part IV

We end our thesis with Part IV, describing some open problems and proposals for future work (Chapter 13), be-
fore wrapping things up with our final conclusions (Chapter 14). Chapter 14 also contains a complete list of own
publications in international refereed conferences and journals.

18

Chapter 2

System Model

2.1 Introduction

In all communication systems, we are faced with the following problem. A transmitter wishes to send (digital) in-
formation to a receiver. For this communication, they have been allocated a certain channel (e.g., a carrier frequency,
a maximum bandwidth, a physical link, time slots, etc.). Within the channel constraints, they have the possibility
to dynamically change the way how the data is transmitted. This can be achieved by employing multiple trans-
mit modes. This includes changing the number of bits per second (the data rate), the way how the information is
represented (coding, modulation) and the transmit power [20].

Although a multi-mode transmission scheme enables the transmitter to dynamically adapt to the changing envir-
onment, it creates some extra challenges for the receiver. On top of the conventional operations the receiver has to
perform (such as channel estimation, synchronization and data detection), it now also has to determine the transmit
mode and adapt itself to that mode in an efficient manner. This readily defines two tasks, not present in conventional
mono-mode receivers: mode detection and mode adaptation.

As mentioned before, besides these new tasks, the receiver still has to fulfill the functions required of all mono-
mode receivers. The transmitted signal is corrupted in many ways as it passes through the physical channel. The
most efficient way for a receiver to recover the transmitted data, is first to estimate how the signal is corrupted
and then take measures to undo this corruption [16]. In addition, the received signal has to be synchronized to the
transmitted signal. This means that parameters such as propagation delays and carrier phases need to be estimated
and compensated for.

Clearly, the receiver has to perform two types of tasks in order to detect the data. The first is estimation of
unknown parameters (transmit modes, channel parameters and synchronization parameters). Once these para-
meters have been estimated, the second task of the receiver is modifying itself to compensate for these parameters
(resp. mode adaptation, equalization, timing- and carrier phase correction) in order to perform data detection. We
will name these tasks estimation and adaptation, respectively.

In this chapter we will describe the transmitter, the channel model and the front-end of the receiver. Relevant
notations and terminology are introduced. The model we present is a fairly standard one, mainly based on [16, 21]
and depicted in Fig. 2.1.

2.2 Transmitter

2.2.1 Signal generation

The transmitter sends a sequence (b) of Nb information bits to the receiver. The bits are first encoded, yielding a
code sequence c of length Nc, where c and b are related by the one-to-one mapping χ: c = χ (b). The ratio Nb/Nc is
referred to as the code rate. The coded bits are then mapped to a sequence of Ns complex symbols a = ϕ (c), taken
from an M -point constellation1 denoted as Ω. The symbols are shaped by a unit-energy transmit pulse p (t). The
resulting complex baseband signal can be written as

sBB (t) =
√
Es

Ns−1∑

k=0

akp (t− kT) (2.1)

1For the moment, a constellation can be thought of as a collection of M points in the complex plane.

19

further processing

BB to BP

detected bits

coder mapper

BP to [IF to] BB

CHANNEL

AWGN

transmitter

receiver

p(t)
b c a

rBB(t)

sBB(t)

χ ϕ

hBP (t)

sBP (t)

rBP (t)

Figure 2.1: Model of transmitter and receiver

1 0 0 01 1 1

T

t

c

sBB(t)

Figure 2.2: A baseband signal with block-pulse p (t)

where Es and 1/T denote the transmit energy per symbol and the symbol rate, respectively. The transmit pulse has
a (one-sided) bandwidth B. An example of a baseband signal with Ω = {−1,+1} and a block-pulse is shown in
Fig. 2.2.

We distinguish between the energy per information bit (Eb), the energy per coded bit (Ec) and the energy per
symbol (Es): these are related by Ec log2M = Es and EbNb/Nc = Ec.

The complex baseband signal is now converted to a real bandpass signal2, with carrier frequency fc. This yields:

sBP (t) = <
{√

2sBB (t) ej2πfct
}

(2.2)

=

√
2

2

(
sBB (t) ej2πfct + s∗BB (t) e−j2πfct

)
. (2.3)

2.2.2 Mono-mode and multi-mode transmission
In mono-mode transmission, the information sequence b uniquely defines the transmitted signal sBP (t). In multi-
mode transmission, sBP (t) can depend on other parameters. These include

• the energy per information bit Eb

• the energy per transmitted symbol Es

• the code χ

• the modulation set Ω and mapping function ϕ

• the symbol rate 1/T

2BB = BaseBand; BP = BandPass

20

• the pulse shape p (t)

Note that these parameters are not all independent.

2.3 Receiver

The signal sBP (t) propagates through a channel with real channel impulse response hBP (t). This channel is assumed
to be time-invariant, which constrains the burst length to be sufficiently short (NsT has to be much smaller than the
coherence time of the channel3). At the receiver, the signal is further corrupted by thermal Additive White Gaussian
Noise (AWGN). The signal at the input of the receiver is given by

rBP (t) =

∫ +∞

−∞

sBP (u)hBP (t− u) du+ n (t) (2.4)

=

∫ +∞

−∞

<
{√

2sBB (u) ej2πfcuhBP (t− u)
}
du+ n (t) (2.5)

where n (t) is a real AWGN process with power spectral density (PSD) N0/2. The received signal rBP (t) is often
referred to as the RF-signal (Radio Frequency). The RF-signal is first down-converted to baseband:

r̃I (t) =
√

2rBP (t) cos (2πfct) (2.6)

r̃Q (t) =
√

2rBP (t) sin (−2πfct) (2.7)

where the subscripts I and Q denote the In-phase and Quadrature component of the signal. Low-pass filtering of
r̃I (t) and r̃Q (t) gives rise to4

rI (t) =

∫ +∞

−∞

<{sBB (u)hBB (t− u)} du+ wI (t) (2.8)

rQ (t) =

∫ +∞

−∞

={sBB (u)hBB (t− u)} du+ wQ (t) (2.9)

where wI (t) and wQ (t) are independent real Gaussian noise processes; both are white within the signal bandwidth
with power spectral density N0/2. The filter hBB (t) corresponds to a down-converted version of hBP (t):

hBB (t) = hBP (t) e−j2πfct. (2.10)

The complex baseband signal is then given by

rBB (t) = rI (t) + jrQ (t)

=

∫ +∞

−∞

sBB (u)hBB (t− u) du+ w (t) (2.11)

Substituting (2.1) into (2.11) yields

rBB (t) =

Ns−1∑

k=0

akh (t− kT) + w (t) (2.12)

where h (t) =
√
Es

∫
p (u)hBB (t− u) du is obtained by convolving

√
Esp (t) and hBB (t).

3Coherence time: loosely defined as the time during which the channel is constant. The coherence time is inversely proportional to the speed
of movement and the carrier frequency fc.

4={x} = x−x∗

2j
,<{x} = x+x∗

2
.

21

RF to IF conversion

Although we did not consider this explicitly in the model above, the RF signal not only consists of a useful signal
component and noise, but also of signal components with other carrier frequencies belonging to other services or
users. These have to be removed through filtering using a very sharp bandpass filter. This is often difficult to
realize. As an additional problem, when the carrier frequency or signal bandwidth changes (which is the case in
some communication standards), the filters and oscillators need to be changed. As this is impractical, the resulting
receiver cannot easily be tuned. Direct conversion from RF to baseband is therefore commonly avoided [22].

In practice, the RF signal is never down-converted to baseband in a single stage. Rather, a so-called super-
heterodyne receiver is used, whereby the RF signal is filtered using a coarse, tunable filter that removes image com-
ponents, followed by down-conversion to an Intermediate Frequency (IF). The resulting IF signal is then processed
according to the methods outlined above, where fc needs to be replaced with the IF, fIF < fc:

rIF (t) =

∫ +∞

−∞

<
{√

2sBP (u) ej2πfIF uhIF (t− u)
}
du+ n (t) (2.13)

where hIF (t) is an IF-equivalent representation of hBP (t). Possibly, the receiver will have multiple IF stages, each
time reducing the IF.

When the carrier frequency of the RF signal changes, tuning the filters and oscillator frequency can now easily be
accomplished [22].

2.4 Channel model
A common channel model is the multi-path model, whereby the channel impulse response consists of a number of
distinct paths [16]:

hBB (t) =

L−1∑

l=0

αlδ (t− τl) (2.14)

where αl and τl are the complex gain (embedding carrier phase and attenuation) and the propagation delay of the
l-th path. We order the paths as τ0 < τ1 < . . . < τL−1. We say that the l-th path is resolvable when τl+1 − τl � 1/B,
where B represents the bandwidth of p (t). If this is not the case, both paths are to be combined into a single path,
and the complex gains added.

A channel is said to be frequency-selective when it has at least two resolvable paths. Otherwise the channel is
frequency non-selective (also known as a frequency-flat channel). The delay of the first path, τ0, corresponds to the
propagation delay of the burst through the channel. For a frequency-flat channel, the channel model (2.14) is often
written as

hBB (t) = Aejθδ (t− τ) (2.15)

where A, θ and τ represent the channel attenuation, carrier phase and propagation delay, respectively.
Note that the channel model may further be characterized by the joint distribution of the channel gains and

propagation delays. All this a priori information is captured in the a priori distribution, p (α0, τ0, . . . , αL−1, τL−1).

2.5 Receiver tasks
The ultimate goal of the receiver is to recover theNb data bits b from the received baseband signal rBB (t). In order to
achieve this goal, the receiver is forced to cope with some adverse conditions. For instance both the channel hBB (t),
and the noise statistics may be unknown to the receiver. Even for a flat channel, the oscillators at the receiver will
not be synchronized with those at the transmitter, so that the propagation delay and the carrier phase need to be
determined before detection can take place. Finally, the receiver needs to determine the transmit mode of the current
burst.

Even if all of these parameters were known, the operation of the receiver is far from trivial: the frequency se-
lectivity needs to be taken into account (equalization), the signal needs to be reconstructed at the correct time instants
(timing correction), the detector may need to be modified to operate in the current transmit mode (mode adaptation).
Hence, in order to perform data detection, two tasks need be performed:

• estimation (of channel parameters, noise power, synchronization parameters, transmit mode);

22

ASP DSP

ADC DSP mode 2ASP mode 2

ADC DSP mode MASP mode M

ADC DSP mode 1ASP mode 1

rBB(t)

Figure 2.3: Multi-Mode Receiver

ADC DSP

mode

Analog
filter

rBB(t)

Figure 2.4: Ideal Digital Multi-Mode Receiver

• adaptation (equalization, timing correction, mode adaptation).

2.5.1 Adaptation

When the receiver knows the channel parameters, synchronization parameters, transmit mode etc, it needs to take
into account these parameters to develop suitable observation models and data detection algorithms. This will be
the main topic of Part II of this dissertation.

Adaptation to channel parameters and synchronization parameters deals with topics such as matched filtering,
timing correction and equalization. These problems are well-known and standard solutions have been developed
decades ago. The equalization problem deserves some attention: optimal techniques such as sequence estimation [23]
cannot be used for many types of codes, while sub-optimal standard equalization techniques [21] are no longer
sufficiently reliable in combination with state-of-the-art error-correcting codes [24]. Recently, turbo-equalization
techniques have been proposed which iterate between data detection and equalization [18, 24, 25]. For the sake of
completeness a short chapter (Chapter 5) is devoted to adaptation of the receiver to channel parameters and syn-
chronization parameters.

How adaptation to the transmit mode should be performed is a problem which is fairly recent. The most straight-
forward way to implement such a multi-mode receiver would be as depicted in Fig. 2.3: the incoming signal is first
processed in the analog domain, irrespective of the mode. Then a branch is selected, depending on the mode, so
that mode-specific analog (e.g., filtering depending on the pulse-shape) and digital (e.g., equalization) signal pro-
cessing can be performed. Finally, a mode-independent digital (e.g., decoding) stage may be performed. One way
to significantly reduce the complexity of a multi-mode receiver is to perform no mode-dependent processing in the
analog domain. This is shown in Fig. 2.4. The incoming signal would first undergo ASP, is then sampled at some
rate (independent of the mode), followed by DSP. The DSP part would be implemented on some hardware plat-
form, where a mode change corresponds to a change of the software running on that platform. For our example,
the digital part would consist of loading new digital filters (depending on the pulse shape), a new equalizer and a
mode-independent decoder. The whole process of mode adaptation is then transformed into efficiently changing the
digital parts of the receiver through the software. As we will show, adaptation to a change in the symbol-rate may
be especially critical: changing the symbol rate implies changing the transmit pulse p(t). A related task is sample
rate conversion (SRC): the incoming signal (either baseband or at IF) is sampled with a fixed master clock. Generally,
the clock rate will be incommensurate with the symbol rate. Hence, samples taken at the master clock rate need to
be converted to samples at (a multiple of) the symbol rate. This task is known as sample rate conversion, and has
received much attention in the context of Software Radio [15]. We could go one step further and sample the incoming

23

ADC DSP

mode

filter
analog

rBP (t)

Figure 2.5: Ideal Multi-Mode Software Radio Receiver.

RF-signal rBP (t) directly using a wideband ADC, as depicted in Fig. 2.5. This corresponds to an ideal Software Ra-
dio, as defined in [15]. However, such an approach is not feasible with today’s hardware: high resolution wideband
ADCs are not yet commercially available. On the other hand, sampling the IF signal can be achieved with todays
ADCs. It is well known that care needs to be taken when sampling an IF signal in order to avoid aliasing [26].

Adaptation to the transmit mode will be the main topic in Part II of this dissertation. Mode adaptation is for
the most part a straightforward process, with the important exception of adaptation to the symbol rate. We pay
special attention to this problem in Chapter 7, where we develop several classes of receivers which allow us to trade
computational complexity for performance. These different classes of receivers are compared analytically in terms of
bit-error-rate (BER) performance. This results in simple design rules for multi-rate receivers and the development of
a low-complexity multi-rate receiver with a fully digital IF-sampling front-end.

2.5.2 Estimation
The problem of estimating channel parameters and synchronization parameters is present in all digital communica-
tions systems. Hence, a wide variety of algorithms have been developed over the last 50 years to perform this task.
However, since the development of capacity-approaching error-correcting codes, these conventional algorithms often
become unreliable: state-of-the-art codes operate at very low signal-to-noise ratios (SNR), making accurate estima-
tion very hard. A challenging problem is thus the following: how can we exploit the presence of the error-correcting
code during the estimation process?

Similarly, estimation of the transmit mode needs to be performed (mode detection). This is a relatively recent
problem, not present in mono-mode receivers. Mode detection is different from channel estimation in a sense that
the transmitter always has perfect knowledge of the current transmit mode. This implies that when no reliable mode
detection algorithm can be developed at a reasonable computational cost, it makes more sense to forward the current
transmit mode to the receiver through some separate channel. When mode changes are frequent, mode detection is
more attractive [27].

In Part III, we will describe a general framework for estimating all these parameters. The emphasis is placed on
so-called code-aided (or code-aware) estimation techniques that iterate between data detection and estimation.

2.6 Main Points
We have presented the transmitter and receiver model, including the channel model and RF to IF to BB down-
conversion. While the transmitter’s task is generally straightforward, the receiver faces several challenges: it needs
to detect the data stream in the presence of unknown parameters. These include parameters of the quasi-static chan-
nel, noise statistics and the transmit modes. Even when all these parameters are known to the receiver, data detection
is still a hard task and should be performed in an efficient manner. As an additional challenge, the data will be pro-
tected using a powerful error-correcting code. While such codes result in more bandwidth- and/or power-efficient
communication, they force the system designer to consider more advanced estimation and detection algorithms.

24

Chapter 3

Factor Graphs

3.1 Introduction

Factor graphs are currently a hot topic in communications research. The key concepts have been around for some
time in fields such as machine learning and artificial intelligence [28]. Only recently connections have been made
with communications problems [8, 9, 29]. Currently, factor graphs serve as a means to develop communications
systems and algorithms [30]: many existing detection algorithms can be interpreted as special cases of factor graphs
and many novel algorithms have been designed according to the factor graph paradigm. Factor graphs will appear
throughout this dissertation. Since factor graphs define how algorithms can be developed in a systematic way, many
of the techniques that will be investigated are based on factor graphs or rely on them for their proper operation. In
any case, they are of sufficient importance to deserve their own chapter in this dissertation.

This chapter is organized as follows: we start with a description of factor graphs and the sum-product algorithm
from an abstract point of view in section 3.2. We then move towards a specific application in section 3.3, common
to many communications problems: maximum a posteriori (MAP) estimation. We end in section 3.4 with some ex-
amples of MAP estimation, intended to give the reader some feeling of how factor graphs can be applied in advanced
detection and decoding schemes.

3.2 Factor graphs and the sum-product algorithm

Factor graphs are a convenient way to represent functions of many variables. When a function can be written as a
product of (more simple) functions, the corresponding factor graph can be decomposed in multiple (more simple)
factor graphs which are interconnected. Factor graphs also provide an efficient way to compute marginals of the
corresponding function. This is achieved by a procedure, known as the sum-product algorithm. The marginals are
computed by passing messages over the factor graph. We will give a brief overview of the concept of factor graphs
and apply them to some well-known communications problems.

3.2.1 Factor graphs: representation and terminology

We will use the normal graphs that were introduced in [29]. A factor graph is a diagram that represents the factoriz-
ation of a function of several variables:

f (x1, x2, . . . , xN) =
∏

j

fj (Xj) (3.1)

where Xj is a subset of {x1, x2, . . . , xN}. Each of the variables xi (which can be scalars or vectors) is defined over
some alphabet Ψi, so that f (.) is defined over Ψ1 × . . . × ΨN . A factor graph consists of nodes (vertices), edges and
half-edges (the latter are connected to only one node). The factor graph is related to the function f (.) as follows:
there is a node1 for every factor fj (.) and one (half-) edge for every variable xk. Node fj is connected to variable xk

⇐⇒ xk ∈ Xj . Finally, edges (resp. half-edges) are connected to exactly two (resp. one) nodes. We also introduce the
notion of the so-called indicator function, I [P]: for a predicate P , I [P] = 0 if P is false and I [P] = 1 if P is true. An
equality-node with adjacent edges x1, . . . , xL is a node representing the function2 I [x1 = . . . = xL].

1Nodes me be of different shapes (rectangles, circles, etc.). The shapes bear no meaning.
2In case the variables are defined over a continuous domain: I [x1 = . . . = xL] =

QL−1
k=1 δ (xk − xk+1), where δ (x) is the Dirac distribution.

25

half−edge

edge
x1

f2 f3

f1

x5

x3 x4

x2

f2 f3

x2

x4

f1

x1

x3

f2 f3

x2

x4

f1

=

x1

x3

Figure 3.1: Some simple factor graphs. Observe a cycle in the factor graph on the left

f2 f3

x2

x4

f1

=

x1

x3

f2 f3

f1

x1

x2

Figure 3.2: Normal factor graphs vs. conventional-style factor graphs. The two graphs represent the same function. On the left a normal
factor graph, on the right a conventional factor graph.

Examples

In Fig. 3.1, some simple factor graphs are shown. The graph on the left corresponds to the function:

f (x1, x2, x3, x4, x5) = f1 (x1, x3, x4) f2 (x2, x3, x5) f3 (x4, x5) . (3.2)

The graph in the middle corresponds to the function:

f (x1, x2, x3, x4) = f1 (x1, x3, x4) f2 (x2, x3) f3 (x4) . (3.3)

The reader will observe that the graph on the left contains a cycle (of length 3), while the other graphs do not. Also
note that variables can occur in no more than two functions. Although this may seem restrictive, it is not really: by
including equality nodes, variables can appear in arbitrarily many functions. For instance, the graph on the right
represents the function:

f (x1, x2, x3, x4) = f1 (x1) f2 (x2, x3) f3 (x4) I [x1 = x3 = x4] (3.4)
= f1 (x1) f2 (x2, x1) f3 (x1) I [x1 = x3 = x4] (3.5)

so that x3 and x4 can be interpreted as ’dummy’ variables in the factor graph representation of the function f1 (x1) f2 (x2, x1) f3 (x1).

Representation

In technical literature, factor graphs are conventionally depicted in a slightly different way. In [8], both variables
and functions correspond to nodes, while the edges define which variable appears in which function. For instance,
the function (3.5) leads to a conventional factor graph of the form shown on the right of Fig. 3.2. The corresponding
normal factor graph is depicted on the left side of the same figure. We will only consider normal factor graphs in this
dissertation.

26

µx3→f1(.)

µf1→x3(.)

µx3→f2(.)

x3
f2 f1

µf2→x3(.)

Figure 3.3: Messages on factor graphs. The message µf2→x3 (.) is passed over edge x3 where it is renamed µx3→f1 (.). Similarly,
µf1→x3 (.) = µx3→f2 (.).

3.2.2 The sum-product algorithm
Factor graphs not only allow us to visualize a function, they can also provide a graphical way to compute its marginals,
gi (xi), for xi ∈ Ψi, defined as

gi (xi) =
∑

∼{xi}

f (x1, x2, . . . , xN) (3.6)

where ∼ {xi} represents the ’not-sum’, i.e., the summation over all variables, except xi. In (3.6), summations over
continuous valued variables must be replaced with integrals over the corresponding domain.

In many cases, the computation of gi (xi) and of gj (xj), j 6= i, will have a lot of commonality. To compute all the
marginals jointly in an efficient manner, we resort to the sum-product (SP) algorithm. The SP algorithm is a message-
passing algorithm, where messages are computed in the nodes of the graph and passed over the edges. A message
over a given edge is a function of the variable corresponding to that edge. The message from a given node (i.e., a
function fm) to one of its adjacent edges (i.e., a variable of that function, xi ∈ Xm) is denoted by µfm→xi

(.). Similarly,
a message from an edge (variable xj) to an adjacent function fn is denoted by µxj→fn

(.). How different messages are
related is depicted in Fig. 3.3 (note that messages may be renamed as they pass over an edge).

The marginal gi (.), evaluated in the value xi ∈ Ψi, is given by the product of two messages over the corresponding
edge.

gi (xi) = µfm→xi
(xi) × µxi→fm

(xi) (3.7)

where fm is an arbitrary function with xi ∈ Xm. The key to the SP algorithm is how messages in nodes are computed.

Theorem 3.2.1 (The Sum-Product algorithm). Given a function and a cycle-less corresponding factor graph representation,
the Sum-Product Algorithm relates outgoing messages to incoming messages, according to3

µfn→xk
(xk) =

∑

∼{xk}

fn (Xn)
∏

l 6=k

µxl→fn
(xl) . (3.8)

Initialization: The SP algorithm starts from the half-edges in the graph and from nodes with degree4 1. Half-edges transmit
messages identically equal to ’1’, while degree-1 nodes transmit messages equal to the corresponding function itself, evaluated in
the connected edge.
Message Computation: A node fn (.) of degree m with corresponding variables x1, . . . , xm computes an outgoing message
µfn→xk

(xk) on edge xk according to (3.8) when all incoming messages (µxl→fn
(xl), l 6= k) have been received.

Termination: Once all messages have been computed, the marginals are given by (3.7).

A sketch of the proof is given in the Appendix of this chapter.

3.2.2.1 Remarks

The sum-product algorithm is more general than one would suppose at first sight: the sum and product operators
need not be the standard sum and product over the set of real numbers. The sum-product algorithm can be applied
to general abstract sets F , endowed with suitable ’sum’ (⊕) and ’product’ (⊗) operations, such that (F,⊕,⊗) forms a
commutative semi-ring [9]:

• ⊕ is associative and commutative. There exists an identity element for ⊕: e⊕
3For continuous variables, the summations are replaced with integrals.
4The degree of a node is the number of adjacent edges.

27

• ⊗ is associative and commutative. There exists an identity element for ⊗, e⊗

• ⊗ is distributive over ⊕: a⊗ (b⊕ c) = (a⊗ b) ⊕ (a⊗ c) for any a, b, c ∈ F .

The indicator function is then given by : I [P] = e⊗ when P is true and I [P] = e⊕ when P is false. Also, in the
initialization step, half-edges transmit the message e⊗.

Observe also that the sum-product algorithm is used to find marginals of the function. These marginals are
functions themselves. Similarly, the messages are functions of the corresponding edges.

3.2.2.2 Example

Consider the function from Eq. (3.5): f (x1, x2) = f1 (x1) f2 (x2, x1) f3 (x1) with corresponding factor graph shown in
Fig. 3.4. The sum-product algorithm is applied as follows:

1. Initialization: Messages from half-edges and degree-1 nodes:

µx2→f2
(x2) = 1

µf3→x4
(x4) = f3 (x4)

µf1→x1
(x1) = f1 (x1)

2. Now, messages can be computed from f2 to edge x3 and from the equality node to x3:

µf2→x3
(x3) =

∑

x2

f2 (x2, x3)µx2→f2
(x2)

=
∑

x2

f2 (x2, x3)

µ = →x3
(x3) =

∑

x1,x4

I [x1 = x3 = x4]µf3→x4
(x4)µf1→x1

(x1)

= µf3→x4
(x3)µf1→x1

(x3)

3. Subsequently, we compute messages from the equality node to x1 and x4; at the same time a message from f2

to x2 can be computed:

µ = →x1
(x1) = µf2→x3

(x1)µf3→x4
(x1)

µ = →x4
(x4) = µf2→x3

(x4)µf1→x1
(x4)

µf2→x2
(x2) =

∑

x3

f2 (x2, x3)µ = →x3
(x3)

4. Termination: Finally, the marginals are given by:

g1 (x1) = µ = →x1
(x1) × µf1→x1

(x1)

=
∑

x2

f2 (x2, x1) f3 (x1) f1 (x1)

g2 (x2) = µf2→x2
(x2) × µx2→f2

(x2)

=
∑

x3

f2 (x2, x3) f3 (x3) f1 (x3)

which is clearly the desired result. Also, it is easily verified that g1 (x1 = a) = g3 (x3 = a) = g4 (x4 = a) for any
a ∈ Ψ1.

3.2.3 Factor graphs with cycles
When the graph contains cycles (loops), the SP algorithm has no natural initialization, nor termination. The SP
algorithm starts again from the half-edges and nodes with degree one. At some point, due to cyclic dependencies,
nodes will not be able to compute outgoing messages. The sum-product algorithm simply halts (or waits forever).
The common solution to this problem is to replace unknown messages with a ’default’ message (the message ’1’ (e⊗
in general) over the corresponding domain). This is known as resetting the factor graph. The SP algorithm keeps
operating in this way. After a number of iterations, the SP algorithm is halted. The computed marginals are no
longer exact, but rather an approximation. The approximation becomes less accurate when the graph contains short
cycles [8].

28

f2 f3

x2

x4

f1

=

x1

x3

Figure 3.4: A factor graph of the function f (x1, x2) = f1 (x1) f2 (x2, x1) f3 (x1) with two dummy variables x3 and x4.

half−edge

edge
x1

f2 f3

f1

x5

x3 x4

x2

Figure 3.5: A factor graph of the function f1 (x1, x3, x4) f2 (x2, x3, x5) f3 (x4, x5) with a cycle of length 3.

3.2.3.1 Example

Consider the function from Eq. (3.2): f1 (x1, x3, x4) f2 (x2, x3, x5) f3 (x4, x5) with corresponding factor graph shown
in Fig. 3.5. The sum-product algorithm is applied as follows:

1. Initialization: Messages from half-edges and degree-1 nodes:
{
µx1→f1

(x1) = 1
µx2→f2

(x2) = 1

2. At this point, no more messages can be computed. For instance, to compute µf2→x3
(x3), we require µx5→f2

(x5).
Since µx5→f2

(x5) is unavailable, we set µx5→f2
(x5) = 1.

3. Now, the message from f2 to x3 can be computed:

µf2→x3
(x3) =

∑

x2,x5

f2 (x2, x3, x5) × 1 × 1

4. We can then compute µf1→x4
(x4) and µf3→x5

(x5), to re-evaluate µf2→x3
(x3), to re-compute µf1→x4

(x4) and
µf3→x5

(x5),... ad infinitum.

5. Termination: since this process continues indefinitely, we simply interrupt the SPA and compute all approxim-
ate marginals.

3.3 Receivers as factor graphs
It turns out that many communication problems can be cast in the framework of factor graphs. In fact, some state-
of-the-art iterative algorithms that were originally developed in an ad-hoc way, can be interpreted as applying the
sum-product algorithm on a suitable factor graph.

29

p(b)

p(r|b)

b

Figure 3.6: Factor graph of p (r |b) p (b). The only variable (edge) is b.

3.3.1 Principle

Suppose we want to infer b from an observation r. With b = [b0, . . . , bNb−1]
T , we commonly want to minimize the

error probability P
[
b̂ 6= b

]
by maximizing the a posteriori distribution w.r.t. b [16], resulting in the MAP5 estimate of

b:

b̂MAP = arg max
b

p (b |r) . (3.9)

In communications problems, the rule (3.9) corresponds to MAP sequence detection. In most cases, direct evaluation
of p (b |r) is impossible. Let us re-write the a posteriori distribution using Bayes’ Rule6:

p (b |r) ∝ p (r |b) p (b) (3.10)

where a ∝ b bears the meaning: a is equal to b, up to irrelevant additive and multiplicative constants. This factor-
ization can be represented by the factor graph from Fig. 3.6. The observation r should be considered a parameter
(rather than a variable) in this factor graph. Applying the sum-product algorithm to this graph would result in the
computation of p (b |r) (up to an irrelevant multiplicative constant). Unfortunately, even the likelihood function p (r |b)
and especially the a priori distribution p (b) are commonly too complex to evaluate.

Let us transform this factor graph into a graph where the variables are now the components of b. The correspond-
ing factor graph is depicted in Fig. 3.7. Although the latter graph represents the same function as the graph from
Fig. 3.6, the SP algorithm will not yield the same results: in the case of Fig. 3.7, we can compute the marginal a pos-
teriori distributions p (bk |r), not the joint a posteriori distribution p (b |r). Decisions with respect to the components
of b are given by:

b̂k,MAP = arg max
bk

p (bk |r) . (3.11)

In communications problems, the rule (3.11) corresponds to MAP symbol detection. Generally, grouping the MAP
estimates of the components does not yield the MAP estimate of the vector b:

b̂MAP 6=
[
b̂0,MAP , . . . , b̂Nb−1,MAP

]T
. (3.12)

Nevertheless, in many practical scenarios, computation of the marginal p (bk |r) is feasible, provided we introduce
additional variables (edges). Furthermore, the technique of making decisions w.r.t. the components of b as opposed
to b as a whole has led to some of the most powerful detection and decoding algorithms known today. The idea is to
introduce additional variables to the likelihood function p (r |b) and the a priori distribution p (b) so that both lead
to nice factorizations. This leads to the following

Key Idea: In order to perform MAP detection on the components of b, given an observation r, we need to compute the a
posteriori probabilities (APPs) p (bk |r), i.e., the marginals of p (b |r). We introduce additional variables (grouped into
a vector, say x), such that p (b,x |r) leads to a convenient factor graph representation of both the likelihood function
p (r |b,x) and the a priori distribution p (b,x). Applying the SP algorithm on this graph yields the required APPs
{p (bk |r)}, as well as APPs of the additional variables {p (xl |r)}.

5MAP: Maximum A Posteriori.
6Bayes’ Rule: p (x, y) = p (x |y) p (y) = p (y |x) p (x).

30

p(b)

p(r|b)

b0 b1 bNb−1

Figure 3.7: Another factor graph of p (r |b) p (b). The variables are now the components of b.

To be more precise, these graphs will represent a function that is proportional to an a posteriori distribution. Hence,
the marginals will be marginal a posteriori distributions, up to a scaling factor. Since distributions are normalized,
we can easily determine this scaling factor. As will become apparent, this implies that messages in the SP algorithm
can be scaled arbitrarily: this does not affect the outcome of the SP algorithm (it merely changes the final scaling
factor). In the following sections, we will often scale messages implicitely, or determine messages up to a scaling
factor (through the notation a ∝ b).

3.3.2 Sequence detection

In some situations, it may be required to find the MAP sequence estimate (i.e., b̂MAP), rather than the MAP estimates of
the individual components (

{
b̂k,MAP

}
). For instance, for convolutional codes, the well-known Viterbi algorithm [31]

locates the MAP sequence estimate. It is reasonable to ask ourselves, can an algorithm such as the Viterbi algorithm
be cast within the factor graphs framework? Indeed it can. The idea is as follows: first of all, note that (F,⊕,⊗) =
(R+,max,×) forms a commutative semi-ring. Now, we introduce additional variables, such that p (b,x |r) has a
convenient factorization. We then construct the corresponding factor graph. When we apply the SP algorithm (where
now the ’sum’-operation is replaced by max), we find the following marginals (up to an irrelevant constant):

gk (bk) = max
b,x:bk

p (b,x|r) . (3.13)

Introducing
b̂k = arg max

bk

gk (bk) (3.14)

we finally obtain

b̂MAP =
[
b̂0, . . . , b̂Nb−1

]T
. (3.15)

Commonly, this algorithm is executed in the log-domain, where (F,⊕,⊗) = (R,max,+). In that case, we marginalize
the factorization7 of log p (b,x|r).

3.4 Examples: codes on graphs
In this section, we will investigate some important examples:

• a generic error-correcting code,

• mapping of bits to constellation points,

• a convolutional code,

• a turbo code.

We will create factor graph descriptions of each of these systems.
7Note that the factorization now is no longer a product of factors, but a sum of terms!

31

3.4.1 Some basic building blocks
Interleaver

An interleaver is a block that permutes edges (variables). The inverse process is known as de-interleaving. Although
an interleaver can be written as a function with a corresponding factor graph, we choose to interpret it merely as a re-
ordering of edges. Hence, an interleaver has no real factor graph representation, it is simply a means to interconnect
factor graphs. An example is shown in Fig. 3.8.

factor graph

factor graph

Figure 3.8: An interleaver connecting two factor graphs

Copier

A copier is an extension of the equality node, so that the attached variables can appear in multiple functions. An
example of a 3 × 3 copier is shown in Fig. 3.9. The sum-product algorithm is trivial: an outgoing message is the
product of the two incoming messages attached to the corresponding equality node. For instance, a copier which
copies a variable a to a1 and a2 leads to

µ = →a (a) =
∑

a1,a2

I [a1 = a2 = a]µa1→ = (a1)µa2→ = (a2)

= µa1→ = (a)µa2→ = (a) .

=

=

=

a

a1

a2

Figure 3.9: A 3 × 3 Copier

Selector

A selector (or puncturer) has L1 inputs and L2 outputs, with L2 ≤ L1. The output is a subset of the input. A selector
can again be considered as a collection of edges, and serves to connect factor graphs. A graph is shown in Fig. 3.10.
The arrow in the graph represents the direction of the operation of the selector. The L1 edges at the top and the L2

32

edges at the bottom are connected to other nodes in the factor graph. The L1 −L2 edges that end in the selector-block
are half-edges.

half−edge

factor graph

factor graph

Figure 3.10: A Selector connecting two factor graphs.

3.4.2 A generic error-correcting code

3.4.2.1 Definition

A binary error-correcting code of length Nc is an injection from {0, 1}Nb → {0, 1}Nc , with Nc ≥ Nb. The ratio Nb/Nc

is referred to as the code rate. Consider a binary code of length Nc with 2Nb codewords. A codeword c ∈ {0, 1}Nc is
obtained by mapping an information word b ∈ {0, 1}Nb , such that c = χ (b). Let us further assume that the codeword
c is mapped to a sequence of Nc BPSK symbols8 a = 2c − 1. Finally, a is transmitted over a discrete-time AWGN
channel. At the receiver, we have an observation r = a + n, n is a vector of Nc iid (independent and identically
distributed) AWGN samples with nk ∼ N

(
0, σ2

)
. The goal of the receiver is to recover the information stream b.

The MAP symbol detection rule (3.11) leads to:

b̂k,MAP = arg max
bk

p (bk |r) (3.16)

= arg max
bk

∑

∼{bk}

p (b |r) (3.17)

where

p (b |r) =
∑

c,a

p (b, a, c |r) . (3.18)

Now, p (b, a, c |r) can be factorized as follows:

p (b, a, c |r) ∝ p (b)

Nc−1∏

k=0

p (rk |ak) I [ak = 2ck − 1] I [c = χ (b)] (3.19)

where, due to the AWNG, p (rk |ak) ∝ exp
(
− 1

2σ2 |rk − ak|2
)

.

3.4.2.2 Factor graph

The factor graph of the factorization (3.19) is shown in Fig. 3.11. The top-most node corresponds to p (b), the a
priori distribution of b. This node may be omitted when all bits bk are mutually independent with uniform a priori
distributions9. The node below enforces the code constraints I [c = χ (b)] between b and c. The nodes marked ϕ
enforce the mapping constraint (mapper nodes) and the bottommost nodes correspond to pk = p (rk |ak). Observe
that there are cycles between the node p (b) and the node I [c = χ (b)].

8Ω = {−1,+1}. More general mapping strategies will be covered later.
9This is because the resulting half-edges will transmit uniform messages.

33

code constraint node

a priori information

mapper node

(1)

(1)

(2) (3)

(3)

p(b)

b0 b1
bNb−1

c0 c1

ϕ ϕ ϕ

p0 p1

a0 aNc−1a1

cNc−1

pNc−1

I[c = χ(b)]
χ

Figure 3.11: Factor graph of the function p (b)
QNc−1

k=0 p (rk |ak) I [ak = 2ck − 1] I [c = χ (b)] of a generic code with BPSK mapping.
The nodes ϕ and χ enforce the constraint I [ak = 2ck − 1] and I [c = χ (b)], respectively. The bold arrows represent the scheduling of the
messages.

3.4.2.3 Sum-product algorithm

Application of the sum-product algorithm will yield the (approximate) marginal APPs p (bk |r), k = 0, . . . , Nb − 1, as
well as the by-products p (ck |r) and p (ak |r) for k = 0, . . . , Nc − 1. To make the situation a little more insightful, let
us assume that the information bits bk are iid10 with p (bk) = 1/2, ∀k. In order to decode this code, we now apply the
sum-product algorithm (the ordering of messages in steps 1-3 is depicted in Fig. 3.11.):

1. Initialization: Messages from the Nc bottom-most nodes to the mapper-nodes are sent:

µan→ϕ (an) ∝ p (rn |an)

and at the same time messages from the top-most edges to the block enforcing the code constraints

µbk→χ (bk) = 1/2

2. Messages from the Nc mapper-nodes ϕ to the code constraint node I [c = χ (b)] are given by, applying (3.8)

µϕ→cn
(cn) =

∑

an

I [an = 2cn − 1]µan→ϕ (2cn − 1)

= µan→ϕ (2cn − 1)

3. Now the messages from code constraint block I [c = χ (b)] to the mapper nodes ϕ can be computed according
to (3.8)

µχ→cm
(cm) = (3.20)

∑

b,c:cm

I [c = χ (b)]

Nb−1∏

k=0

µbk→χ (bk)

Nc−1∏

n=0,n6=m

µϕ→cn
(cn)

10Note that this assumption removes the cycles present in the factor graph from Fig. 3.11: the node p (b) can be replaced with Nb nodes p (bk).
When p (bk) is uniform, the nodes p (bk) can themselves be removed, leaving us with Nb half-edges bk , k = 0, . . . , Nb − 1.

34

code constraint nodec0 c1 c2

µϕ→c0(c0) µϕ→c1(c1) µϕ→c2(c2)

µc2→ϕ(c2)µc0→ϕ(c0)

ϕ

aNs−1

ϕ

a0

µc1→ϕ(c1)

ϕ

a0 µa0→ϕ(a0)

p(r0|a0)

I[c = χ(b)]

Figure 3.12: Mapper factor graph for m = 3 bits

where the summation goes over all 2Nb possible b and all 2Nc−1 possible c with m-th bit equal to cm. At the
same time, messages are sent from the code constraint block to the information bit edges

µχ→bl
(bl) =

∑

c,b:bl

I [c = χ (b)]

Nb−1∏

k=0,k 6=l

µbk→χ (bk)

Nc−1∏

n=0

µϕ→cn
(cn) (3.21)

where the summation goes over all 2Nc possible c and all 2Nb−1 possible b with l-th bit equal to bl.

4. Termination: The APPs of the information bits are then given exactly by

p (bk |r) ∝ µχ→bk
(bk) × µbk→χ (bk)

and the decisions of the bits can be made as follows:

b̂k = arg max
bk∈{0,1}

p (bk |r) .

Remarks

• The power of many advanced codes lies in the efficient computation of (3.20) and (3.21), based on a factorization
of I [c = χ (b)], through the introduction of additional variables.

• As mentioned before, when the components of b are a priori independent, the block corresponding to p (b) is
to be replaced with Nb blocks p (bk). When p (bk) is uniform, the corresponding a priori node may be omitted
all-together.

• When the components of b are not a priori independent, one would then have to iterate between the a priori
node p (b) and the code-constraint node I [c = χ (b)].

• The factor graph from Fig. 3.11 can be interpreted as consisting of two parts: one part corresponding to the
constraints (a priori distribution, code constraints, mapping constraints) and a second part corresponding to
the observation (the Ns nodes at the bottom).

3.4.3 Mapper
In the previous case, coded bits were mapped to BPSK symbols. We will now consider a more general scenario. The
sequence of coded bits c = [c0, . . . , cNc−1]

T is broken up into Ns = Nc/m blocks of length m. Let us denote the l-th
block as cl. A mapper converts each group of m bits to a complex number, part of a 2m-point signaling constellation
Ω. So, if we want to transmit m bits cl =

[
clm, . . . , c(l+1)m−1

]T over an AWGN channel using a constellation Ω, we
map these bits to a point al = ϕ (cl) ∈ Ω. Transmission of al over the AWGN channel yields rl = al + nl, with
nl a complex AWGN sample with variance σ2 per real dimension. Hence, a mapper corresponds to the function
I [al = ϕ (cl)], and the overall mapping function11 I [a = ϕ (c)] can be factorized

I [a = ϕ (c)] =

Ns−1∏

l=0

I [al = ϕ (cl)] . (3.22)

11With a slight abuse of the notation ϕ.

35

A factor graph for this mapping function is depicted in Fig. 3.12 for m = 3. An array of such mapper nodes is to
be combined with the generic error-correcting code from the previous section. Note that there are cycles present
between the mapper nodes and the code-constraint node when m > 1. Hence, the SP algorithm applied on such a
factor graph will be iterative and sub-optimal [32]. Let us focus on the first symbol l = 0:

1. Initialization: a message from the observation node (at the bottom) to the mapper node is sent:

µa0→ϕ (a0) ∝ exp

(
− 1

2σ2
|rl − a0|2

)
.

At the same time, messages from the edges of the coded bits are sent to the mapper block µcj→ϕ (cj). In case
such messages are unavailable, we set µcj→ϕ (cj) = 1, j = 0, . . . ,m− 1.

2. Messages from the mapper node to the coded bits can now be evaluated:

µϕ→ci
(ci) =

∑

c:ci

I [a0 = ϕ (c0)]µa0→ϕ (a0)
∏

j 6=i

µcj→ϕ (cj) (3.23)

where the summation goes over all m-bit sequences with i-th bit equal to ci.

3. The messages µϕ→ci
(ci) can then be forwarded to the code-constraint block I [c = χ (b)]. After some time,

messages µcj→ϕ (cj) are provided from the code-constraint block to the mapper block, so that (3.23) can be
re-evaluated.

3.4.4 Convolutional Code Generator
Similar to the generic error-correcting code, a convolutional code (CC) maps a sequence b of Nb information bits to
a sequence c of Nc coded bits. Convolutional codes can be defined through a filter-like operation. For our purposes,
it is more convenient to start from a state-space view. We will work in stages: first, we define a CC generator, giving
rise to an indicator function I [[s,d] = χ1 (b)] with a corresponding factor graph. In the next section, further nodes
will be be attached to result in a full-blown, very general convolutional code. The corresponding factor graph can
then be attached to mapper nodes and observation nodes. To lighten the following exposition, we will assume again
that the information bits are iid and equiprobable.

3.4.4.1 Definition

Consider a state space S with 2ν−1 states. At time k, the encoder is in a given state sk ∈ S. At time k, the generator
receives a number (sayK) input bits bk ∈ 2K . Given the current state sk and the input sequence bk, a parity sequence
pk ∈ 2M of length M is generated and a new state sk+1 ∈ S is entered into. We can write this as:

[pk, sk+1] = fall ([bk, sk]) (3.24)

where fall is independent of the time index k. Encoding starts from an initial state s0 = sstart, where sstart ∈ S is
known to both the transmitter and the receiver. After L (with Nb = KL) input blocks b0, . . . ,bL−1, the encoding
stops and the encoder is in a state sL.

The input of a CC generator is given by b =
[
bT

0 , . . . ,b
T
L−1

]T . This uniquely determines the parity sequence
p =

[
pT

0 , . . . ,p
T
L−1

]T . We further distinguish between non-terminated and terminated convolutional codes.

Terminated convolutional code We are required to end up in a known12 state send ∈ S. For this purpose, we add ν
termination blocks t0, . . . , tν−1 so that, for k = 0, . . . , ν − 1:

[qk, sL+k+1] = fall ([tk, sL+k]) . (3.25)

By proper selection of t0, . . . , tν−1 , we can always ensure that the final state sL+ν equals send. Introducing t =[
tT
0 , . . . , t

T
ν−1

]T and q =
[
qT

0 , . . . ,q
T
ν−1

]T , we can write
[
tT qT

]T
= gterm (sL) for some well-defined function

gterm : S → {0, 1}ν×(M+L). Hence, we can write the output of the CC generator as d =
[
bT tT pT qT

]T , while
the corresponding state sequence is given by s = [s0 = sstart, . . . , sL+ν = send]

T . The initial state sstart and the
final state send are known to both the receiver and the transmitter.

12Known in a sense that it should be known prior to encoding and decoding.

36

Convolutional Code Generator Block

s0
f f

p0b0 pk−1

f
sksk−1 sk+1 sLs1

q
bk−1

t

f0

f f

sL sL+1 sL+ν

q0 qν−1

fterm

fterm

tν−1

fend

sL+ν−1

t0

bk pk

Figure 3.13: Convolutional Code Generator: factor graph for K = 1, M = 1 of the indicator function I [[s,d] = χ1 (b)]

Non-terminated convolutional code We are not required to end up in a known state. The output of the CC generator
is denoted by d =

[
bT pT

]T , with state sequence s = [s0, . . . , sL]T . The initial state s0 = sstart is known to both
the receiver and the transmitter.

In either case, we can fully describe the CC generator with the indicator function I [[s,d] = χ1 (b)], where b is the
binary information sequence, d contains information and parity bits (and possibly the termination sequences t and q)
and s is a state sequence. Later, this indicator function will appear in the factorization of the a posteriori distribution
p (b,d, s,x |r) where r is the observation and x are additional variables (to be defined later).

3.4.4.2 Factor graph

We will now construct a factor graph representing the function I [[s,d] = χ1 (b)]. In order to keep the situation
insightful, we’ll stick to the case K = M = 1 for the remainder of this chapter. In this case, L = Nb. For a terminated
convolutional code, we can factorize the function as

I [[s,d] = χ1 (b)] = f0 (s0)

Nb−1∏

k=0

f (sk, sk+1, pk, bk) fterm (sL, t,q) (3.26)

where, for initial state sstart and final state send:

f0 (s0) = I [s0 = sstart]

f (sk, sk+1, pk, bk) = I [[pk, sk+1] = fall ([bk, sk])]

fterm (sL, t,q) =

ν−1∏

n=0

I [[qn, sNb+n+1] = fall ([tn, sNb+n])] fend (sL+ν)

fend (sL+ν) = I [sL+ν = send]

which leads to a factor graph shown in Fig. 3.13. We will refer to this graph as the Convolutional Code Generator
Block (CCGB). It has as variables13 d and s. This block represents an indicator function which evaluates to 1 ⇐⇒ d

is a valid output with associated state sequence s. The node f0 (s0) constrains the initial state to be sstart. The nodes
f enforce the relation (3.25). When the code is not terminated, the node fterm from Fig. 3.13 can be omitted. The node
fterm (sL, t,q) is employed in terminated convolutional codes to ensure the final state (sL+ν) equals send. Breaking
open this node, we can reveal its details, as shown in Fig. 3.13.

13Note that b is contained in d.

37

S
E
L
E
C
T
O
RCOPIER

to mapper

CONVOLUTIONAL CODE (CC)

(1)(1)

(4)(2)

(3) CCGB

=

=

=

dl

c0

cNc−1

d0 dL̃−1 µck→CC(ck)

I[[d, s] = χ1(b)]

Figure 3.14: Convolutional code: factor graph for K = 1, M = 1. Nc ≤ L̃. The block marked CCGB is described in Fig. 3.13. The use of the
copier will be explained later. The selector punctures a subset of the L̃ bits, retaining Nc bits for transmission over the channel.

3.4.4.3 Sum-product algorithm

We can apply the sum-product algorithm on the factor graph from Fig. 3.13, assuming messages {µbk→CCGB (bk)},
{µpk→CCGB (pk)} and, for terminated codes, {µqk→CCGB (qk)}, {µtk→CCGB (tk)} are available. The application of the
sum-product algorithm is fairly straightforward. For a detailed description of the resulting algorithm, the reader is
referred to the appendix of this chapter (section 3.6.2).

It turns out that the resulting sum-product algorithm is equivalent to the well-known BCJR algorithm [33], named
after its creators Bahl, Cocke, Jelenik and Raviv. The sum-product algorithm has the same computational complexity,
but is somewhat more elegant in its mathematical description, since it only requires a single update-rule to describe
the entire algorithm.

3.4.5 Convolutional Code

With the building blocks from the previous sections, we can now define a very general convolutional code.

3.4.5.1 Definition

The sequence d (of size, say, L̃), containing all information bits b, parity bits p (and, for terminated codes, termination
bits t and q) is not transmitted over the channel directly. We puncture L̃ − Nc bits of d. The remaining Nc bits are
then provided to mapping blocks (as described in section 3.4.3), yielding a sequence of constellation symbols a. The
rate of this convolutional code is given by Nb/Nc. Note that for a fixed Nb, this rate depends on (i) whether or not the
code is terminated, and (ii) on the puncturing pattern.

3.4.5.2 Factor graph

We include two more blocks in the factor graph to come to a view as shown in Fig. 3.14: a copier and a selector. The
selector selects Nc bits at the output of the copier for transmission over the channel; the remaining L̃ − Nc bits are
punctured. In the case of a systematic code, the selector will not puncture any of the information bits.

3.4.5.3 Sum-product algorithm

Similar to the generic error-correcting code from section 3.4.2, the convolutional code can be decoded with the sum-
product algorithm. Decoding starts from some observation r, with a corresponding observation model. This yields

38

messages µck→CC (ck), k = 0, . . . , Nc − 1, where [c0, . . . , cNc−1] are the coded bits after puncturing. For instance, in
the case of BPSK modulation and AWGN with variance σ2 per real dimension, we have

µck→CC (ck) ∝ exp

(
− 1

2σ2
|rk − (2ck − 1)|2

)
(3.27)

In order to decode the code (i.e., infer bk from r), we apply the SP algorithm to the graph from Fig. 3.14. Note that
the graph has no cycles, so the exact marginals will be computed.

1. Initialization: First, messages µck→CC (ck) are sent over the ck-edges. At the same time, the half-edges in the
selector-node transmit messages equal to 1 (this corresponds to the bits that were punctured). Similarly, the
half-edges at the bottom transmit upward messages equal to 1.

2. In the copier node, the equal nodes compute an upward message to the CCGB block by multiplying the two
incoming messages (according to the SP rule). This yields µbk→CCGB (bk) and µpk→CCGB (pk), k = 0, . . . , L− 1.
In the case of a terminated code, this step also yields µtk→CCGB (tk) and µqk→CCGB (qk), k = 0, . . . , ν − 1.

3. The SP-algorithm is applied to the CCGB block. This algorithm is described in the appendix of this chapter
(section 3.6.2).

4. The CCGB outputs messages µCCGB→bk
(bk).

5. Termination: The APPs of the information bits are then given by

p (bk |r) ∝ µCCGB→bk
(bk) × µbk→CCGB (bk)

and decisions w.r.t. the information bits can be made:

b̂k = arg max
bk

p (bk |r) .

Steps 1-4 are marked in Fig. 3.14.

3.4.6 Turbo code
Although turbo codes are a very advanced type of code, their structure and decoding algorithm can be easily de-
scribed in terms of what we have already covered. Turbo codes are simply two convolutional codes, separated by an
interleaver [7]. A possible factor graph is shown in Fig. 3.15 : using a selector, a subset of the output bits (d) of the
top-most encoder is used, after interleaving, as information bits of a second convolutional encoder. For each encoder,
a set of bits is selected for transmission over the channel.

The different selectors (the three selectors S-0, S-1 and S-2 are marked in black in Fig 3.15) in the graph can be
modified to change the rate of the code. The interleaver is a crucial part of the code, as it improves the error-correcting
abilities of the codes, and increases the length of cycles.

Note that the factor graph of a turbo code always contains cycles. Decoding is generally performed iteratively as
described in Algorithm 1. Each of the constituent CC blocks accepts information from the channel, as well as from
the other constituent CC. To initialize this process, we have to set initial messages from one decoder to the other,
equal to some constant.

3.4.6.1 Parallel and serial concatenation

Two types of turbo codes are generally distinguished: parallel concatenated convolutional codes (PCCC) and serial
concatenated convolutional codes (SCCC). The latter are obtained in Fig. 3.15 by

• not transmitting any of the bits of the topmost encoder (i.e., the corresponding selector S-1 punctures all the
bits)

• passing all the bits from the topmost encoder to the bottom encoder (i.e., the selector S-0 punctures none of the
bits).

A PCCC code is obtained by

• passing only the information bits b from the top encoder to the bottom encoder (i.e., the selector S-0 in Fig. 3.15
punctures all the parity bits and termination bits). Both encoders use the same set of information bits (albeit in
interleaved form for the bottom encoder).

39

CCGB

interleaver

CCGB

bottom CC

top CC

copier

copier

TURBO CODE

S−1

S−0

S−2

a

p(r|a)
ϕ

Figure 3.15: Turbo code, including constituent CC, interleaver, mapper nodes and observation nodes. Three selector blocks perform puncturing
and are marked in black. Some additional equality nodes (not depicted) are required to connect the interleaver with the bottom CCGB.

Algorithm 1 SP algorithm for a turbo code
1: Initialization: set messages from bottom CC to top CC to constant value
2: for i = 1 to Imax do
3: Decode top CC. Accept messages from channel and from bottom CC.
4: Decode bottom CC. Accept messages from channel and from top CC.
5: end for
6: compute APPs of information bits

40

−2 −1 0 1 2 3 4
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

uncoded
turbo code

iteration 1

iteration 2

iteration 3

Figure 3.16: Turbo Code: performance

3.4.6.2 Illustration

To illustrate the power of turbo-processing, an example of the performance of the iterative SP algorithm for a
turbo code is shown in Fig. 3.16. Observe the decreasing bit-error-rate (BER) with each iteration14.

3.4.7 Further applications

Of course, the story doesn’t end there. Many of the most powerful error-correcting codes (such as turbo codes, LDPC
codes [6, 34] and RA codes) can be elegantly represented as factor graphs. As we have seen, factor graphs can be
combined to make larger factor graphs: for instance, attaching a convolutional code node with an array of mapper
nodes. Iterative detection for such systems was originally developed in an ad-hoc way in [35]. Advanced iterative
detection schemes for multi-antenna systems are likewise based on factor graphs [36]. Even techniques such as FFTs,
the Forward-Backward (Baum-Welch) algorithm on Hidden-Markov models and Kalman filters/smoothers can be
interpreted as the application of the sum-product algorithm on factor graphs. A more extensive list of applications
of factor graphs in digital communication systems can be found in [8, 37] and references therein.

Nodes in factor graphs can be grouped and made into a ’black box’: the black box can then operate according
to an algorithm different from the SP algorithm and output messages of the connected variables. For instance, one
could replace the CCGB nodes in Fig. 3.13 by another decoding algorithm (such as the Soft Viterbi algorithm [38]). The
CCGB accepts the same messages as the standard sum-product algorithm. It outputs messages that can be interpreted
as or transformed into valid messages, that in turn can be used elsewhere in the factor graph. However, the messages
inside the CCGB will not be computed by the sum-product algorithm, but by the Soft Viterbi algorithm. Although
this will affect the performance, the sum-product algorithm can still be applied elsewhere in the graph. Since we will
make use of error-correcting codes based on factor graphs throughout this dissertation, many digital components in
the receiver are forced to adhere to the input-output relationship described by the sum-product rule.

3.4.8 Some important practical considerations

In most cases, when the factor graph represents a function proportional to some a posteriori distribution p (b |r),
messages computed during the sum-product algorithm should be normalized, so that

∑
α µf→bk

(bk = α) = 1. Since
the graph represents p (b |r) up to a multiplicative constant, this normalization does not affect the outcome of the SP
algorithm15: the APPs of the variables are still obtained after normalization. However, normalizing messages during

14Parameters: rate 1/3 parallel concatenated convolutional code. Constituent codes: systematic recursive, rate 1/2, generators (21, 37)8. Block
size: 501 QPSK symbols. Random interleaving. Only the first convolutional code is terminated.

15This also explains the somewhat liberal use of the notation ’∝’ in the previous sections.

41

the SP algorithm has two benefits:

• Messages can at all times be interpreted as probability mass functions (or probability density functions, for
continuous variables).

• More importantly, normalization avoids problems related to numerical stability: multiplying probabilities
tends to create messages with very small magnitude, often beyond the resolution of current processors.

3.5 Main Points
We have presented the concept of factor graphs:

• Factor graphs provide a convenient way to represent the decomposition of functions of many variables;

• applying the sum-product algorithm on a factor graph yields the marginals of the function;

• this marginalization is no longer exact when the graph contains cycles. Short cycles should be avoided;

• The turbo-principle can be interpreted as applying the SP algorithm on a factor graph of a suitable a posteriori
distribution p (b,x| r), where b contains the variables we wish to detect, r is an observation and x is a vector of
additional variables.

In the field of communications theory, factor graphs have been applied mostly in the context of adaptation to known
channel and transmit modes and to data detection. Recently, factor graphs have begun to appear as a means to estimate
parameters, with mixed success. One of the main problems with factor graph-based estimation lies in the nature of
the parameters that need to be estimated: since some of them are continuous, the messages are no longer probability
mass functions16, but rather probability density functions. These need to be represented in the SP algorithm in an
efficient manner.

16Probability mass functions can conveniently (and exactly) be described with a vector representation.

42

3.6 Appendix

3.6.1 The Sum-product algorithm
Theorem 3.6.1 (The Sum-Product algorithm). Given a function and a cycle-less corresponding factor graph representation,
the Sum-Product Algorithm relates outgoing messages to incoming messages, according to17

µfn→xk
(xk) =

∑

∼{xk}

fn (Xn)
∏

l 6=k

µxl→fn
(xl) . (3.28)

The SP algorithm starts from the half-edges in the graph and from nodes with degree 1. Each node computes outgoing messages
(µfn→xk

(xk)) when all incoming messages (µxl→fn
(xl), l 6= k) have been received. Once all messages have been computed, the

marginals are then given by (3.7).

Proof. By induction on N , the number of nodes in the graph. A function with N nodes can be written as

f (N) (xk,xL,xR, xc) = f
(N)
L (xk,xL) × f

(N)
R (xk,xR, xc) (3.29)

where xk is a variable, f (N)
L (f (N)

R) is the part of the graph to the left (right) of xk and xc is a variable that will be
used during the inductive step. Since the graph is a tree, xL and xR are distinct variable sets (either of which may be
empty). The marginal corresponding to xk is given by

g
(N)
k (xk) =

∑

xL

f
(N)
L (xk,xL) ×

∑

xR,xc

f
(N)
R (xk,xR, xc) (3.30)

Messages in a graph with N nodes will be superscripted as µ(N)(.). We will denote by µ
(N)
R2L (.) and µ

(N)
L2R (.) the

messages on an edge from right-to-left and from left-to-right, respectively. The corresponding factor graph is depicted
in Fig. 3.17.

A. Base Case: N = 1.

This is trivial: the message from the variable to the node is identically 1, while the message from the node to the
variable is the marginal.

B. Inductive Hypothesis:

Assume the SP algorithm correctly computes the marginals for any factor graph with up to N nodes.

C. Inductive step:

Start with a cycle-less graph withN nodes. As before, the corresponding function will be denoted f (N) (xL, xk,xR, xc).
Without loss of generality, we assume that the new node was attached at the far right of the graph to an edge xc, so
that (see Fig. 3.17)

f (N+1) (xL, xk,xR, xc,b)

= f (N) (xL, xk,xR, xc) × ψ (xc,b) (3.31)

= f
(N)
L (xk,xL) f

(N)
R (xk,xR, xc)ψ (xc,b) . (3.32)

We now apply the SP-algorithm on the factor graph of f (N+1) (xL, xk,xR, xc,b). Three types of variables can be
discerned: variables in SN

.
= {xL, xk,xR}, variables in {b} and the variable xc.

→Variables in SN Let us take the generic element xk in SN . The messages from left to right are unchanged as
compared to the N -node factor-graph:

µ
(N+1)
L2R (xk) = µ

(N)
L2R (xk) (3.33)

=
∑

xL

f
(N)
L (xk,xL) . (3.34)

17For continuous variables, the summations are replaced with integrals.

43

ψ

f (N)(xk,xL,xR, xc)

f
(N)
L (xk,xL)

f
(N)
R (xk,xR, xc)

ψ(xc,b)

xcxk

Figure 3.17: Sum-Product Algorithm on a function with N + 1 factors: f (N)
L (xk,xL) f

(N)
R (xk,xR, xc)ψ (xc,b)

On the other hand, the messages from right to left are now different. Since f (N)
R (xk,xR, xc)×ψ (xc,b) contains

less thanN+1 nodes, the SP algorithm yields the following marginal of the function f (N)
R (xk,xR, xc)×ψ (xc,b):

µ
(N+1)
R2L (xk) =

∑

xR,b,xc

f
(N)
R (xk,xR, xc) × ψ (xc,b) . (3.35)

Multiplying (3.33) and (3.35) yields

µ
(N+1)
L2R (xk) × µ

(N+1)
R2L (xk) (3.36)

=
∑

xR,xL,b,xc

f
(N)
R (xk,xR, xc) f

(N)
L (xk,xL)ψ (xc,b) (3.37)

=
∑

xR,xL,b,xc

f
(N)
R (xk,xR, xc) f

(N)
L (xk,xL)ψ (xc,b) (3.38)

=
∑

xR,xL,b,xc

f (N+1) (xL, xk,xR, xc,b) (3.39)

= gN+1
k (xk) . (3.40)

→Variable xc Due to the inductive hypothesis, the message over edge xc from left to right is given by

µ
(N+1)
L2R (xc) =

∑

xL,xk,xR

f
(N)
L (xk,xL) × f

(N)
R (xk,xR, xc) . (3.41)

On the other hand, since the components in b correspond to half-edges:

µ
(N+1)
R2L (xc) =

∑

b

ψ (xc,b) (3.42)

which immediately yield the correct marginal for xc.

→Variables in {b} Concentrating on a generic element bl, we know that µ(N+1)
R2L (bl) = 1. Taking into account (3.41),

we immediately find the correct marginal for bl.

3.6.2 Convolutional Code Generator: sum-product algorithm
Let us consider the generator of a non-terminated CC. Assume, given some observation r, we have computed the
messages µbk→CCGB (bk) and µpk→CCGB (pk) for k = 0, . . . , L − 1. We are interested in determining the marginal
APPs of the information bits bk. We introduce the following notations (see Fig. 3.18):

44

• µbk→CCGB (bk)
.
= µ

(U)
bk

(bk) and µpk→CCGB (pk)
.
= µ

(U)
pk (pk), with ’U’ for upward message.

• messages related to state variables will be denoted µ
(L)
sk

(sk) and µ
(R)
sk

(sk) for Left-ward and Right-ward mes-
sages, respectively.

We know µ
(R)
s0 (s0) since the code starts from a known state. On the other hand, we know that µ(L)

sL (sL) is a constant,
since the code is not terminated so that all final states are equiprobable. We can now apply the sum-product algorithm
on the graph from Fig. 3.13. This immediately yields Algorithm 2. We remind that a node can compute an outgoing
message, only when all incoming messages are available. The algorithm starts with two passes to compute state-
messages: a forward pass and a backward pass, which are executed in parallel. This is followed by the computation
of downward messages of information and parity bits. How the messages are related, is depicted in Fig. 3.18.

Algorithm 2 SP algorithm for convolutional code
1: Define: xk = [sk−1, sk, pk−1, bk−1], ∀k
2: for k = 1 to L do
3: Forward pass (Left to Right)

µ(R)
sk

(sk) =
X

xk:sk

f (xk)µ
(U)
bk−1

(bk−1)µ
(U)
pk−1

(pk−1)µ
(R)
sk−1

(sk−1)

4: Backward pass (Right to Left)

µ(L)
sL−k

(sL−k) =
X

xL−k+1:sL−k

f (xL−k+1)µ
(U)
bL−k

(bL−k)µ(U)
pL−k

(pL−k)µ(L)
sL−k+1

(sL−k+1)

5: end for
6: for k = 0 to L− 1 do
7: Downward messages for information bits

µ
(D)
bk

(bk) =
X

xk+1:bk

f (xk+1)µ
(L)
sk+1

(sk+1)µ
(R)
sk

(sk)µ(U)
pk

(pk)

8: Downward messages for parity bits

µ(D)
pk

(pk) =
X

xk+1:pk

f (xk+1)µ
(L)
sk+1

(sk+1)µ
(R)
sk

(sk)µ
(U)
bk

(bk)

9: end for

Once the upward messages and downward messages are known, the marginal APPs are given by

p (bk |r) ∝ µ
(U)
bk

(bk) × µ
(D)
bk

(bk) .

The presented algorithm is equivalent to the well-known BCJR algorithm [33], named after its creators Bahl,
Cocke, Jelenik and Raviv. Applying the sum-product algorithm has the same computational complexity, but is some-
what more elegant in its mathematical description, since it only requires a single update-rule to describe the entire
algorithm.

45

f
sk

µ
(U)
bk−1

(bk−1)

µ
(D)
bk−1

(bk−1)

µ
(U)
pk−1(pk−1)

µ
(D)
pk−1(pk−1)

µ
(L)
sk (sk)

µ
(R)
sk (sk)

µ
(L)
sk−1(sk−1)

µ
(R)
sk−1(sk−1) pk−1

sk−1

bk−1

Figure 3.18: Sum-product algorithm on convolutional code

46

Part II

Multi-mode receivers: adaptation

Outline

In the second part of this dissertation, we will investigate how a receiver can detect the transmitted data in the
presence of known channel parameters (including synchronization parameters) and a known transmit mode. We
show how the receiver could be modified when the channel parameters and/or the transmit mode change, and how
such modifications can be accomplished efficiently.

• We start this part with a brief overview of some basic concepts related to continuous-time and discrete-time
signals (Chapter 4). We include some basic notions related to sampling and digital filtering, as well as the
semi-analytical computation of BER degradations.

• In Chapter 5 we consider problems of timing correction, equalization and data detection. We show how the
receiver needs to be modified to operate when the channel state is changed. With the aid of factor graphs,
iterative receivers are derived that will be useful later on.

• The problem of mode adaptation (i.e., how to modify the receiver as the transmit mode changes) is covered in
Chapter 6. We show that in most cases adaptation is a fairly straightforward task and boils down to replacing
parts in factor graphs to suit the current transmit mode. An important exception is adaptation to the symbol
rate in multi-rate transmission schemes.

• The design of receivers that are able to operate efficiently for multi-rate transmission is the main topic of
Chapter 7. Various receiver structures will be discussed and compared in terms of their BER degradation,
as compared to an ’optimal’ reference receiver. We propose a low-complexity multi-rate receiver, combining
techniques from IF-sampling and sample rate conversion based on a frequency-domain view.

49

Chapter 4

Basic Principles: Signals and Filters

4.1 Introduction
In this chapter we will cover a mish-mash of aspects related to digital and analog signal processing, including filter
theory, baseband and bandpass sampling theorems, Fourier transforms, signal reconstruction, anti-aliasing filters,
BER degradation computation and vector-representations of signals. These topics will be applied mainly in Chapter
7. Readers familiar with these topics can safely skip this chapter.

4.2 Continuous-time signals

4.2.1 Signal representation

A signal x (t) and its Fourier Transform (FT) X (f) are related by

X (f) =

∫ +∞

−∞

x (t) e−j2πftdt (4.1)

x (t) =

∫ +∞

−∞

X (f) ej2πftdf. (4.2)

When X (f) = 0 for |f | > B we say that x (t) is band-limited to ±B with a one-sided bandwidth B. When X (f) = 0
for ||f | − f0| > B, with f0 > B we say that x (t) is band-limited to

f ∈ [−f0 −B,−f0 +B] ∪ [f0 −B, f0 +B] (4.3)

with a one-sided bandwidth 2B.

4.2.2 Filtering

When we filter x (t) with a linear, time-invariant filter h (t), the resulting signal is the convolution of x (t) and h (t):

y (t) =

∫ +∞

−∞

x (u)h (t− u) du. (4.4)

In the frequency-domain this becomes

Y (f) = X (f)H (f) . (4.5)

4.3 Discrete-time signals

4.3.1 Signal representation
When we sample a signal x (t) at a rate 1/Ts, the Discrete-Time Fourier Transform (DTFT) is given by

51

X
(
ej2πfTs

)
=

+∞∑

k=−∞

x (kTs) e
−j2πfkTs (4.6)

=
1

Ts

+∞∑

k=−∞

X

(
f − k

Ts

)
(4.7)

Observe that X
(
ej2πfTs

)
is periodic, with period 1/Ts. When X

(
f − k

Ts

)
and X

(
f − k′

Ts

)
(k 6= k′) overlap, aliasing

occurs, and the original signal x (t) can no longer be reconstructed. This idea is formalized in the following two
sampling theorems.

Theorem 4.3.1 (The Baseband Sampling Theorem). A signal that is band-limited to the frequency band f ∈ [−B,+B]
can be fully reconstructed from samples taken at a rate 1/Ts, when

1

Ts
≥ 2B. (4.8)

Proof. Due to the periodicity, it suffices to verify that X (f) and X (f − 1/Ts) do not overlap. X (f) contains no
component for f > B, while X (f − 1/Ts) contains no components for f < 1/Ts −B. Since B < 1/Ts −B, there is no
aliasing. Hence, the signal can be reconstructed from its samples.

Theorem 4.3.2 (The Bandpass Sampling Theorem). A signal that is band-limited to the frequency band f ∈ [−f0 −B,−f0 +B]
⋃

[f0 −B, f0 +B]
can be reconstructed from samples, taken at a rate 1/Ts, when

1

Ts
≥ 2B

min (r, 1 − r)
(4.9)

where r is the fractional part of 2f0Ts (i.e., r = rem (2f0Ts) ∈ [0, 1[).

Proof. We denote the signal component centered at f = f0 (resp. f = −f0) by X+ (f) (resp. X− (f)). Let us focus
on X+ (f). Since 1/Ts ≥ 2B, the baseband sampling theorem tells us that the periodic extension of X+ (f) will
not overlap with X+ (f). The same is true for X− (f). Hence, it suffices to show that the periodic extension of
X− (f) does not overlap with X+ (f). The components of the periodic extension of X− (f) closest to X+ (f) are at
f = −f0 + k1/Ts and f = −f0 + k2/Ts with k1 = b2f0Tsc and k2 = d2f0Tse = k1 + 1. This situation is depicted in
Fig. 4.1, where r is defined as

r = 2f0Ts − b2f0Tsc (4.10)
= rem (2f0Ts) (4.11)

There is no aliasing when

r/Ts > 2B (4.12)
and

(1 − r) /Ts > 2B. (4.13)

4.3.2 Filtering
When we filter x (kTs) with a digital linear, time-invariant filter h (kTs), (which can be interpreted as a sampled
continuous-time filter), the output is given by

yd (kTs) = Ts

+∞∑

l=−∞

x (lTs)h (kTs − lTs) (4.14)

In the frequency-domain this becomes

Yd

(
ej2πfTs

)
= X

(
ej2πfTs

)
H̃
(
ej2πfTs

)
(4.15)

where H̃
(
ej2πfTs

)
= TsH

(
ej2πfTs

)
.

52

f
f0

X+(f)

−f0 + k1/Ts −f0 + k1/Ts + 1/Ts

1/Ts

r/Ts
(1 − r)/Ts

X−(f − k1/Ts) X−(f − k1/Ts − 1/Ts)

Figure 4.1: Bandpass sampling theorem

z−1

x[n]

y[n]
z−1

Figure 4.2: An IIR filter

Digital and Analog Processing

When processing an analog signal x (t) with an analog filter h (t), suppose that x (t), h (t) and 1/Ts satisfy the follow-
ing conditions

1. both x (t) and h (t) are band-limited to ±B

2. the sample rate 1/Ts satisfies the baseband sampling theorem (condition (4.8))

3. the summation in (4.14) goes from the infinite past to the infinite future.

Then, we have the following relationship between the continuous-time signal y (t) from (4.4) and its discrete-time
counterpart yd (kTs) from (4.14):

y (t)|t=kTs
= yd (kTs) . (4.16)

In practice, condition (1) and (3) can only be met approximately.

Representation

Digital filters come in two flavors: Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) filters. Their
DTFTs are commonly written as a function of z−1 = ej2πfTs :

Yd (z) = X (z)H (z) . (4.17)

For FIR filters, H (z) is a finite polynomial in z−1. For IIR filters, H (z) is the ratio of two finite polynomials in z−1. In
Fig. 4.2 we show a simple example forH (z) =

(
1 + z−1

)
/
(
1 + z−1 + z−2

)
. IIR filters allow for more flexible designs,

but are potentially unstable.

53

available samples

interpolants

desired samples

t
t26Ts t1 7Ts 8Tst3

m1 = 6 m2 = 7 m3 = 7

µ2

µ1

x(t)

µ3

Figure 4.3: Interpolator: time domain view

4.4 Two important digital filters

4.4.1 Interpolation filters

Time-domain interpretation

Interpolation is a technique to reconstruct, from samples x (nTs), a signal x (t) at time instants tk, according to

xI (tk) =

+∞∑

n=−∞

x (nTs) pI (tk − nTs) (4.18)

where pI (t) is the interpolating pulse, and xI (tk) is referred to as an interpolant. Denoting the FT of x (t) by X (f),
interpolation is ideal (i.e., xI (tk) = x (tk), ∀tk) provided X (f) = 0 for |f | > 1/ (2Ts) and pI (t) = sinc (t/Ts), with
sinc (x) = sin(πx)/ (πx).

We introduce the quantities mk ∈ Z and µk ∈ [0, 1[, uniquely defined by tk = mkTs + µkTs. Hence mkTs is the
sampling instant of the fixed master clock immediately before or at the instant tk. Then (4.18) can be transformed
into [39, 40]

xI (tk) =

+∞∑

i=−∞

hi (µk)x (mkTs − iTs) (4.19)

≈
N2∑

i=−N1

hi (µk)x (mkTs − iTs) (4.20)

where hi (µk) = pI (iTs + µkTs) and N1 and N2 can be chosen by the interpolator designer. This indicates that
the interpolator can be implemented as a time-varying discrete-time filter with coefficients hi (µk). We see that in a
practical implementation, the interpolator has a finite length. For example, for a linear interpolator, we have pI (t) =
1 − |t| /Ts for |t| < Ts and pI (t) = 0 for |t| > Ts; this yields only two nonzero filter taps, i.e., h−1 (µ) = µ and
h0 (µ) = 1 − µ. Such polynomial interpolators may be implemented in an efficient Farrow structure [41]. The finite
number of filter taps inevitably gives rise to non-ideal interpolation (i.e., xI (tk) 6= x (tk)). An example is shown in
Fig. 4.3.

In many applications, tk = kTI + τ for some output sampling rate 1/TI and some delay τ .

Frequency-domain interpretation

The interpolator output samples can be interpreted as passing the signal

x̃ (t) =
+∞∑

k=−∞

x (kTs) δ (t− kTs) (4.21)

54

ADC

x(kTs) xI(tl)

tl

δ(t− kTs) pI(t)
x̃(t) xI(t)

Figure 4.4: Interpolator: equivalent representation

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f.T
s

Figure 4.5: Linear interpolator: Fourier transform PI (f)

through an interpolator filter with impulse response pI (t) and re-sampling the output (i.e., the continuous-time
reconstructed signal) at time instants tl = lTI + τ . This equivalent interpretation is depicted in Fig. 4.4.

The Fourier transform of the interpolator input signal is given by X̃ (f) = X
(
ej2πfTs

)
. The interpolator has a FT

PI (f). The interpolator output signal, xI (t) has a FT XI (f), given by

XI (f) = X
(
ej2πfTs

)
PI (f) . (4.22)

The goal of the interpolator is to remove potential aliasing components, while at the same time not to distort the
useful signal too much. Hence, polynomial interpolators have a frequency response which is fairly flat around f = 0
and has broad nulls around non-zero multiples of k/Ts, k ∈ Z. This property is illustrated in Fig. 4.5 for a linear
interpolator. Resampling at times lTI + τ yields a DTFT equal to

55

LL

L

I I I

III

 =

=
R

I

R

L

C(R) C(R) C(R)(a)

(b)

L

C(1) C(1) C(1)
C(R)

z−1

z−R

H(ej2πfTs)

Figure 4.6: Decimating CIC filter of order L with decimation factor R

XI

(
ej2πfTI

)
(4.23)

=
1

TI

+∞∑

m=−∞

XI

(
f − m

TI

)
e−j2π(f−m/TI)τ (4.24)

=
1

TITs

+∞∑

m,n=−∞

PI

(
f − m

TI

)
X

(
f − m

TI
− n

Ts

)
e−j2π(f−m/TI)τ (4.25)

=
1

TITs

+∞∑

m,n=−∞

Qn

(
f − m

TI

)
(4.26)

where

Qn (f) = X

(
f − n

Ts

)
PI (f) e−j2πfτ . (4.27)

Generally interpolators are constrained so that xI (mTs) = x (mTs). Hence,

1

Ts

+∞∑

l=−∞

PI

(
f − l

Ts

)
= 1. (4.28)

Potential problems

While interpolators are good at reconstructing signals, they are very sensitive to interfering signals. The interpolator
removes signal components at k/Ts, k 6= 0. However, an interfering signal in the bandwidth [−1/ (2Ts) ,+1/ (2Ts)]
is attenuated but not fully suppressed. Such a signal may cause aliasing at the output of the interpolator. To see this
consider the following example: assume we have a perfect interpolator, but there is an interfering signal centered at
f = 1/ (2Ts). Further, assume the interpolator output rate is 1/ (2Ts). Clearly, at the output of the interpolator the
useful signal and the interfering signal will be centered around (multiples of) f = 1/ (2Ts), so that the useful signal
is irrevocably destroyed.

4.4.2 CIC filters
Decimating CIC (Cascaded Integrator Comb) filters are low-complexity decimation filters with good anti-aliasing
properties [42]. They are generally used in form (b) in Fig. 4.6: a CIC decimation filter of order L with decimation
factor R (R,L ∈ N) consists of L integrators followed by an order R decimator and L first order differentiators. A
mathematically equivalent (but computationally more demanding) form is shown as (a) in Fig. 4.6. The magnitude
response can be shown to be (up to an irrelevant constant):

∣∣H
(
ej2πfTs

)∣∣ ∝
∣∣∣∣
sin (πfRTs)

sin (πfTs)

∣∣∣∣
L

. (4.29)

This transfer function should be interpreted as the transfer function before the decimator in form (a) in Fig. 4.6. Note
that the integrators are IIR filters, and the differentiators are FIR filters.

An example is depicted in Fig. 4.7 for R = 7. Observe the nulls at fTs = k/R, k 6= 0.

56

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

f.T
s

m
ag

ni
tu

de
 [d

B
]

L=2
L=4

Figure 4.7: Decimating CIC filter: magnitude frequency response with R = 7 for L = 4 and L = 2.

Hence, signal components that may cause aliasing after decimation will be removed thanks to the nulls of the
filter. As the filter order (L) increases, these nulls become more pronounced. However, this comes at a cost of an
increased passband ’droop’ (i.e., more attenuation of the useful signal component around fTs = 0).

Recently, CIC filters have been gaining a lot of attention from the research community in the context of Software
Radio: their low complexity makes them attractive for a number of different tasks [43].

4.5 BER degradation

In the previous section, we considered two type of filters that distort the signal, in a sense that the input signal
can never be reconstructed from the output signal. It is important to evaluate to what extent such an operation
degrades the performance of the system. In principle, this can be achieved by implementing the system, performing
simulations and inspecting the results. As this is generally time-consuming, we will consider a different approach.
Using a (semi-)analytical technique, we will determine the BER degradation of a receiver, compared to a reference
receiver. This technique is based on [16, 44, 45].

4.5.1 Principle

Consider the following problem. We transmit a number of symbols {ak}. At the receiver, we have an equal number
of samples {yk} and a decision on symbol ak is made, based solely on sample yk, with:

57

yk =
√
Esaks0 (u) +

√
Es

∑

n6=k

ansk−n (u) +
√
N0/2σ (u)nk (4.30)

where Es is the energy per symbol, N0/2 is the noise variance per real dimension, s0 (u) is the complex gain of the
useful signal component, sk−n (u) is the complex gain of the n-th symbol an. The samples nk are CN (0, 2), while
σ (u) is a noise scaling factor. The vector u denotes a set of nuisance parameters, whose values may or may not be
known to the receiver. For instance, a timing error, a phase error, non-ideal interpolation, filtering, etc.

The receiver operates under the (incorrect) assumption that sn (u) = δn and σ (u) = 1. Our goal is to determine
the BER degradation of this receiver, compared to a receiver that operates on the samples

√
Esak +

√
N0/2nk. The

latter receiver will be named the ’reference receiver’.
The BER degradation (expressed in decibels) of our receiver compared to the reference receiver at a target BER

(say BERref) is defined as

BERdeg = 10 log10

(
Es/N0

(Es/N0)ref

)
(4.31)

where (Es/N0)ref is the SNR required for the reference receiver to attain a BER equal to BERref , while Es/N0 is the
SNR required for our receiver to attain the same BER. Denoting with a all symbols except ak, and defining

f (u, a) =
s0 (u) +

∑
n6=k ansk−n (u)

σ (u)
(4.32)

we show in the Appendix of this chapter (section 4.8) that the BER degradation can be approximated as

BERdeg = −10 log10

(
A2 − V 2 (Es/N0)ref

)
(4.33)

where

A = Ea,u [f (u, a)] (4.34)
V = V ara,u [f (u, a)] . (4.35)

The approximation (4.33) is valid for 2 (Es/N0)ref V � 1 and for small degradations (less than 1 dB).

4.5.2 Example

Suppose we transmit a sequence of real data symbols {ak}. The receiver operates under an unknown timing error τ ,
with some a priori distribution p (τ). The observations at the receiver can be shown to be

yk =

+∞∑

n=−∞

ak−nq (nT − τ) + nk

where nk ∼ N
(
0, 1

2 (N0/Es)ref

)
and q (t) is a Nyquist pulse, so that q (kT) = δk. Hence, u = [τ], and f (u, a) =

(
q (−τ) +

∑
n6=0 ak−nq (nT − τ)

)
/σ (u). This yields

σ (u) = 1

A = Eτ [q (−τ)]

V = Eτ

[
+∞∑

n=−∞

q2 (nT − τ)

]
−A2

This can be further calculated by numerical evaluation of the expectation w.r.t. τ . Note that, when p (τ) = δ (τ),A = 1
and V = 1 −A2 = 0, so that

BERdeg = −10 log10 (1)

= 0 dB.

58

Alternatively, we can use a frequency-domain interpretation, based on the characteristic function of τ :

φ (ω) =

∫ +∞

−∞

p (τ) e−jτωdτ.

Since

q (nT − τ) =

∫ +∞

−∞

Q (f) ej2πf(nT−τ)df

one easily finds

A =

∫ +∞

−∞

Q (f)φ (2πf) df

V =
+∞∑

n=∞

φ (−2πn/T)En −A2

where En =
∫ +∞

−∞
Q (f)Q (f − n/T) df .

4.6 Signal Representation

4.6.1 Principle
In many places in this dissertation, we will consider vector representations of signals. In general, a vector representa-
tion r of a signal r (t) is obtained by expanding r (t) onto a set of orthonormal basis functions: {φ0 (t) , φ1 (t) , . . . , φN−1 (t)}
as follows [46]:

rk =

∫ +∞

−∞

r (t)φk (t) dt (4.36)

so that r = [r0, r1, . . . , rN−1]
T . Since the basis functions are orthonormal, we have

r (t) =

N−1∑

k=0

rkφk (t) . (4.37)

Sampling a signal then corresponds to a particular set of basis functions (i.e., delay-shifted sinc-pulses). In many
cases N = +∞. When the signal is a random process, the values {rk} will be random variables.

4.6.2 Application
A situation that will appear frequently throughout this text is the computation of likelihood functions. Suppose we
have a signal s (t) and observe r (t) with:

r (t) = s (t) + n (t) (4.38)

where n (t) is a complex white Gaussian noise process with PSD N0/2 per real dimension. Projection onto an or-
thonormal basis yields

r = s + n (4.39)

where

p (n) ∝ exp

(
− 1

N0
‖n‖2

)
(4.40)

∝ exp

(
− 1

N0

∫ +∞

−∞

|n (t)|2 dt
)

(4.41)

The likelihood function p (r| s) can be written in two ways:

p (r| s) ∝ exp

(
− 1

N0
‖r− s‖2

)
(4.42)

or as

p (r| s) ∝ exp

(
− 1

N0

∫ +∞

−∞

|r (t) − s (t)|2 dt
)
. (4.43)

59

4.7 Main points
In this chapter, we discussed the representation of continuous-time and discrete-time signals and filters. Particular
attention was paid to interpolation filters and CIC filters. We also described a technique that enables us to directly
calculate BER degradations without the need to resort to time-consuming simulations.

60

4.8 Appendix: BER degradation

4.8.1 Definitions
The BER degradation of our receiver compared to the reference receiver at a target BER (say BERref) is defined as

BERdeg = 10 log

(
Es/N0

(Es/N0)ref

)
(4.44)

where (Es/N0)ref is the SNR required for the reference receiver to attain a BER equal to BERref , while Es/N0 is the
SNR required for our receiver to attain the same BER. For BPSK transmission, the BER of the reference receiver is
given by

BERref

(
(Es/N0)ref

)
= Q

(√
2

(
Es

N0

)

ref

)
(4.45)

with

Q (x) =
1√
2π

∫ +∞

x

e−
t2

2 dt. (4.46)

The decision variable is given by

yk =
√
Esaks0 (u) +

√
Es

∑

n6=k

ansk−n (u) +
√
N0/2σ (u)nk. (4.47)

For our receiver, we have the following BER vs SNR relationship:

BER (Es/N0) = Ea,u

[
Q

(√
f2 (u, a)

2Es

N0

)]
(4.48)

where

f (u, a) =
s0 (u) +

∑
n6=k ansk−n (u)

σ (u)
(4.49)

.
=

fN (u, a)

σ (u)
(4.50)

and averaging in (4.48) is performed w.r.t. u, noise statistics and all symbols a, except symbol ak. Since the reference
receiver and our receiver should attain the same BER, this yields:

Q

(√
2

(
Es

N0

)

ref

)
= Ea,u

[
Q

(√
f2 (u, a)

2Es

N0

)]
. (4.51)

For a given value of (Es/N0)ref , Es/N0 can be found iteratively, through a computationally intensive search.

4.8.2 Semi-analytical approach
Searching Es/N0 directly can be avoided as follows [44, 45]. We introduce the following notations e0

.
= (Es/N0)ref ,

e
.
= Es/N0, P (e0)

.
= BERref

(
(Es/N0)ref

)
,BER (e)

.
= Ea,u

[
P
(
f2 (u, a) e

)]
,A .

= Ea,u [f (u, a)], and V .
= Ea,u

[
f2 (u, a)

]
−

A2. Similar to [44, 45], we model f (u, a) as N (A, V). In that case, the decision variable can be transformed to:

yk ∝ √
eakf (u, a) + nk (4.52)

which gives rise to a bit error probability

Ea,u

[
Q

(√
f2 (u, a)

2Es

N0

)]
= Q

(√
2eA2

2eV + 1

)
. (4.53)

Substituting (4.53) into (4.51) and equating the arguments yields:

61

e0
e

= A2 − 2e0V. (4.54)

Replacing (4.54) in the definition (4.44) leads to

BERdeg = −10 log
(
A2 − V 2e0

)
(4.55)

which is valid for 2e0V � 1 and for small degradations (less than 1 dB).
In most cases σ (u) takes on values closely clustered around its mean, so that we may use the following approx-

imation:

A = Ea,u [f (u, a)] ≈ Ea,u [fN (u, a)]

Eu [σ (u)]
(4.56)

and

V = V ara,u [f (u, a)] (4.57)

≈ Ea,u

[
f2

N (u, a)
]

Eu [σ2 (u)]
−A2. (4.58)

62

Chapter 5

Factor graphs, equalization and data
detection

5.1 Introduction

In this chapter we will illustrate the measures a receiver needs to take in order to cope with adverse channel effects.
Within our framework of factor graphs, we discern two stages: in the first stage the incoming continuous-time signal
(rIF (t) or rBB (t)) is transformed to a suitable observation y. In the second stage, a factor graph of an a posteriori
distribution is created and the sum-product algorithm is applied to yield a posteriori probabilities of the information
bits. The first stage involves techniques such as matched filtering, whitening, sampling, timing correction. In the
second stage, the problem of equalization will appear. Tasks such as synchronization and equalization are common to
all receivers and have therefore received intense interest from the research community for over 50 years. Traditionally,
equalization amounted to sampling and filtering the incoming signal in such a way that the channel looks more like a
frequency-flat channel. The resulting samples were then provided to a decoder. Pioneering work in this area dates to
the late 60s and early 70s [23, 47, 48]. In the next two decades, the theoretical aspects related to equalization have not
received much attention until the advent of turbo codes in 1993 [7]. Only then it was recognized that information need
not only flow from the equalizer to the decoder. By performing iterative equalization and decoding, performance can
be improved significantly [18]. A good overview of such turbo-equalization techniques is given in [24]. The same
paper also touches on the relationship between iterative equalization and factor graphs.

This chapter is organized as follows: we first define the ultimate goal of the receiver (i.e., data detection) and show
how this goal may be achieved in two stages. The first stage is described in section 5.3 and concerns the conversion
of the incoming signal to a suitable observation model. Secondly, from this observation model a factor graph can be
constructed. When we apply the sum-product algorithm on this graph, the data can be recovered. Several practical
ways to proceed are provided in section 5.4

5.2 Receiver operation

5.2.1 The received signal revisited

We start again from our received baseband signal. Revisiting Eq. (2.12):

rBB (t) =

Ns−1∑

k=0

akh (t− kT) + w (t) (5.1)

where
√
Es is the transmit energy per symbol, w (t) is a Gaussian noise process that is white within the signal band-

width and h (t) is obtained by convolving the transmit pulse p (t) with hBB (t)

h (t) =
√
Es

∫ +∞

−∞

p (u)hBB (t− u) du. (5.2)

Finally, hBB (t) is modeled as follows:

63

detector

continuous−time
signal conversion

I[c = χ(b)]

ϕ ϕI[a = ϕ(c)]

c0 cm−1 cNc−m cNc−1

a0 aNs−1

p(y|a)

b0 b1 bNb−1

p(b)

channel parameters
transmit mode

observation y

Figure 5.1: Data detection: factor graph of p (b) I [c = χ (b)] I [a = ϕ (c)] p (y| a). The observation y, the channel parameters and transmit
mode are parameters (not variables) in this graph.

hBB (t) =
L−1∑

l=0

αlδ (t− τl) (5.3)

where αl and τl are the complex gain and the propagation delay of the l-th path. When L > 1, the channel is
frequency-selective. When L = 1, the channel is frequency-flat.

5.2.2 Data detection: principle

Our goal is to detect the sequence of information-bits b based on rBB (t). Here, b is related to a through a = ϕ (c),
where c = χ (b). χ represents the transformation from information-word b to codeword c and ϕ corresponds to the
mapping of c to a modulation-set. Detection consists of two parts:

1. We first process the received signal rBB (t) to obtain an observation vector y, so that the likelihood function
p (y |a) has a form that can be cast in the suitable factor graph framework.

2. We construct the factor graph of the a posteriori distribution

p (b, a, c|y) ∝ p (b) I [c = χ (b)] I [a = ϕ (c)] p (y| a) . (5.4)

as depicted in Fig. 5.1. We then apply the sum-product algorithm on this factor graph, yielding the marginal a
posteriori probabilities (APPs) p (bk|y). Decisions w.r.t. the information bits can be taken as follows

b̂k = arg max
bk

p (bk|y) . (5.5)

The remainder of this chapter is devoted to see how the transformation from rBB (t) into a suitable observation y is
accomplished, what the corresponding factor graphs look like, and how the sum-product algorithm can be applied.
The key to many detection algorithms lies in the factorization of the likelihood function p (y|a), with the introduction
of additional variables. (see also ’the key idea’ of MAP detection on factor graphs from page 30).

64

5.3 Observation models
We say that an observation y forms a sufficient statistic to detect the data sequence b when [46]

p (b |y) = p (b |rBB) (5.6)

where rBB is obtained by projecting rBB (t) onto a suitable basis.
We will consider three observation models. A factor graph of the corresponding likelihood functions p (y |a)

is constructed in section 5.4 for the three observation models. These likelihood functions can simply be ’plugged
into’ the factor graph from Fig. 5.1, so that the APPs can be computed. Although all three models happen to form
a sufficient statistic to detect b, we could also consider a myriad of sub-optimal observation models, each with a
corresponding likelihood function (e.g., [49]). The principle for data detection remains the same: a factor graph will
be constructed from the likelihood function and the SP algorithm is then used to detect the data sequence b.

5.3.1 Observation model 1: matched filter detector
We denote by g (t) =

∫ +∞

−∞
h∗ (−u)h (t− u) du. Expanding rBB (t) onto some orthonormal basis yields a vector

representation rBB . As the noise at the input of the receiver is white within the signal bandwidth, we have the
following likelihood-function:

log p (rBB| a)

∝ −
∫ +∞

−∞

∣∣∣∣∣rBB (t) −
Ns−1∑

k=0

akh (t− kT)

∣∣∣∣∣

2

dt (5.7)

∝ 2<
{

Ns−1∑

k=0

ak

∫ +∞

−∞

r∗BB (t)h (t− kT) dt

}
− aHGa (5.8)

= 2<
{
yH

MF a
}
− aHGa (5.9)

where G is a Ns ×Ns Toeplitz matrix with

Gk,k′ = g ((k − k′)T) (5.10)

and yMF = [yMF,0, . . . , yMF,Ns−1]
T denotes the vector of Ns samples, obtained by filtering the baseband signal

rBB (t) with a filter, h∗ (−t):

yMF,k =

∫ +∞

−∞

rBB (t)h∗ (t− kT) dt. (5.11)

The filter h∗ (−t) is referred to as the matched filter (i.e., matched to h (t)), while the samples {yMF,k} are known as
the matched filter outputs. It is easily verified that p (a| rBB) = p (a|yMF), so that data detection can be performed,
based solely on the Ns matched filter outputs yMF . The matched filter outputs can be written as

yMF = Ga + n (5.12)

with

E
[
nnH

]
= N0G. (5.13)

Example

When the channel is frequency-flat, hBB (t) = Aejθδ (t− τ), where A is an amplitude, θ the carrier phase and τ the
propagation delay. In that case, h (t) =

√
EsAe

jθp (t− τ), so that

g (t) =

∫ +∞

−∞

h∗ (−u)h (t− u) du (5.14)

= A2Es

∫ +∞

−∞

p∗ (−u− τ) p (t− u− τ) du (5.15)

= A2Esq (t) (5.16)

65

ADCp∗(−t)

Ae−jθ

kT + τ

yMF,krBB(t)

Figure 5.2: Matched filter receiver for a frequency-flat channel

ADC

ADC

ADC

p∗(−t)

kT + τ0

kT + τl

kT + τL−1

α∗
0

α∗
l

α∗
L−1

rBB(t) yMF,k

Figure 5.3: Matched filter receiver for a Multi-path channel

where

q (t) =

∫ +∞

−∞

p∗ (−u) p (t− u) du. (5.17)

When p (t) is a square root Nyquist pulse,

g (nT) = A2Esδn (5.18)

so that yMF = A2Esa + n, with E
[
nnH

]
= A2EsN0INs

. A receiver that computes the matched filter samples is
shown in Fig. 5.2. This receiver is easily extended to a general multi-path scenario with L > 1 paths, as depicted in
Fig. 5.3.

5.3.2 Observation model 2: whitening matched filter
When g (t) is not proportional to a Nyquist pulse, detection based directly on the matched filter outputs may be
difficult (since G in (5.10) will not be diagonal, so that the noise samples at the output of the matched filter are
correlated). Fortunately, based on a spectral decomposition of the matrix G, the noise at the output of the matched
filter can be whitened (the details of whitening are omitted here, but can be found in any standard textbook on Digital
Communications, such as [21]). By clever choice of the whitening filter, the resulting observation model corresponds
to a causal channel with Lw taps1:

yWMF = Ha + w (5.19)

with E
[
wwH

]
= N0INs+Lw−1 and H an (Ns + Lw − 1) × Ns Toeplitz matrix. For instance, for a three-tap channel

(Lw = 3) and Ns = 4, we get:

H =

h0 0 0 0
h1 h0 0 0
h2 h1 h0 0
0 h2 h1 h0

0 0 h2 h1

0 0 0 h2

. (5.20)

1We note that there are many ways to whiten the noise in yMF (e.g., through a Cholesky decomposition of G, or a Karhunen-Loeve expansion).
However, not all techniques will lead to a sufficient statistic. For more details on whitening, see [46].

66

5.3.3 Observation model 3: over-sampling detector
In the last technique, we proceed as follows: the incoming baseband signal rBB (t) is filtered with an analog anti-
aliasing filter (AAF) and sampled at a rate N/T satisfying the Baseband Sampling Theorem. By suitable selection of
the AAF, the noise of the samples will be white, iid and distributed according to CN (0, N0N/T). The samples can be
written as

yOS = Ha + w (5.21)

with E
[
wwH

]
= N0N/T I. In the matrix H, the row corresponding to sample yOS (mT + lT/N) is equal to (for

m ≥ 0):

column m
↓

[. . . h
(

l+N
N T

)
h
(

l
N T
)

h
(

l−N
N T

)
. . .].

Hence, the row corresponding to yOS ((m+ 1)T + lT/N) is equal to the row corresponding to yOS (mT + lT/N),
right-shifted over N columns. This regular structure is due to the fact that the sample rate is an integer multiple
of the symbol rate. In principle, the incoming signal could be sampled at a rate that is not an exact multiple of the
symbol rate. In such cases, possibly all rows in H will be different.

When the sample rate is an integer multiple of the symbol rate, it is readily verified that (5.21) can also be written
as

yOS = Ah + w (5.22)

where h contains the channel impulse response (assuming h (t) takes on significant values in [−LlT,+LrT]):

hT = [h (LrT) h (LrT − T/N) h (LrT − 2T/N) . . . h (−LlT + T/N) h (−LlT)]

and the row of A corresponding to y (mT + lT/N) is equal to

column k0 column k0 +N
↓ ↓

[0 . . . 0 a0 0 . . . 0 a1 0 . . .]

where k0 = (Lr −m)N − l ≥ 0:

Remarks

• yOS in (5.21) is a vector of length (roughly) (Ns + Lh)N , where Lh is the number of symbol periods for which
h (t) takes on significant values2. When the transmit pulse p (t) takes on significant values for Lp symbol dura-
tions, then Lh ≈ Lp + τL−1−τ0

T .

• Depending on the channel, either a matched filter or an oversampling approach will be used. It is obvious that
a matched filter receiver is to be preferred when the overall channel impulse response h (t) closely resembles
a square root Nyquist pulse. An oversampling receiver would in such cases entail a significant computational
overhead. On the other hand, when h (t) has a more exotic shape, an oversampling approach may be more
suitable: it removes the need of explicit matched filtering and whitening.

5.4 Equalizers
Based on the three observation models (5.12), (5.19) and (5.21), we will now construct factor graphs of the corres-
ponding likelihood functions p (y |a). The sum-product algorithm can then be applied on the factor graph from
Fig. 5.1.

The sum-product algorithm may be too complex to implement in practice. For this reason we also describe a type
of augmented equalizer: this is a block that replaces the node p (y |a) in Fig. 5.1, and accepts messages µak→ϕ (ak) and
outputs messages µϕ→ak

(ak), but does not operate according to the sum-product algorithm. As long as the augmented
equalizer satisfies the input-output relationship of a node in a factor graph, it can be used instead of the sum-product
algorithm in Fig. 5.1. Numerical results comparing the different equalizers can be found in abundance in technical
literature [18, 24, 25, 50, 51] and are omitted here.

2Note that, strictly speaking, h (t) is of infinite duration.

67

p0 p(yMF |a)

a0 aNs−1

pNs−1

Figure 5.4: Factor graph of likelihood function for Observation Model 1: frequency-flat channel

s0 s1 sk
sk−1

f0 f f f

a0

x0

a1

x1

ak−1

xk−1

p1p0 pk−1

aNs−1

pNs
pNs−1

f1f

xNs−1

pNs+Lw−2

sNs

xNs+Lw−2

xNs

p(y|a)

Figure 5.5: Factor graph of likelihood function for Observation Model 2: frequency selective channel

5.4.1 Sum-product equalizers
Observation model 1: matched filter detector

Observation model (5.12) generally gives rise to a likelihood function p (yMF | a) that is not suitable in a factor graph
representation, due to the correlation of the noise. Only in the case when g (t) in (5.10) is a Nyquist pulse (e.g., when
the channel is frequency-flat) can we obtain a suitable likelihood function of the following form

p (yMF | a) =

Ns−1∏

k=0

p (yMF,k| ak) (5.23)

∝
Ns−1∏

k=0

exp

(
− 1

A2EsN0

∣∣yMF,k − akA
2Es

∣∣2
)
. (5.24)

The corresponding factor graph is shown in Fig. 5.4, where p (yMF,k| ak) is abbreviated by pk. The sum-product
algorithm is trivial: messages µak→ϕ (ak) = p (yMF,k| ak) are propagated upwards to the mapper nodes.

Observation model 2: whitening matched filter

In the case of a symbol-rate detector with H corresponding to an Lw-tap channel, we may write the k-th component
of (5.19) as3

yk =

Lw−1∑

l=0

hlak−l + wk (5.25)

.
= xk + wk (5.26)

3For notational convenience, we omit the subscript WMF in this paragraph.

68

f f
sksk−1 sk+1

ak−1 ak

p
(0)
k−1−Ll

p
(N−1)
k−1−Ll

p
(N−1)
k−Ll

p
(0)
k−Ll

x
(0)
k−1−Ll x

(N−1)
k−Ll

x
(0)
k−Ll

x
(N−1)
k−1−Ll

p(y|a)

Figure 5.6: Section of factor graph of likelihood function for Observation Model 3

for k = 0, . . . , Ns + Lw − 2. Introducing the additional variables {xk}k=0,...,Ns+Lw−2 and {sk}k=0,...,Ns
, with sk =

[ak−Lw+1, . . . , ak−1], a vector of size 1× (Lw − 1) we can transform the likelihood function p (y|a) into the following
factorization

p (y,x, s|a) = (5.27)
Ns+Lw−2∏

k=0

p (yk|xk) I [xk = h0ak + fh (sk)]

where fh (sk) =
∑

l>0 hlak−l, and implicitly we assume a<0 = 0 and a≥Ns
= 0. Abbreviating p (yk|xk) with pk,

I [xk = h0ak + fh (sk)] with f (xk, ak, sk), and introducing

f1 (xNs
. . . , xNs+Lw−2, sNs

)
.
=

Lw−2∏

k=0

I

[
xk+Ns

=

Lw−1−k∑

l=1

hk+laNs−l

]

and f0 (s0)
.
= I

[
s0 = 01×(Lw−1)

]
, we have

p (y,x, s|a) = (5.28)

f0 (s0)

Ns−1∏

k=0

pkf (xk, ak, sk)

Ns+Lw−2∏

k=Ns

pkf1 (xNs
. . . , xNs+Lw−2, sNs

)

which lends itself well to a trellis representation, shown in Fig. 5.5.

Discussion

• Note that now the SP algorithm is applied to a factor graph representation of p (b, a, c,x, s|y), rather than
p (b, a, c|y).

• Observe the similarities between this factor graph and the one corresponding to the convolutional code gen-
erator block (Fig. 3.13). In the equalizer, the variables ak are not binary (except for BPSK transmission), so the
messages over the ak-edges will be vectors of size |Ω|. The variables xk can take on |Ω|Lw values. Hence, the
complexity of the sum-product algorithm on this factor graph scales as O

(
Ns |Ω|Lw

)
. For channels with large

Lw, this approach is no longer suitable.

• When the channel is frequency-flat (Lw = 1), the state variables sk are all of length Lw −1 = 0, so that the factor
graph from Fig. 5.5 reduces to the factor graph from Fig. 5.4.

Observation model 3: over-sampling detector

Let us focus on a situation where the incoming signal is sampled at T/N and the channel h (t) takes on significant
values in (−LlT,+LrT), so that Lh = Ll + Lr. The equalizer will operate on the samples4

y = [y (−LlT) , y (−LlT + T/2) , . . . , y (NsT − T + LrT)]T .

4For notational convenience, we omit the subscript OS in this paragraph.

69

Introducing the following notations h(n)
l = h (lT + nT/N), n(n)

l = n (lT + nT/N) for n = 0, . . . , N−1, we can express
y
(n)
l = y (lT + nT/N) as

y
(n)
k =

Lr∑

l=−Ll

h
(n)
l ak−l + n

(n)
k (5.29)

where implicitely a<0 = 0 and a≥Ns
= 0. After some straightforward manipulations:

y
(n)
k−Ll

=

Lr+Ll∑

l=0

h
(n)
−Ll+lak−l + n

(n)
k+Ll

(5.30)

.
= x

(n)
k−Ll

+ n
(n)
k−Ll

(5.31)

which bears a striking resemblance to (5.25). The function p (y,x, s|a) can again be factorized in a similar fashion,
and is represented by the factor graph depicted in Fig. 5.6. We have introduced the state variables sk, given by
sk = [ak−Lh

, . . . , ak−2, ak−1]. The nodes p(n)
k are a shorthand for p

(
y
(n)
k

∣∣∣x(n)
k

)
. The f -nodes ensure that x(n)

k−Ll
=

∑Lr+Ll

l=0 h
(n)
−Ll+lak−l, for n = 0, . . . , N − 1. The SP algorithm operates in the standard way. The complexity of this

algorithm scales as O
(
Ns |Ω|Lh

)
. Note that

• Each f -node in the factor graph from Fig. 5.6 has 3 +N connected edges (as opposed to at most 4 edges in the
previous observation models);

• Some measures need to be taken at the boundaries of the factor graph (i.e., sections corresponding to k = 0 and
k = Ns − 1), just like in the previous observation model;

• When the channel is frequency-flat, iterating between equalization and decoding is still necessary. In observa-
tion model 1 and observation model 2, iterating between equalization and decoding was not required as there
were no cycles in the factor graph between the block p (y|a) and the block I [a = ϕ (c)].

• When the sample rate is not a integer multiple of the symbol rate, the function f may vary from time k to time
k + 1, which is clearly undesirable.

From the exposition above, it has become clear that a straightforward factor graph approach to equalization is pos-
sible, but computationally demanding when the channel is long (i.e., large Lw or Lh).

5.4.2 Augmented equalizers
Although the factor graph equalizers are interesting from a theoretical point of view, they are generally too complex
to implement. Various ways to reduce the complexity have been proposed in technical literature. For instance, we
could reduce the size of the state-space in the graphs from Figs. 5.5-5.6 by making decisions (either hard or soft)
on the state. This reduces the complexity to O (Ns |Ω|), irrespective of the number of taps. Such an approach was
considered in [52].

Another way to proceed, is to look into the class of what we will call ’augmented’ equalizers, where we replace
the node corresponding to the likelihood function p (y|a) with a block that performs an algorithm, different from the
sum-product algorithm. These augmented equalizers can be used for the three observation models and are basically
conventional equalizers that have been augmented in three ways, so that they can operate within a factor graph:

1. Input augmentation: the equalizer can accept information from other parts of the factor graph, in particular
messages regarding the symbols ak: µϕ→ak

(ak) (i.e., the message from the mapper node).

2. Message computation: messages should be computed in a way that does not violate the SP rule: an outgoing
message µak→ϕ (ak) should not depend on the corresponding incoming message µϕ→ak

(ak).

3. Output augmentation: the equalizer can output information in the form of messages µak→ϕ (ak), which are
used elsewhere in the factor graph.

Various types of such augmented equalizers have been devised in technical literature. For the sake of illustration, we
will describe a popular MMSE (Minimum Mean Squared Error) equalizer [49].

70

MMSE equalizer

The equalizer operates as follows. Suppose we want to estimate a quantity a, with distribution CN (ma,Saa) from
an observation y, with

y = Ha + n (5.32)

where n ∼ CN (0,Snn). If we model the coded data symbols as Gaussian random variables, we can apply standard
techniques (see [16, p. 643]) to estimate these symbols, for any of the three observation models (i.e., for (5.19), (5.21)
as well as (5.12)):

â = ma + SayS
−1
yy (y − my) (5.33)

= ma + SaaH
H
(
HSaaH

H + Snn

)−1
(y − Hma) (5.34)

where Sar is the cross-covariance of a and y, Syy is the auto-covariance of y and my is the mean of y. The components
of â are then estimates of the different symbols ak. When information from the decoder is disregarded, ma = 0 and
Saa = INs

, in which case (5.34) reduces to a conventional MMSE equalizer [21]:

â = HH
(
HHH + Snn

)−1
y. (5.35)

Augmentation

In order to meet the three requirements above, the following modifications need to be made:

1. Input augmentation: the input messages µϕ→ak
(ak) are used to approximate ma and Saa: for instance, the

k-th component of ma would be given by5 ma,k =
∑

ω∈Ω ω×µϕ→ak
(ω), while E [aka

∗
l] would be approximated

by ma,km
∗
a,l.

2. Message computation: when estimating ak, we need to remove the dependence of the estimate âk on the
incoming message µϕ→ak

(ak). This is achieved by replacing the corresponding entries in ma and Saa with
those of the conventional MMSE equalizer [49].

3. Output augmentation: the MMSE equalizer outputs an estimate of each of the symbols. To convert these
estimates to messages, we model the estimates âk to have a Gaussian distribution with mean µkak and variance
σ2

k. Both µk and σ2
k can easily be determined from the available data [49].

Computational complexity

In practice, the computational complexity can be reduced by making use of a sliding-window approach: when de-
termining âk, the MMSE equalizer operates only on yk, a subset of y. Applying suitable approximations, the compu-
tational complexity is given by

• Observation Models 1 and 2: O (NsLw), for an Lw-tap channel

• Observation Model 3: O (NsNLh), for an LhN -tap channel, with N samples per symbol duration.

When we compare with the factor-graph approach, we see a drastic reduction in complexity: the MMSE equalizer is
no longer dependent on the constellation and its complexity is linear (rather than exponential) in the channel length.

5.5 Main points
In this chapter, we have discussed how a (mono-mode) receiver that has perfect knowledge of the channel state and
synchronization parameters, can detect the transmitted data. First the received signal rBB (t) is transformed into
a suitable observation y. This involves tasks such as matched filtering, whitening of noise, sampling and timing
correction. Secondly, by the introduction of additional variables (say, x), a factor graph of the function p (y,x |a) is
created, and connected to the factor graph that models the a priori distribution of the coded data symbols a. Applying

5Here, we exploit the fact that messsages are represented by pmfs.

71

the sum-product algorithm in this graph yields the APPs of the information bits. It turns out that, depending on
the observation model and channel impulse response, we may need to iterate between decoding and equalization
(turbo-equalization) using the SP algorithm. Unfortunately, this SP approach is not feasible for long channels. A
second structure is mentioned, based on a conventional MMSE equalizer that is augmented to operate within the
overall factor graph and replaces the node corresponding to p (y,x |a).

When the channel state changes, this may impact the conversion from rBB (t) to y as well the factor graph of
p (y,x |a). In the latter case, this simply boils down to replacing a node in the factor graph. In the former case, de-
pending on the observation model and type of channel, new filters may need to be loaded to perform the conversion
from rBB (t) to y. The complexity related to this heavily depends on the transmission model (e.g., CDMA, OFDM),
and should be considered on a case-by-case basis. For the simple models we have considered, a matched filter
receiver is better suited for frequency-flat channels, while an oversampling receiver may be preferred for frequency-
selective channels.

Finally, we remind that any APPs computed in the detection process are actually conditioned on the (estimate of)
channel state and transmit mode.

72

Chapter 6

Transmit mode adaptation

6.1 Introduction
Now that we have familiarized ourselves with some techniques related to matched filtering, equalization and data
detection, we are ready to go one step further and consider the problem of transmit mode adaptation. In conventional
mono-mode communications the transmitter does not have much freedom in the transmission. Basically, it can only
change the information bit-sequence from frame to frame. In multi-mode transmission, the transmitter can set a
number of parameters for each burst. The problem of mode adaptation is related to designing flexible transceivers in
an efficient manner. At the same time we should stay true to the Software Radio paradigm and not allow any modes
to depend on analog components. The latter goal is generally easy to achieve, since most modes are inherently digital.
An exception is the shape of the transmit pulse, which lingers somewhere between the analog and digital domain.
This is related to the critical aspect of symbol rate adaptation. We pay special attention to this problem, and place it
in its common context, namely that of Direct-Sequence/Spread Spectrum (DS/SS) communications.

In parallel to the previous chapter, we assume that both the channel state and transmit mode can change from
burst to burst, but remain constant within a burst. We again assume the receiver has perfect knowledge of the channel
state and the transmit mode parameters. Our goal in this chapter is to see how a change in the transmit mode affects
the receiver.

This short chapter is organized as follows: we first discuss the general problem of transmit mode adaptation
in section 6.2 and then focus on the specific issues related to symbol rate adaptation in section 6.3. Symbol rate
adaptation turns out to be far from trivial and will be covered in detail in the next chapter.

6.2 Transmit Mode Parameters

6.2.1 System Model
We repeat the transmission model from Chapter 2. The transmitter sends a burst of Nb information bits b to the
receiver. The bits are first encoded, yielding a code sequence c of length Nc, c = χ (b). The ratio Nb/Nc is referred
to as the code rate. The coded bits are then mapped to a sequence of Ns complex symbols a = ϕ (c), with symbols
taken from an M -point constellation Ω. The symbols are shaped by a unit-energy transmit pulse p (t). The resulting
complex baseband signal can be written as

sBB (t) =
√
Es

Ns−1∑

k=0

akp (t− kT) (6.1)

where Es and 1/T denote the transmit energy per symbol and the symbol rate, respectively. The transmit pulse has
a (one-sided) bandwidth B.

In conventional (mono-mode) communications, the transmitter has only one degree of freedom in the creation of
sBB (t): the sequence of information bits b. Once b is set, the signal sBB (t) is fixed. In multi-mode transmission, the
transmitter has the possibility to set additional parameters, according to a predefined set of rules. These parameters
may include the transmit energy, the code, the constellation and the symbol rate. Each of these parameters affects the
receiver in a different way.

The receiver operates on the signal rBB (t), obtained by filtering sBB (t) with the channel impulse response, and
adding AWGN. In Fig. 6.1, we show the general structures we have derived so-far: the incoming signal rBB (t) is
first processed to yield a suitable observation y. A factor graph of p (a,b, c |y) is constructed. The parameters of

73

AAF

Matched Filter

Whitening resample

MMSE or SP equalizer

ADC

channel parameters

transmit mode

rBB(t)

rate N/T

nTs c0

I[c = χ(b)]

p(b)

p(y|a)

a0 aNs−1

I[a = ϕ(c)]

b0 bNb−1

cNc−1

y
y

Figure 6.1: Receiver: transformation from rBB (t) to observation y. Factor graph of p (a,b, c |y).

this graph are the observation y, the channel parameters and the transmit mode. Applying the SP algorithm on this
factor graph yields the a posteriori probabilities (APPs) of all variables. The node corresponding to p (y |a) may be
replaced by a suitable block (e.g., an augmented MMSE equalizer).

6.2.2 Modes
Contrary to the previous chapter, transmit mode adaptation concerns both the transmitter and the receiver. We will
now give a short overview of how modes may be changed and how they affect the transmitter and the receiver.
As we will see, mode adaptation generally boils down to modifying nodes in the factor graph, i.e., a pure software
change.

Transmit energy

The transmitter can change the transmit energy Es in a limited continuous range. At the receiver, adapting to a
change in Es is easy: it corresponds to a trivial change in the node corresponding to the likelihood function p (y |a).

Code and code rate

By changing the error-correcting code χ and/or the code rate Nb/Nc, the transmitter is able to offer certain packets
improved protection against adverse channel effects. At the receiver, the correct decoder must be plugged into the
factor graph to decode the packet correctly. For codes with simple building blocks (such as convolutional codes),
the code can be modified by changing the building blocks. For other codes (such as LDPC codes), this is not so
straightforward. An efficient way to change the code rate is through puncturing. The process of puncturing was
already briefly mentioned in Chapter 3: we fix the underlying code, but transmit only a (variable) subset of the
coded bits over the channel. A related topic is that of rate-compatible punctured codes [53, 54], where code rates

74

high−rate user

low−rate user

VSF VCR

a
(L)
k

a
(H)
k a

(H)
k+1 a

(H)
k a

(H)
k+1

a
(L)
k

Figure 6.2: Multi-rate DS/SS with Variable Spreading Factors (left) and Variable Chip Rates (right). For VCR the chip pulse of the low rate
user (L) is longer than for the high-rate user (H).

are organized in a hierarchy, so that higher-rate codes are embedded in low-rate codes. Finally, adaptive coded
modulation has been investigated [55].

Constellation and mapping

Changing the constellation requires changes to the mapper block and (for factor-graph equalizers) to the equalizer
block1. Changing the mapping (i.e., how a group of bits is mapped to a constellation point) requires only changes
to the mapper block I [a = ϕ (c)]. The latter is accomplished by storing a list of all possible mappings. Additional
information on adaptive modulation can be found in [10, 56–59].

Symbol rate and pulse shape

This is probably the most complex task for the receiver: when the symbol rate changes, the pulse shape p (t) changes
accordingly. At the transmitter, this requires modifications to the digital filters used to generate sBB (t) from (6.1).
At the receiver, changes are more drastic and pertain to the matched filter, the equalizer and the ADC. This is closely
related to the concept of multi-rate transmission and will be discussed in more detail in the next section.

6.3 Symbol rate adaptation
The problem of symbol rate adaptation and multi-rate transmission is well known in the context of Direct-Sequence
Spread Spectrum (DS/SS) systems. In such systems, the transmit pulse is given by2

pT (t) =

Ng−1∑

n=0

αnpc,Tc
(t− nTc) (6.2)

where αn is a chip,Ng is the spreading factor and pc,Tc
(t) is a rate 1/Tc square root Nyquist chip pulse with one-sided

bandwidth BT . Note that pT (T) has the same bandwidth. The symbol rate is related to Tc and Ng by

1/T = 1/ (NgTc) . (6.3)

Hence, the symbol rate can be increased by either reducing the number of chips per symbol or increasing the chip
rate (or a combination of both). This leads to techniques known as Variable Spreading Factor (VSF) and Variable Chip
Rate (VCR) multi-rate transmission [60–62] (see Fig. 6.2).

1Note that an MMSE equalizer requires no knowledge of the constellation.
2The subscript T will indicate the symbol duration.

75

Let us compare these two techniques on a simple example: multi-rate transmission over a frequency-flat channel
hBB (t) = Aejθδ (t− τ). The corresponding matched filter is given by (see section 5.3)

h∗ (−u) = Ae−jθ

Ng−1∑

n=0

α∗
np

∗,chip
Tc

(−u− nTc − τ) (6.4)

which can be implemented in the following 4 steps3:

1. Filtering with a chip-matched filter p∗c,Tc
(−t), yielding a signal x1 (t) where

x1(t) = Aejθ
√
Es

Ns−1∑

k=0

ak

Ng−1∑

n=0

αn

∫
p∗c,Tc

(−u) pc,Tc
(t− u− nTc − τ − kT) du

.
= Aejθ

√
Es

Ns−1∑

k=0

ak

Ng−1∑

n=0

αnqc,Tc
(t− nTc − τ − kT)

2. Timing correction to compensate for τ , yielding samples (assuming an adjustable clock)

x1 (lT +mTc + τ) = Aejθ
√
Es

Ns−1∑

k=0

ak

Ng−1∑

n=0

αnqc,Tc
(lT − kT +mTc − nTc)

= Aejθ
√
Es

Ns−1∑

k=0

ak

Ng−1∑

n=0

αnδl−kδm−n

= Aejθ
√
Esalαm

3. Despreading, yielding samples x2 (lT), with

x2 (lT) =

Ng−1∑

m=0

α∗
mx1 (lT +mTc + τ)

= Aejθ
√
Esal

Ng−1∑

m=0

|αm|2

4. Carrier phase correction

VSF multi-rate transmission

In a VSF system the rate can be reduced by increasing the spreading factor. The maximal symbol rate equals the
chip rate (corresponding to Ng = 1), with each symbol corresponding to a single chip. From the description of the
matched filter, we see that as the spreading factor changes, this only has an impact on step 3. With step 3 being a
simple correlation that is implemented digitally, a change in the spreading factor can easily be adapted to.

In the context of multi-user systems, the difficulties related to VSF are the following: first of all, VSF requires
careful dynamic allocation of spreading codes to each of the users. Secondly, there is no way to change the bandwidth
corresponding to different rates. Also, only very few users can be supported at the highest data rate.

VCR multi-rate transmission

In VCR transmission, the symbol rate is reduced by using a low-rate chip pulse, but maintaining the same spreading
factor. Looking again at the 4 steps in matched filtering, a change in the chip pulse impacts step 1, requiring a new
filter to be loaded for each rate.

In the context of multi-user systems, VCR has the benefit of superior performance compared to VSF [63] and
has more freedom in terms of the number of users that can be supported at a given data rate. However, VCR
transmission has some practical drawbacks: since low-rate users do no use up the same bandwidth as high-rate
users, VCR requires advanced frequency planning. Secondly, since DS/SS systems commonly use RAKE receivers
(similar to the receiver depicted in Fig. 5.3) without any further equalization, low-rate users will not be able to

3We will neglect the noise in this paragraph.

76

transmitter receiver
Es trivial trivial

code/code rate code FG code FG
modulation set mapper FG + code FG mapper FG + code FG + equalizer FG

modulation mapping mapper FG mapper FG
T , pulse digital filters digital + analog filters + equalizer FG

Table 6.1: Modifications required at receiver and transmitter to support multi-mode transmission. FG stands for factor graph.

exploit multi-path diversity to the same extent as high-rate users. This problem could be countered by allowing
low-rate users to perform additional equalization. Finally, a third concern with VCR is that the matched filter needs
to be changed in a non-trivial way according to the symbol rate: for each rate, a new chip-pulse pc,Tc

(t) would need
to be loaded at both the transmitter and the receiver. This is hardly convenient. The next chapter is devoted to
how multi-rate transmission with varying bandwidths can be implemented efficiently by removing the need to store
multiple impulse responses of the rate-dependent chip pulses. Note that VCR can also be applied to systems without
spreading.

6.4 Main points
We have given a brief overview of which parameters can be changed during multi-mode transmission (see table
6.1). Similarly to the previous chapter, two types of adaptation can be discerned: adaptation in the transformation
of the incoming signal rBB (t) to a suitable observation y and adaptation of the factor graph. It turns out that most
modes can be easily adapted to, by changing the corresponding part in the receiver’s factor graph. Only the symbol
rate and pulse shape cause some practical problems, since they are related to the transformation of the incoming
signal. In particular, a matched filter receiver needs to load new filter taps each time the symbol rate changes. An
oversampling receiver must change the sampling rate if it wishes to operate at a rate that is a fixed multiple of the
symbol rate. This calls for sample rate conversion techniques. As we will see later, the matched filter receiver also
suffers from a dependency of the computational complexity on the symbol rate. In the next chapter we will tackle
these problems.

77

Chapter 7

Low-Complexity receivers

7.1 Introduction

In the previous chapter, we have shown how a receiver can adapt, at least in principle, to the transmit mode. How-
ever, there are a number of practical concerns that were not discussed thoroughly, related to the conversion of the
incoming continuous-time signal (rBB (t) or rIF (t)) to a suitable observation y. More specifically, in the context
of Software Radio it is desirable to perform tasks as much as possible in the digital domain [14, 64]. Any analog
processing that is mode-dependent should be removed and replaced with a digital counterpart. For instance, rather
than sampling the output of the matched filter, we could sample its input at some suitable sampling rate and perform
matched filtering digitally. Although shifting operations to the digital domain leads to a multi-mode receiver that is
fully realizable in software, there are still a number of issues we need to contend with.

First of all, we would like filters to operate (as much as possible) at a rate that is independent of the symbol
rate. A related issue is that of Sample Rate Conversion (SRC): we would like components to operate at an integer
multiple of the symbol rate. Since we can not guarantee the sampling rate to be an exact integer multiple of all
(or even any) symbol rates, SRC is required. This problem is present in both the matched filter receiver and the
oversampling receiver [65]. Finally, we could like to go one step further and sample the IF signal directly. This has a
number of benefits that will be detailed later on in this chapter. However, sampling the IF signal directly results in
high-frequency components that may interfere with the useful signal. Care needs to be taken in the design of such
an IF-sampling receiver.

These modifications will result in a receiver that closely adheres to the ’everything digital’ Software Radio paradigm.
The receiver will operate almost fully in the digital domain at low complexity. However, these modifications may
have a significant impact on the performance of the receiver. These issues will be the topic of the current chapter. We
will focus on the matched filter receiver, although many points are valid for the oversampling receiver.

This chapter is organized as follows: in section 7.2 we give a qualitative description of some receiver alternatives.
The problem of sample rate conversion is described in section 7.3. The bulk of this chapter is found in section 7.4
and is devoted to the evaluation of different receiver alternatives in terms of computational complexity and BER
performance. We end with some remarks regarding coded systems in section 7.5.

7.2 Design issues in multi-rate receivers

The matched filter receiver from Chapters 5-6 assumed an adjustable clock that samples the signal at the output
of the matched filter at the correct time instants, driven by a synchronizer (analog timing correction). The corres-
ponding receiver is shown in Fig. 7.1: analog IF-to-baseband conversion and analog matched filtering is followed
by synchronized symbol-rate sampling. The analog matched filter in this receiver configuration can be replaced by
an equivalent structure with a digital matched filter1 (in which case the synchronized baseband sampling in front
of the matched filter is at a multiple of the symbol rate, and the matched filter output is decimated to the symbol
rate). In addition, also the IF-to-baseband conversion can be performed digitally by using synchronized bandpass
sampling (in which case the intermediate frequency and the sampling rate must be carefully selected to avoid aliasing
from the double-frequency terms [26]). The advantage of IF-sampling as compared to baseband sampling is that IF-
to-baseband conversion is performed digitally, so that the need for analog quadrature oscillators, identical analog
low-pass filters and identical analog to digital converters in the in-phase and quadrature branches is avoided [66].

1Provided the sampling rate satisfies the Baseband Sampling Theorem (see Chapter 4).

79

anti−aliasing

filter

ADC

ADC

kT + τ zk

HMF (f)

HMF (f)

rIF (t)

π/2

Figure 7.1: Reference receiver structure with analog matched filtering (MF) and synchronized sampling

Analog timing correction can be replaced with digital timing correction, where sampling is performed by means
of a fixed free-running clock, and synchronized samples are obtained by interpolating between the available non-
synchronized samples [39, 40]. The synchronized instants at which an interpolant is needed are determined by a
synchronizer, and forwarded to the interpolator. From the implementation point of view, digital timing correction
is to be preferred, because an inexpensive fixed sampling clock can be used. On the other hand, because of its
finite memory the interpolator introduces distortion that degrades the performance as compared to the receiver with
synchronized sampling (Fig. 7.1). Different receiver configurations with digital timing correction can be envisaged:
non-synchronized sampling can be performed either at baseband or at IF, and interpolation can either precede or
follow matched filtering. The performance degradation caused by non-ideal interpolation in the case of baseband
sampling has been investigated in [44, 45, 67].

In the current chapter, these receiver alternatives will be investigated in some detail.

7.3 Sample rate conversion

For low-cost designs (such as for wireless devices), the clock rate cannot be guaranteed to be a multiple of the symbol
rates. On the other hand, it is often desirable to let digital filters operate at a multiple of the symbol rate. Among
other things, this allows filters to be implemented using a polyphase approach [65].

For multi-rate transmission, there is another dimension to this problem. Suppose we have a system where we
are able to sample the signal at a multiple of the smallest symbol rate (the ’base’ rate). Assume further that all sym-
bol rates are an integer multiple of the base rate. Note that the sampling rate has to satisfy the baseband sampling
theorem for all symbol rates. This means that for low data rates, the signal will be heavily oversampled. In such
a case computational complexity will strongly depend on the symbol rate: for high data rates computational com-
plexity may be significantly smaller than for lower data rates. Ideally we would like computational complexity to be
independent of the data rate.

These problems are all related to the concept of sample rate conversion, i.e., how to convert samples at a given rate
to samples at another rate. The problem of sample rate conversion was considered in [15,43,65,68–72]. These contri-
butions deal mostly with fractional sample rate conversion (i.e., transforming from rate N1/T to rate N2/T). Due to
the particular nature of the receivers we will consider, we need to allow for more general sample rate conversion.

7.4 Low-complexity matched filter receivers

We have described some critical issues in the design of digital multi-rate receivers:

• the digital implementation of the matched filter;

• in the case of digital timing correction: the location of the interpolator;

• IF-sampling;

• sample rate conversion.

Now, we are ready to embark on a more quantitative analysis. Our final goal is to create a receiver that operates, as
much as possible, like a Software Radio, while at the same time not significantly impacting the overall performance.

80

Let us start from the receiver from Fig. 7.1. This receiver will be designated the ’reference receiver’, as all our new
receivers will be compared to it. We will now introduce four receivers that operate in the digital domain, whereby
the received signal is sampled at a rate 1/Ts, a rate that may be incommensurate with some or all of the symbol
rates. These four receivers will be compared to the reference receiver in terms of BER performance at the output of
the matched filter for BPSK modulation. To keep the analysis tractable, a frequency-flat channel is assumed with an
overall channel impulse response given by δ (t− τ) ejθ where τ is the propagation delay and θ the carrier phase. Both
θ and τ are assumed to be known to the receiver.

The BER performance results we will obtain, will translate into simple design criteria such that the BER degrad-
ation of the four receivers compared to the reference receiver will be negligible (i.e., less than, say, 0.1 dB) for all
symbol rates. While BER performance results were obtained for a very specific scenario (i.e., a very specific channel
model and a very specific type of modulation), the resulting design criteria in no way depend on that scenario and
are valid for more general cases, even for coded transmission.

We will proceed as follows: we first give a description of the receiver front-end, followed by a listing of four
possible digital receivers. One of these receivers combines IF-sampling with symbol-rate independent matched fil-
tering. We will then detail the effects of aliasing on such receivers, paying special attention to the role of the digital
interpolators and the use of digital anti-aliasing filters. This is followed by a detailed performance analysis, based
on the BER degradation of each of the four receivers, as compared to the reference receiver. We then present design
criteria for each of the receivers. The resulting design rules are subsequently verified by numerical evaluation of the
BER degradation and by computer simulations.

7.4.1 System description
7.4.1.1 Receiver front-end

Let us first re-visit the system model. We consider multi-rate burst transmission, where the symbol rate (1/T) is con-
stant during a burst, but can change from one burst to the next. After propagation through the channel δ (t− τ) ejθ,
we write the received IF signal as

rIF (t) = sIF (t, τ, θ) + n (t) (7.1)

where n (t) is real additive white Gaussian noise (AWGN) with power spectral density equal to N0/2 and sIF (t, τ, θ)
is the IF signal:

sIF (t, τ, θ) = <
{
√

2Es

∑

k

akpT (t− kT − τ) ej2πfIF tejθ

}
(7.2)

.
= <

{√
2sLP,T (t− τ) ej2πfIF tejθ

}
(7.3)

where fIF is the IF, {ak} are the uncorrelated data symbols with E
[
|ak|2

]
= 1, Es is the energy per symbol, pT (t)

is a square-root cosine-roll-off unit energy transmit pulse with roll-off α ∈ [0, 1] and a one-sided bandwidth B =
(1 + α) / (2T), θ is the carrier phase and τ is the propagation delay of the complex envelope. We assume θ to be a
random variable that is uniformly distributed in [0, 2π[. Note that both τ and θ are constant for a given burst, but can
vary from burst to burst. The symbol interval T can take on values within an interval [Tmin, Tmax]. Consequently,
the bandwidth B of the transmit pulse is in a corresponding interval [Bmin, Bmax]. As in the previous two chapters,
the carrier phase θ, the propagation delay τ and the IF fIF are assumed to be known at the receiver.

The corresponding complex baseband signal can be obtained by down-conversion followed by low-pass filtering

rBB (t) = sLP,T (t− τ) ejθ + w(t). (7.4)

7.4.1.2 Receiver alternatives

The reference receiver from Fig. 7.1 can be used to detect the data symbols. Unfortunately, this receiver is far from a
Software Radio receiver: almost all components are analog. Among other things, this implies that the analog matched
filter would have to be replaced as the symbol rate changes.

We will describe four receiver alternatives. The first two are baseband (BB) sampling receivers and are depicted
in Fig. 7.2. Then we will describe two IF-sampling receivers, depicted in Fig. 7.3.

Baseband sampling receivers The first BB receiver is used in most current receivers: the baseband signal is sampled
with a free-running clock and matched filtered prior to timing correction. It is easily verified that when the

81

Matched
filter

Inter−
polatorADC

ADC
Inter−

polator
Matched

filter

AAF

AAF

1/Ts 1/Ts

zk

1/T

1/Ts

mi

N/T

N
zk

1/T

µi

N/Tmkµk

rBB(t)

rBB(t)

Figure 7.2: Two baseband sampling seceivers. AAF stands for analog Anti-Aliasing Filter.

Matched
filter

Inter−
polator

Inter−
polator

Matched
filter

conversion
downADC

ADC

down
conversion

+ filtering
AAF

AAF

mk

1/Ts

zk

1/T

mi

N/T

N
zk

N/T 1/T1/Ts

1/Ts 1/Ts

1/Ts

µi

µk

rIF (t)

rIF (t)

Figure 7.3: Two IF-sampling receivers. AAF stands for analog Anti-Aliasing Filter.

82

ADC

analog AAF

rIF (t)

miµi

Interpolator

√
2e−j2πfIFnTse−jθ

−fIF fIF

nTs

zk
N

optional
digital AAF

u(nTs)

x(nTs)

rAA(t)

xI(i
T
N

+ τ)

receive filter

H(ej2πfT/N)

Figure 7.4: Digital receiver with IF sampling and sample rate conversion before matched filtering

sampling rate satisfies the baseband sampling theorem, and when the interpolator is ideal, this receiver has
exactly the same performance as the reference receiver. Unfortunately, the taps of the matched filter will still
need to be changed as the symbol rate varies: different sets of matched filter taps need to be stored and loaded
depending on the symbol rate. Also, the computational complexity of the matched filter will be significantly
larger for low data-rates.
The second receiver is obtained by interchanging the matched filter and interpolator: now the matched filter
taps no longer depend on the symbol rate2 (up to an irrelevant multiplicative constant). Only one set of taps
needs to be stored at the receiver. Also, the computational complexity related to matched filtering is independ-
ent of the symbol rate. Hence, from the complexity point of view, the preferred configuration in a multi-rate
receiver is to interpolate in front of the matched filter.

IF-sampling receivers These are very similar to the BB-sampling receivers, with the notable exception that down-
conversion is now performed digitally, so that the need for analog quadrature oscillators, identical analog
low-pass filters and identical analog-to-digital converters in the in-phase and quadrature branches is avoided.
The receiver where interpolation precedes matched filtering is of particular interest: it combines all benefits of
IF-sampling and low-complexity matched filtering. However, the high-frequency components that are now still
present in the down-converted signal may interfere with the useful signal. In the sequel we will show that a
receiver with interpolation in front of matched filtering is more susceptible to aliasing than is the receiver with
matched filtering in front of interpolation. To overcome this, we include an optional digital anti-aliasing filter
after down-conversion. As this receiver combines many aspects not present in conventional receivers, it will be
our main focus during this chapter.

7.4.1.3 IF-sampling receiver: operation

We have proposed a receiver that combines IF-sampling with low-complexity multi-rate matched filtering. We will
now describe this receiver in more detail. As shown in Fig. 7.4, the received signal rIF (t) is applied to an analog
anti-aliasing bandpass filter, sampled by a free-running clock at a rate 1/Ts, and frequency-translated from IF to
baseband by applying a constant-speed rotation of −2πfIFTs rad/sample. The anti-aliasing filter (AAF) is a fixed
analog filter that does not change with the symbol rate of the received burst. We model the equivalent low-pass filter
as a 4-th order analog Butterworth filter with 3 dB cut-off frequency equal to BAA = Bmax (1 + e), with e > 0. Note
that the bandwidth of the noise at the output of the AAF is larger than the bandwidth of the useful signal, especially
when operating at the minimum symbol rate. The AAF has a nearly flat frequency response for |f | in the interval
[fIF −Bmax, fIF +Bmax], in order to avoid large distortions of the useful signal.

Subsequently, synchronized samples of the down-converted signal, taken at a multiple (N) of the symbol rate
(i.e., at instants iT/N + τ), are obtained by means of an interpolator (IP). The interpolator takes care of both timing
correction and sample rate conversion. As interpolators have poor anti-aliasing properties, we also consider applying

2Under the assumption that for any T1 and T2: pT1 (nT1/N) ∝ pT2 (nT2/N). This assumption is valid for many types of transmit pulses.

83

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fT
s

P
I
(f)

LP−signal
HF−signal
LP−noise
HF−noise

−r

Figure 7.5: Frequency-domain view of low-pass (LP) signal and noise (centered around f = k/Ts, for k ∈ Z), high-frequency (HF) signal
and noise (centered around f = −r/Ts + k/Ts, for k ∈ Z) and PI (f), the Fourier transform of the linear interpolator.

an optional digital AAF, placed before the interpolator [73]. This filter should be independent of the symbol rate and
have a near-flat characteristic in the band [−Bmax,+Bmax].

The resulting synchronized samples are applied to a discrete-time receive filter that is matched to the transmit
pulse. In Fig. 7.4 this filter is represented through its DTFTH

(
ej2πfT/N

)
. The matched filter (MF) output is decimated

by a factor N , yielding samples zk at the decision instants kT + τ . The matched filter also suppresses (part of) the
double-frequency terms (at −2fIF + multiples of 1/Ts) that result from the down-conversion of the sampled output
of the analog anti-aliasing filter. The matched filter output samples are fed to the decision device that detects the
transmitted symbols {ak}.

7.4.2 Aliasing

The bandpass signal rAA (t) at the output of the AA filter is sampled at rate 1/Ts and frequency translated (in discrete
time) by an amount −fIF . At the same time, carrier phase correction is performed. The resulting sequence {u (nTs)}
can be interpreted as samples of a signal u (t), which is related to rAA (t) and to the complex envelope rAA,LP (t) of
rAA (t) by

u (t) =
√

2rAA (t) e−j2πfIF te−jθ (7.5)
= rAA,LP (t) + r∗AA,LP (t) e−j4πfIF te−j2θ. (7.6)

The Discrete-Time Fourier Transform (DTFT) of the sequence {u (nTs)} consists of a periodical extension (with period
1/Ts) of RAA,LP (f)+R∗

AA,LP (−f − 2fIF) e−j2θ, with RAA,LP (f) denoting the Fourier Transform (FT) of rAA,LP (t).
In order to avoid aliasing with the useful signal at the input of the interpolator, shifts (by a multiple of 1/Ts) of the

high-frequency (HF) component R∗
AA,LP (−f − 2fIF) should not overlap with the low-pass component RAA,LP (f)

within the interval (−B,B). Defining3 r = rem(2fIFTs), the shifted HF components located closest to f = 0 are
centered at −r/Ts and (1 − r) /Ts. The periodical extension of the LP and HF components is shown in Fig. 7.5 for
r = 0.4. Applying the Bandpass Sampling Theorem, we require that (BAA +B)Ts < min (r, 1 − r) for all symbol
rates. Hence, a sufficient condition to avoid aliasing at the input of the interpolator is as follows:

(BAA +Bmax)Ts ≤ min (r, 1 − r) . (7.7)

3rem (x) ∈ [0, 1[denotes the fractional part of x.

84

Although condition (7.7) assures that no aliasing occurs at the input of the interpolator, aliasing at the output of the
interpolator is still possible. An interpolator is able to remove the periodical extension of RAA,LP (f), but generally
has poor anti-aliasing properties, i.e., the ability to remove the periodical extension of R∗

AA,LP (−f − 2f0) [74] (this
effect is clearly visible in Fig. 7.5). The latter may get aliased with the useful signal at the output of the interpolator
and cause significant degradations.

By applying a simple digital anti-aliasing filter before the interpolator, the signal contributions that cause the
aliasing may be (partially) removed. We will now describe the aspects of interpolation and anti-aliasing in more
detail.

7.4.2.1 Interpolation

The interpolator output rate is an integer multiple (N) of the symbol rate 1/T . Since the propagation delay τ is known,
the values µi andmi (as described in section 4.4, page 54), to be provided to the interpolator, are known at the receiver.
In practice, these quantities need to be estimated by a timing recovery circuit. For the remainder of this chapter, we
will use a two-tap linear interpolator in all examples and results. As higher order polynomial interpolators have
similar Fourier transforms, generalization is straightforward. In fact, the mathematical derivations do not assume
any particular type of interpolator.

7.4.2.2 Digital anti-aliasing filter

We denote the output of the digital AAF (DAAF) by x (nTs) (see Fig. 7.4). When no DAAF is present, x (nTs) ≡
u (nTs). We consider two types of anti-aliasing filters: ideal low-pass filters and CIC filters.

Ideal anti-aliasing filter This DAAF is spectrally flat within (−Bmax, Bmax) and rejects frequency components out-
side (−Bmax, Bmax). When (7.7) is satisfied, there can be no aliasing from high frequency components within
the signal bandwidth at the DAAF output. Although such a filter is not realizable in practice, its performance
will serve as a reference.

CIC anti-aliasing filter As ideal low-pass filters are not realizable, we also consider a class of CIC filters. Decimat-
ing CIC filters are low-complexity decimation filters (with input rate 1/Ts and output rate 1/ (RTs)) with good
anti-aliasing properties. These filters were described in section 4.4. Unfortunately, in combination with an in-
terpolator, the use of CIC filters has several side-effects: the interpolator has to work at a lower rate (1/ (RTs)
instead of 1/Ts), reducing its performance. Secondly, CIC filters suffer from a severe passband ’droop’, espe-
cially for high symbol rates. While the latter problem is tackled in [75], solutions to the former problem were
discussed in [71] in the context of Software Radio receivers: using a polyphase filter structure allowed the in-
terpolator to operate at the higher rate. This is similar to [72] where a set of R parallel CIC filters were placed
before the interpolator. An extra control structure forwarded the correct samples to the interpolator. Here we
propose a solution that is mathematically equivalent to [72], but more simple: by dropping the trailing decim-
ator (see Fig. 4.6, page 56), the resulting filter, which we denote by CIC (R,L), has equal input and output
rates. It now serves solely as an anti-aliasing filter and not as a decimator. The frequency magnitude response
of a CIC (R,L) is given by (up to an irrelevant constant):

|HDAA (f)| =

∣∣∣∣
sin (πfRTs)

sin (πfTs)

∣∣∣∣
L

(7.8)

where the subscript DAA refers to the digital anti-aliasing filter. As can be seen in Fig. 7.6, a CIC (R,L) has
nulls for fTs = kR, for k ∈ Z, 0 6= kmodR and is flat around fTs = k. It can easily be shown that while increas-
ing the number of stages in the CIC filter (i.e., the order, L) improves the alias rejection, it also increases the
passband droop, thus distorting the useful signal. When we combine this filter with the frequency response of a
polynomial interpolator, we end up with an interpolating filter that has very attractive anti-aliasing properties,
especially if the HF signal components happen to be centered at nulls of the CIC filter, e.g., when rTs = kR,
0 6= kmodR.

CIC implementation For a practical implementation, it is important to note that the overall impulse response can be
re-written as follows [76]:

H (z) =

(
1

1 − z−1

)L

×
(
1 − z−R

)L
(7.9)

=

(
R−1∑

k=0

z−k

)L

. (7.10)

85

−3 −2 −1 0 1 2 3
−30

−25

−20

−15

−10

−5

0

f.T
s

m
ag

ni
tu

de
 [d

B
]

linear interpolator

CIC(4,2)

overall filter

Figure 7.6: Magnitude frequency response for CIC (4, 2) filter, a linear interpolator and the combined filter

Hence, the CIC filter can be implemented by the L-fold concatenation of the FIR filter 1 + z−1 + . . .+ z−R+1.

7.4.3 Performance measure
The performance measure we consider is the BER degradation compared to the reference receiver from Fig. 7.1. The
decision variable is given by

zk =
√
Esaks0 (u) +

√
Es

∑

n6=k

ansk−n (u) +
√
N0/2σ (u)nk (7.11)

where u = [τ, θ]. For an IF-sampling receiver, sk (u) may contain contributions due to the high-frequency component
of the signal (see Eq.(7.5)). Similarly, the noise can contain baseband and high-frequency components. We introduce
the following notations:

• σ2
tot: average of σ2 (u) (average w.r.t. noise statistics, carrier phase and decision instants),

• PLP : average power of the baseband component in s0 (u) +
∑

n6=k ansk−n (u) (average w.r.t. data symbols,
carrier phase and decision instants),

• PHF : average power of the high-frequency component in s0 (u)+
∑

n6=k ansk−n (u) (average w.r.t. data symbols,
carrier phase and decision instants),

• PU : part of PLP due to the current data symbol ak.

Applying the BER degradation equation (4.55) from Chapter 4, with V =(PLP + PHF) /σ2
tot−A2 and A2 = PU/σ

2
tot,

yields

BERdeg = −10 log
1

σ2
tot

(
PU − (PLP + PHF − PU)

(
2Es

N0

))
. (7.12)

The reference receiver from Fig. 7.1 is not affected by HF terms, nor by inter-symbol-interference, so that PLP = PU =
1, PHF = 0, σ2

tot = 1, yielding a BER degradation of 0 dB. In the baseband sampling receivers, no high-frequency
components are present in the signal or noise, so that PHF = 0.

86

We will now evaluate zk further for the four receivers. The evaluation is semi-analytical: averaging w.r.t. data
symbols, noise statistics, decision instants and carrier phase is performed analytically by transforming zk to a frequency-
domain form. The resulting integrals in the frequency domain can then be evaluated numerically. This is in contrast
with [44, 45, 67] where only averaging w.r.t. data symbols is performed analytically and all remaining averaging is
performed through (time-consuming) computer computations.

We will introduce the following acronyms for the four receivers:

1. IP+MF:BB refers to baseband sampling, with interpolation before matched filtering,

2. IP+MF:IF refers to IF-sampling, with interpolation before matched filtering,

3. MF+IP:BB refers to baseband sampling, with matched filtering before interpolation ,

4. MF+IP:IF refers to IF-sampling, with matched filtering before interpolation.

Receiver (1) was proposed in [67]. Receiver (2) is the proposed low-complexity receiver from Fig. 7.4. Receiver (3) is
the most common receiver in current digital communications systems, while receiver (4) is a common IF-sampling
receiver.

7.4.4 Performance analysis
7.4.4.1 IP + MF

In order to investigate the effect of the non-ideal interpolation on the decision variable zk, we will first relate the
DTFT of the DAAF input samples to the DTFT of the MF input samples. Based on the latter, we can easily compute
zk.

Taking into account that the interpolator operates on samples x (nTs) of a signal x (t), and applying (4.26)-(4.27),
we obtain the following relationship between the DTFTs of {xI (iT/N + τ)} and {u (nTs)}:

XI

(
ej2πf T

N

)
=

N

TTs

+∞∑

m,n=−∞

Qn

(
f −m

N

T

)
(7.13)

where

Qn (f) = U

(
f − n

Ts

)
HDAA

(
ej2πfTs

)
PI (f) ej2πfτ . (7.14)

PI (f) and U (f) are the FT of the interpolating pulse pI (t) and of the signal u (t) from (7.14), that underlies the
samples {u (nTs)} at the input of the digital anti-aliasing filter. When no digital AA filter is present, we setHDAA

(
ej2πfTs

)
=

1. In (7.13) the summations over m and n reflect the sampling of xI (t) and x (t) at rates N/T and 1/Ts, respectively.
We can now express zk as

zk =
T

N

∫ N/T

0

H
(
ej2πf T

N

)
XI

(
ej2πf T

N

)
ej2πfkT df (7.15)

=
1

Ts

∫ N/T

0

H
(
ej2πf T

N

) +∞∑

n=−∞

Qn (f) ej2πfkT df (7.16)

where H
(
ej2πf T

N

)
denotes the FT of the sequence {h [i]} (i.e., the matched filter taps). This leads to

zk = (7.17)
∫ N/T

0

H
(
ej2πf T

N

)
U
(
ej2πfTs

)
HDAA

(
ej2πfTs

)
PI (f) ej2πf(kT+τ)df

To see how, in the absence of a DAAF, the HF components in U (f) contribute to (7.17) (and consequently increase
the BER degradation), let us list the important factors in the integrand: H

(
ej2πf T

N

)
, PI (f) and U

(
ej2πfTs

)
. Breaking

up the latter factor in a low-pass (LP) and high-frequency (HF) component, we obtain a frequency-domain view,
depicted in Fig. 7.7 (with HDAA

(
ej2πfTs

)
= 1, r = 0.6 and T/ (NTs) = 2.22). From the figure it is clear that HF

87

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f.T
s

H(exp(j2 π f T/N))
P

I
(f)

U
LP

(exp(j2 π f T
s
))

U
HF

(exp(j2 π f T
s
))

Figure 7.7: Frequency-domain interpretation for Interpolator + Matched filter for r = 0.6, T/ (NTs) = 2.2200.

components contribute to the integral (for instance the component at fTs = 0.4 overlaps with the component of
H
(
ej2πf T

N

)
centered at fTs = TsN/T = 1/2.22 = 0.4505). These components will cause a degradation if they are

not removed by a digital AAF.
Hence, a HF component causes aliasing when it is close to the center of the periodic extension of the matched

filter. This occurs when, for any n,m ∈ Z:−r/Ts + n/Ts is close to mN/T . Especially when mN/T is within the main
lobe of PI (f) ([−1/Ts,+1/Ts] in Fig. 7.7) aliasing can be significant.

7.4.4.2 MF + IP

In this case the matched filter rejects aliasing outside the useful signal bandwidth so that no separate digital AA filter
is needed. Hence, zk is expressed as

zk =

∫ 1/Ts

0

U
(
ej2πfTs

)
H
(
ej2πfTs

)
PI (f) ej2πf(kT+τ)df. (7.18)

Notice the subtle differences between (7.17) and (7.18). When (7.7) holds, the HF terms (with bandwidth BAA and
centered around k/Ts − r/Ts) contained in the sequence {u (mTs)} do not contribute to (7.18), as they are suppressed
by the matched filter (H

(
ej2πfTs

)
), which has a bandwidth less than Bmax and is centered around k/Ts, k ∈ Z. The

components of the integrand in (7.18) are depicted in Fig. 7.8. Now, provided (7.7) is satisfied, high-frequency signal
components fall outside the matched filter bandwidth. Hence, they will not contribute to the integral.

7.4.5 Receiver Design Parameters

Now that we have determined the decision variables for each of the four receivers, we can compute the power of the
low-pass and high-frequency signal and noise components. In principle, this is achieved by breaking up zk into the
four corresponding components and calculating their power. This calculation is straightforward but very tedious: it
basically amounts to performing a great deal of integrations and summations and would cover many pages in this
manuscript. As these exact computations do not yield any additional insights, they are omitted here. At this point,
we have sufficient information to determine design criteria for our four receivers. Later, in section 7.4.6, we will
evaluate these criteria in terms of their BER degradation.

88

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f.T
s

H(exp(j2 π f T
s
))

P
I
(f)

U
LP

(exp(j2 π f T
s
))

U
HF

(exp(j2 π f T
s
))

Figure 7.8: Frequency-domain interpretation for Matched filter + Interpolator for r = 0.6. Observe that HF components fall outside the MF
bandwidth.

7.4.5.1 Baseband sampling receivers

MF+IP

We need to ensure no aliasing occurs within the useful signal bandwidth at the input of the matched filter. This is
achieved when the Baseband Sampling Theorem is satisfied for all T :

1

Ts
> BAA +Bmax. (7.19)

A higher sample rate will improve interpolator performance and reduce the degradation with respect to the receiver
from Fig. 7.1.

IP+MF

The same restriction (7.19) on Ts applies to avoid aliasing within the signal bandwidth at the interpolator input.
To ensure that the signal in [−BAA, BAA] at the interpolator input causes no aliasing within the signal bandwidth
[−B,B] at the interpolator output, we need (applying the Baseband Sampling Theorem again):

N > Tmax (Bmin +BAA) . (7.20)

Under these restrictions degradations will be low. Again, a higher sampling rate 1/Ts will lead to better performance.
N and Ts can be chosen independently. Note that for BB-sampling all considered values for N satisfying (7.20) lead
to the same degradation.

7.4.5.2 IF-sampling receivers

MF+IP

In order to avoid that sampling at rate 1/Ts gives rise to aliasing within the signal bandwidth at the input of the
matched filter, the sample rate and IF are restricted by (7.7):

1

Ts
≥ BAA +Bmax

min (r, 1 − r)
. (7.21)

89

Increasing the sampling rate 1/Ts improves the interpolator performance and reduces the degradations with respect
to the receiver from Fig. 7.1. When (7.7) holds, the performance is the same as for the MF+IP receiver with baseband
sampling.

IP+MF without digital AAF

In [77] we have shown that the receiver performance degradation is very large when the dominating HF components
(located at frequencies (1 − r) /Ts and −r/Ts) at the interpolator input get aliased into the useful signal bandwidth
[−B,B] at the interpolator output (see Fig. 7.7, where HF components at fTs = −0.6 and fTs = 0.4 undergo the least
attenuation from PI (f)). It was observed that low BER degradations (i.e., less than 0.1 dB for a BER of 10−3) can be
achieved by avoiding this aliasing by means of proper parameter selection. More specifically, these low degradations
can be obtained when

1

Ts
>
BAA +Bmax

1/2
(7.22)

and

N ≥ Tmax (2BAA +Bmax +Bmin) . (7.23)

Condition (7.22) assures that there exist values for r (implicitly given by (7.7)) so that there is no aliasing within the
useful signal bandwidth at the input of the interpolator. Condition (7.23) assures that the dominating HF component
is outside the useful signal bandwidth at the output of the interpolator. Defining r∗ = Ts (Bmax +BAA), it can be
verified (see [77]) that aliasing due to the dominating HF component is then avoided only when r ≈ r∗ or r ≈ 1− r∗.
Furthermore, when

N ≥ Tmax

(
1

2Ts
+BAA +Bmin

)
(7.24)

both HF components are suppressed for r ≈ 1
2 . Note that the oversampling factorN required in both (7.23) and (7.24)

may be significantly larger than the one required in (7.20). This is clearly undesirable. Hence, such a receiver is of
little practical interest for multi-rate systems.

IP+MF with ideal digital AAF

When the interpolator is preceded by a fixed digital AAF that suppresses frequencies outside the interval [−Bmax,+Bmax],
the parameters Ts, N and r must satisfy (7.20) and (7.7) in order to avoid aliasing from high-frequency components
of {u (nTs)} within the signal bandwidth [−B,B] at both the input and the output of the interpolator. When (7.7)
holds, the resulting performance is equal to that of the IP+MF receiver with baseband sampling, irrespective of N .

IP+MF with CIC digital AAF

We can suppress signal components that are located near the nulls of a CIC filter (see section 7.4.2.2). By increasing
either the order (L) or the factor (R) of the CIC filter, HF signal and noise components at the interpolator input are
more attenuated. At some point, increasing L or R will not affect the influence of the HF components to the BER
degradation (i.e., these components have become negligible). At the same time, due to the passband droop forR > 1,
the useful signal is distorted, especially for high symbol rates (small T) and high CIC orders (large L). Hence, a CIC
filter will reduce aliasing (which is good) but also distort the useful signal (which is bad). Clearly, both r and the CIC
parameters (L and R) will play a key role in this trade-off.

We further remind that the receive filter with taps h = {h [i]}(with DTFT H (exp (j2πfT/N))) was assumed
matched to the transmit pulse p (t). Consequently, it is not matched to the entire received pulse (i.e., the concatenation
of the transmit pulse, the CIC filter and the interpolator). It therefore makes sense to optimize the receive filter taps
h in order to counteract the distortion of the useful component introduced by the interpolator and (especially) the
CIC filter. We have selected the following optimization criterion: minimize (w.r.t. h) the maximal (maximized over
all considered T) Mean Squared Error (MSE) between ak and zk:

ĥ = arg min
h

{
max

T

{
E
[
|ak − zk|2

]}}
. (7.25)

90

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

fT

m
ag

ni
tu

de

optimized filter
truncated MF

Figure 7.9: Frequency response of original and optimized receive filter for CIC(4,3), Ts = 1/11.1, N = 5 and 51 filter taps

To illustrate this, we consider a CIC(4, 3) filter and Ts/Tmin = 1/11.1, N = 5 for T/Tmin ∈ (1, 2). Fig. 7.9 shows
the frequency response of a truncated matched filter (for a receive filter with 51 taps) as well as the filter resulting
from the optimization criterion (7.25). Note that this optimization process is only useful in situations where the
degradation is mainly due to the distortion of the useful signal (i.e., the passband droop) and not because of aliasing
of HF components. This is not really a restriction as we may increase either R or L in CIC(R,L) to suppress HF
aliasing components.

7.4.6 Numerical Results

We will determine, as a function of r = rem (2fIFTs), the maximum BER degradation (maximized over all considered
symbol rates) assuming uncoded BPSK transmission at a reference BER of 10−3, with Tmax/Tmin = 2, Bmax =
0.75/Tmin, BAA = 0.9/Tmin and Tmin/Ts = 11.1 (which satisfies (7.22)). We consider both the case of a discrete set
of symbol rates (i.e., T ∈ {Tmin, Tmax}) and of a continuous set (i.e., T ∈ [Tmin, Tmax]). The lower bounds for N
according to (7.20), (7.23) and (7.24) are given by N = 3, N = 6 and N = 14, respectively. We will consider three
values of N (N = 5, N = 12 and N = 16). We will observe that in the case of baseband sampling, degradations
are very low, both for the IP+MF and the MF+IP configuration. This confirms the results from [67]. As mentioned
in section 7.4.5.2, the IP+MF:IF with ideal DAAF configuration and the MF+IP:IF configuration will lead to low
degradations for a wide range of r. Around r = 0 and r = 1, HF components coincide with the useful signal, so that
IF-sampling inevitably leads to severe degradations.

Case 1: N=16

Fig. 7.10 shows results for N = 16. When no digital AAF is present in the IP+MF:IF system, low degradations are
visible for r ≈ r∗ = 0.15, r ≈ 1 − r∗ = 0.85 (with r∗ defined in section 7.4.5.2) and for r around 1/2. This is in
accordance with the results from [75]. Observe that for r around 1/2, the degradation is not very sensitive to the IF.

91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

r

B
E

R
 d

eg
ra

da
tio

n
[d

B
]

MF+IP:BB & IP+MF:BB
MF+IP:IF & IP+MF:IF w/ ideal DAAF
IP+MF:IF
IP+MF:IF (discrete T−set)

Figure 7.10: BER degradation (at a reference BER of 10−3) as a function of r maximized over the considered symbol rates for N = 16. For
MF+IP the continuous-rates and discrete-rates cases coincide.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

r

B
E

R
 d

eg
ra

da
tio

n
[d

B
]

MF+IP:BB & IP+MF:BB
MF+IP:IF & IP+MF:IF w/ ideal DAAF
IP+MF:IF
IP+MF:IF (discrete T−set)

Figure 7.11: BER degradation (at a reference BER of 10−3) as a function of r maximized over the considered symbol rates for N = 12 . For
MF+IP the continuous-rates and discrete-rates cases coincide.

92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

r

B
E

R
 d

eg
ra

da
tio

n
[d

B
]

IP+MF:BB & MF+IP:BB
MF+IP:IF & IP+MF:IF w/ ideal DAAF
IP+MF:IF discrete T−set & continuous T

Figure 7.12: BER degradation (at a reference BER of 10−3) as a function of r for N = 5 without CIC filters

Case 2: N=12

When we decrease N to 12, as shown in Fig. 7.11, we see that for IP+MF:IF without AAF, acceptable situations occur
only for r ≈ r∗ and r ≈ 1 − r∗. Note the difference between the continuous symbol rate case and the discrete symbol
rate case.

Case 3: N=5

Reducing N even further to N = 5, we obtain results shown in Fig. 7.12. Absence of a digital AAF in the IP+MF:IF
receiver results in high degradations for almost every value of r, even when we only consider the discrete set of
symbol rates. This figure clearly illustrates that applying a digital AAF can significantly reduce the BER degradation.
In Fig. 7.13, we therefor consider efficient CIC filters with factorR = 4. From (7.8), we gather that HF components will
undergo maximal attenuation when r ∈ {1/4, 1/2, 3/4}. This effect is clearly visible for theCIC(4, 2)+IP+MF -case:
degradations of the IF-sampling receiver are equal to those of the BB-sampling receiver for those values of r. This
means that for those values of r the degradation is now dominated by the distortion of the useful signal component
(the passband droop). On the other hand, for values of r far enough away from {1/4, 1/2, 3/4}, IF-sampling results
in an additional degradation compared to BB-sampling. This additional degradation is due to aliasing of HF signal
and HF noise components. For those values of r, optimization of the receive filter will not significantly reduce the
degradation. Note that for BB-sampling, the CIC filter has no useful purpose (it will only distort the useful signal),
so the corresponding curves merely serve as a reference point (i.e., it shows to what extent the degradation is due
to aliasing, rather than to passband droop). The CIC(4, 3) leads to similar results, only now the degradation is
dominated by distortion of the useful signal component for all r ∈ [0.2, 0.8]. Observe that even for BB-sampling the
degradation is fairly high. This situation is well suited to the optimization method we proposed at the end of section
7.4.5.2.

As expected, optimization of the receive filter in the CIC(4, 2) case yields the most gain when r ∈ {1/4, 1/2, 3/4}.
In other r-regions, degradations have been reduced, but remain very sensitive to the value of r.

For CIC(4, 3), optimization of the receive filter reduces the degradation, both for IF and BB-sampling. Again the
degradation for IF-sampling remains roughly constant for r ∈ [0.2, 0.8]. Although the minimal degradation is higher
compared to the optimized CIC(4, 2) case, degradations remain low for a wide range of r, resulting in less sensitivity
to the intermediate frequency.

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

r

B
E

R
 d

eg
ra

da
tio

n
[d

B
]

IP+MF:IF without digital AAF
BB sampling
IF sampling

CIC(4,3)+IP+MF

CIC(4,2)+IP+MF

CIC(4,3)+IP+optimized filter

CIC(4,2)+IP+optimized filter

Figure 7.13: BER degradation (at a reference BER of 10−3) as a function of r for N = 5 with CIC filters with and without optimized receive
filter.

7.4.7 Complexity comparison

IP+MF

The design parameters {r, Ts, R, L,N} each have a different impact on the complexity of the proposed receiver: the
length of the matched filter is proportional to N , the complexity of the ADC and the digital AAF is related to Ts.
For the CIC filter, the computational complexity is proportional to L and R. On the other hand, r has essentially no
impact on receiver complexity. For practical reasons it is often preferred to keep fIF as low as possible. Note that
as Ts decreases, interpolation performance of the low-pass signal part improves: the main lobe of PI (f), the FT of
pI (t), is broader and signal components centered around f = k/Ts, for k 6= 0, undergo more attenuation, leading to
less aliasing due to baseband components.

MF+IP

For the configuration with matched filtering prior to interpolation, the parameter N has no meaning, because the
ratio of the interpolator input and output rates is not usually an integer. The optional digital AAF has again a
computational complexity related to Ts. Note that in this configuration the matched filter serves as a symbol rate
dependent anti-aliasing filter. Hence the optional DAAF serves no useful purpose and can be omitted.

Comparison

We will compare two receiver configurations. On the one hand the CIC+IP+MF receiver and on the other hand the
MF+IP receiver. We assume that r = 0.27, Tmax/Tmin = 2 and that the matched filter spans K = 12 symbol periods.
From section 7.4.6, we see that for Tmin/Ts = 11.1 and N = 5, the CIC(R = 4,L = 2) filter + non-optimized matched
filter leads to a BER degradation of roughly 0.1 dB. It can be verified that a MF+IP receiver with Tmin/Ts = 5.6 yields
about the same BER degradation. The computational complexity (measured in terms of the number of real-valued
operations per symbol interval) of the MF+IP configuration can be approximated by CMFIP ≈ 2K(T/Ts)

2. On the
other hand, the CIC+IP+MF configuration results in a computational complexity CIPMF ≈ 2 (LT/Ts +KN). When
we substitute the considered system parameters, this yields CMFIP ∈ [753, 3010]) and CIPMF ∈ [164, 209]. In this
case, the MF+IP configuration leads to a significantly larger processing time for the same degradation compared to
the CIC+IP+non-optimized MF receiver.

As far as memory requirements are concerned, we remind that the IP+MF receiver requires storing only a single
set of matched filter taps, whereas in the MF+IP receiver a different set of filter taps needs to be loaded for each value
of the symbol rate.

94

−2 −1 0 1 2 3 4
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R reference receiver
BB T

min
BB T

max
IF T

min
 with CIC(4,2)

IF T
max

 with CIC(4,2)
IF T

min
 no CIC

IF T
max

 no CIC

Figure 7.14: BER performance of the proposed receiver for turbo-coded transmission for baseband (BB) sampling and IF-sampling.

7.4.8 Remarks
Timing Recovery

Depending on system requirements, timing recovery could be performed either in feed-forward (FF) mode (e.g., for
burst transmission) or in feed-back (FB) mode (e.g., for continuous transmission). Application of FF timing recovery
to the receiver from Fig. 7.4 involves filtering the sequence {x (nTs)}, feeding the resulting sequence to an even-
symmetrical nonlinearity, and computing the timing estimate from the Fourier transform (evaluated at the frequency
1/T) of the nonlinearity output [16]. From the timing estimate, the quantities µi and mi are determined, and fed
to the interpolator. In the case of FB timing recovery, the signal (at rate N/T) at the output of the receiver filter
H (exp (j2πfT/N)) is fed to a timing error detector [16]. Based on the timing error detector output and on the
values of µi and mi, the quantities µi+1 and mi+1 are computed, and passed to the interpolator. A low-complexity
FB timing estimator for IF-sampling receivers was proposed in [78], whereby the oversampling is embedded in the
timing recovery circuit.

In a practical implementation, it may be more convenient to perform timing recovery and phase estimation (i.e.,
determining τ and θ) after matched filtering. It would therefore be natural to use two interpolators: the first one
(before the matched filter) would take of sample rate conversion. Hence, it would not require any timing information:
it simply inputs samples at rate 1/Ts and outputs samples at a (nominal) rate N/T , without any regard to the clock
phase. A second interpolator (after the matched filter) would be used to reconstruct the signal at the correct timing
instants. It replaces the decimator from Fig. 7.4.

IF-sampling issues

Although IF-sampling seems attractive, there are a number of issues that were omitted in the previous discussion.
Current systems and circuits still suffer from several sources of degradation, mostly related to the ADC (such as
sampling clock jitter) [79, 80]. These topics are beyond the scope of this dissertation.

7.5 Coded transmission
All the results above pertain to uncoded transmission. In [16, Chapter 7], it is mentioned that for coded transmission
we expect very similar BER degradation performances as for uncoded transmission. To verify this, we have carried
out computer simulations for a turbo code4. We consider two distinct symbol rates: {Tmin, Tmax}, with Tmax = 2Tmin,

4Parameters: the constituent convolutional coders are rate 1/2, recursive and systematic with octal generator (21, 37)8, resulting in an overall
rate equal to 1/3. The interleaver is pseudo-random and of length 111. BPSK transmission is assumed so that the block length equals Ns = 333.

95

whileBmax = 0.75/Tmin,BAA = 0.9/Tmin, Tmin/Ts = 11.1 and r = 0.5. The matched filter operates atN = 5 samples
per symbols (corresponding to Figs. 7.12-7.13).

BER performance results are shown in Fig. 7.14. As expected, the baseband sampling receivers result in a neg-
ligible degradation (less than 0.01 dB for T = Tmax and around 0.1 dB for T = Tmin). In correspondence with
the results from Fig. 7.12, the IF-sampling receivers result in very large degradations when no anti-aliasing filter is
present. Applying the CIC (4, 2) filter reduces the degradation again to that of the baseband sampling receiver. We
see that the design criteria remain valid for coded transmission.

7.6 Main Points
In this chapter, we have considered the problem of designing a low-complexity IF-sampling multi-rate receiver,
suitable for multi-mode Software Radio. The proposed receiver combines IF-sampling with sample rate conversion
before matched filtering. Aliasing is combatted by a special form of highly-efficient CIC filters. These filters can
also be applied to perform channelization (i.e., the removal of unwanted signals from other users or services) by
appropriate selection of the CIC design parameters.

Our design criterion was based on a frequency-domain interpretation of the signals, thus rendering it applicable
to not only uncoded BPSK signaling, but also to coded systems, higher-order constellations and frequency-selective
channels. This makes the four receiver structures roughly equivalent, assuming that the system is well-designed.
Hence, any algorithm that operates using the matched filter outputs of one of these receivers can be applied with
tolerable loss to the output of any of the remaining three. For the sake of clarity, we will consider only the baseband
MF+IP receiver for the remainder of this dissertation. However, the reader should be aware that in practice we
could/would use the IF-sampling IP+MF structure and obtain roughly the same results.

Only the first encoder is terminated.

96

Part III

Multi-mode receivers: estimation

Outline

Now that the problems of timing correction, equalization, mode adaptation and multi-rate receiver design are out
of the way, we are ready to pick up where we left off in Chapter 2, namely the problem of estimation. The reader
will have realized that in the second part of the dissertation, we have always assumed that the receiver has perfect
knowledge of the channel impulse response, propagation delay, carrier phase and transmit mode. This is obviously
a simplified view. In practice, some of these parameters will need to be estimated by the receiver. This will be the
topic of this third part: estimation for multi-mode receivers. As conventional estimation algorithms fail due to the
low SNR-low BER environment, we will develop so-called ’code-aided’ (or ’code-aware’) estimation algorithms that
iterate between decoding and estimation.

• We start with some basic material pertaining to estimation algorithms in Chapter 8. This includes Maximum
Likelihood (ML) and Maximum A Posteriori (MAP) estimation, and an interpretation based on factor graphs.
We then consider a more practical class of estimation algorithms, namely the Expectation Maximization (EM)
and Space Alternating Generalized Expectation Maximization (SAGE) algorithms.

• In Chapter 9 these techniques will be applied to our receiver resulting in a class of code-aided estimation
algorithms that are able to exploit code properties during estimation in a systematic (as opposed to an ad-hoc)
way.

• Unfortunately, the algorithms from Chapter 9 still suffer from two drawbacks. First of all, their computational
complexity is excessive. Secondly, the proposed estimation algorithms require an initial estimate. When this
initial estimate is unreliable the performance may be seriously degraded. These two problems will be addressed
in Chapter 10, resulting in two novel estimation algorithms. One of these algorithms is particularly well suited
to estimating discrete parameters.

• The problem of estimating discrete parameters has received little attention in the technical literature. In Chapter
11, we describe some relevant problems.

• Performance results are provided in Chapter 12. We will illustrate that the proposed algorithms can achieve
impressive performances with little computational overhead. Additionally, the overhead related to training
symbols can be reduced significantly, resulting in a gain in terms of power and bandwidth efficiency.

99

Chapter 8

Basic Principles: Estimation

8.1 Introduction

In this chapter, we will describe some general tools related to estimation. We start with the description of Maximum
Likelihood (ML) and Maximum A Posteriori (MAP) estimation (section 8.3), including a factor graph interpreta-
tion (section 8.4). In most cases, these estimation techniques result in intractable algorithms. To overcome this, we
present an iterative technique (known as the Expectation Maximization algorithm) that is able to perform ML/MAP
estimation with a lower computational cost (section 8.5). As even the EM-algorithm cannot be applied to some
multi-dimensional problems, we include a brief description of the Space-Alternating Generalized Expectation Max-
imization algorithm (the SAGE algorithm, section 8.6). This fairly abstract chapter ends with a more concrete example
in section 8.7, to which we apply the different estimation techniques. Readers familiar with these topics can safely
skip this chapter.

8.2 Problem formulation

The class of estimation problems we will consider can be formulated as follows:
Our goal is to estimate a parameter de, based on an observation r. Furthermore, the observation r may depend on another

unknown quantity dn. We refer to dn as the nuisance parameter.
The vectors de and dn can take on values in a discrete or continuous domain, or a combination of both.

8.3 MAP and ML estimation

MAP and ML estimation are two possible techniques to compute estimates of a parameter [46]. MAP estimation
exploits a priori information on the parameter. ML estimation is suited to problems where a priori information is
missing, or when the parameter is non-random (i.e, unknown but deterministic).

8.3.1 Maximum A Posteriori estimation

When a is a random parameter, the MAP estimator maximizes the a posteriori probability:

d̂eMAP = arg max
de

p (de |r) (8.1)

where1

p (de |r) =
∑

dn

p (de,dn |r) (8.2)

=
p (de)

p (r)

∑

dn

p (r |de,dn) p (dn |de) . (8.3)

In many cases, dn will not depend on de, so that p (dn |de) = p (dn).

1Summations should be replaced by integrations, where applicable.

101

dn

de

p(dn)

p(de)p(r|de,dn)

Figure 8.1: Estimation on factor graphs: factor graph of p (de,dn |r). Each node can be further factorized, with the introduction of additional
variables (edges).

8.3.2 Maximum Likelihood estimation

When de is a non-random parameter or when p (de) is unknown, MAP estimation is not possible and maximum
likelihood (ML) estimation is performed. In ML, we maximize the likelihood function w.r.t. de:

d̂eML = arg max
de

p (r |de) . (8.4)

Observe that when de has a uniform a priori distribution over its entire domain, the MAP estimate reduces to the
maximum likelihood (ML) estimate. Because of this relation, we will stick mainly to MAP estimation in this chapter.
Particularizations to ML are obtained in a straightforward manner.

8.3.3 Two problems

ML and MAP estimation suffer from two problems:

1. First of all, the likelihood function p (r |de) and the a posteriori distribution p (de |r) are often very difficult to
evaluate in practical scenarios, especially in the presence of nuisance parameters.

2. The second problem is related to the maximization: even when p (r |de) or p (de |r) can be evaluated in a reas-
onable amount of time, the maximization with respect to de can be very difficult: when de is multi-dimensional,
maximization is often next to impossible, even through numerical methods.

8.4 Estimation on factor graphs

The solution to these problems seems obvious. Why not simply create a factor graph of the factorization of p (de,dn |r),
perform the sum-product algorithm and that’s it? Let us see how to proceed. First of all, we know that

p (de |r) =
∑

dn

p (de,dn |r) (8.5)

and that

p (de,dn |r) ∝ p (r |de,dn) p (de) p (dn) (8.6)

when de and dn are independent. A factor graph of (8.6) is provided in Fig. 8.1.
Secondly, we will assume that p (r |de,dn), p (dn) and p (de) have nice factorizations as function of the compon-

ents of de (say, de,k) and dn (say, dn,l). Generally, this factorization will require the use of additional variables (see
Chapter 3, section 3.3) and may create cycles in the graph. Hence, given some observation r, we can apply the
sum-product algorithm, yielding (approximations of) p (de,k |r), ∀k and p (dn,l |r), ∀l . So, applying the sum-product
algorithm not only provides us with an estimate of de,k, but also of dn,k! Problem solved. Or is it?

102

algorithm
estimation

dn

p(dn)

p(r|de,dn)
δ(de − d̂e)

p(dn|r, d̂e) r

estimation
algorithm

p(de)p(r|de,dn)

δ(dn − d̂n)

de

p(de|r, d̂n)

r

Figure 8.2: Estimation through factor graphs: two pragmatic approaches

8.4.1 Drawbacks

The sum-product algorithm in its pure form is not a popular tool for general estimation purposes. With good reason.
In contrast to the discrete parameter estimation problems (e.g., estimating bits and symbols) from Part II of this
dissertation, certain components de,k or dn,k may take on values in a continuous domain, so that messages over
the corresponding edges will be probability density functions (pdfs), rather than probability mass functions (which
have convenient vector representations). So the question arises of how these pdfs should be represented. A list of
samples? A single value? Parameters of some standard distributions? Furthermore, the summations in the sum-
product algorithm are to be replaced with integrals. What should we do if we cannot obtain a closed-form solution
for these integrals? Resort to numerical techniques? If so, which ones? How should the integration be related
to the representation of the messages? Last of all, the factor graph of p (r |de,dn) p (de) p (dn) may contain many
short cycles. These will degrade the performance of the sum-product algorithm and lead to unreliable marginals of
p (de,dn |r), and thus to unreliable estimates. These reasons make estimation on factor graphs unattractive from an
implementation-complexity point of view. This does not mean factor graphs are not used in estimation problems.
We will describe some pragmatic approaches in the next section.

8.4.2 Pragmatic approach

The most common way to circumvent the problems described in the previous section is to break up the factor graph
from Fig. 8.1, and to perform the sum-product algorithm on each of the disjoint sub-graphs. Messages between
graphs may be of some special form (e.g., Dirac distributions).

Two extreme cases are depicted in Fig. 8.2. On the left, we estimate the parameter de through some existing
algorithm (possibly the sum-product algorithm). The resulting estimate d̂e is provided to the p (r |de,dn)-block. The
factor graph computes the marginals of p

(
dn

∣∣∣d̂e, r
)

. These marginals can then be used by the estimation algorithm
to improve the estimate of de, leading to an iterative estimation procedure. Many estimation algorithms fall into this
category, including the algorithms that will be described in the remainder of this chapter. On the other hand, we
can interchange the role of de and dn, yielding the factor graph on the right of Fig. 8.2. A combination of these two
extreme approaches is also possible. Just about any estimation algorithm one can conceive can be interpreted in this
way.

8.5 The EM algorithm

As we have seen, straightforward application of the ML or MAP procedure is not possible in most estimation prob-
lems. Estimation on factor graph also has many drawbacks. The Expectation-Maximization (EM) algorithm is a
technique that solves the MAP (or ML) problem in an iterative way [81, 82]. We will describe the MAP version of
the EM algorithm (also known as the Bayesian EM algorithm [83]). The ML version is obtained by dropping terms
related to the a priori distribution of de.

8.5.1 Principle

Assume again that we want to estimate a parameter de from an observation r. Suppose that, if we had access to
another variable, say dc, the estimate of de could be easily computed, in a sense that p (de |r,dc) is easy to compute.
The EM algorithm is an iterative procedure that exploits this variable dc and at each iteration breaks down in two steps:
the Expectation step (E-step) and the Maximization step (M-step).

103

Starting from an initial estimate d̂
(0)
e of de, the EM algorithm evaluates E- and M-steps successively and after each

M-step produces a new estimate of de. Hence, we obtain a sequence of estimates of de:
[
d̂

(0)
e , d̂

(1)
e , d̂

(2)
e , . . .

]
. When

de is defined over a continuous domain, the EM algorithm will converge to a value d̂
(+∞)
e , which is called a solution

of the EM algorithm. Furthermore, the EM algorithm assures that the a posteriori probability (or the likelihood in
case of ML estimation) of successive estimates is non-decreasing. Some issues related to the convergence of the EM
algorithm are found in the Appendix of this chapter (section 8.9).

Complete data

We refer to dc as the complete data. In order to qualify as valid complete data, we have the following sufficient
condition on dc [84]:

p (dc, r|de) = p (r|dc) p (dc|de) (8.7)

so that the observation can depend on de only through dc.

Initial estimate

An initial estimate d̂
(0)
e of de is required to start the EM algorithm.

E-step

At iteration i ≥ 0, the E-step is given by:

Q
(
de| d̂(i)

e

)
= Edc

[
log p (dc,de)

∣∣∣r, d̂(i)
e

]
(8.8)

= log p (de) + Edc

[
log p (dc |de)

∣∣∣r, d̂(i)
e

]
(8.9)

= log p (de) +

∫
log p (dc |de) p

(
dc

∣∣∣r, d̂(i)
e

)
ddc. (8.10)

M-step

Following the E-step, the M-step is given by:

d̂(i+1)
e = arg max

de

{
Q
(
de| d̂(i)

e

)}
. (8.11)

8.5.2 Complete data and missing data
In many technical papers, dc = [r,dm], where dm is referred to as the missing (or unobserved) data. In that case, dc is
always a valid complete data. Often, dm will be independent of de, so that the E-step becomes:

Q
(
de| d̂(i)

e

)

= log p (de) +

∫
log p (r,dm |de) p

(
dm

∣∣∣r, d̂(i)
e

)
ddm (8.12)

∝ log p (de) +

∫
log p (r |dm,de) p

(
dm

∣∣∣r, d̂(i)
e

)
ddm. (8.13)

8.5.3 EM-based estimation using factor graphs
Although at this point it seems rather obvious, the EM algorithm can be implemented on a suitable factor graph. As
was mentioned in [85], the a posteriori distribution p

(
dc

∣∣∣r, d̂(i)
e

)
required during the E-step (8.8) can be obtained

by defining a factor graph as in Fig. 8.2 (left part). The M-step is similarly obtained by defining a suitable factor
graph where the sum and product operations are replaced with the maximization and sum operations, respectively2,
leading to the max-sum algorithm.

2Observe that (R,max,+) is a commutative semi-ring. See Chapter 3, section 3.2.

104

8.6 The SAGE algorithm

8.6.1 Principle
The EM algorithm has the ability to circumvent the problem of ML and MAP estimation related to the nuisance
parameter. However, the EM algorithm still suffers from the other ML/MAP problem: the optimization of a multi-
dimensional function (i.e., the M-step). Additionally, there is the problem of the convergence rate: in order to make
the M-step tractable, complete data spaces have to be defined that are sufficiently informative3: making the complete
data space more informative (e.g., by adding mode parameters to it) results in easier maximization, but, at the same
time leads to a reduction in the asymptotic convergence rate [81, 84].

A solution to both of these problems was proposed in [84], known as the Space Alternating Generalized Expect-
ation Maximization (or SAGE) algorithm, and can be seen as an extension of the EM algorithm. Although the SAGE
algorithm was originally proposed in the context of image processing, it is, very much like the EM algorithm, applic-
able to general estimation problems. The SAGE algorithm operates in a way very similar to the EM algorithm. Rather
than defining complete data, SAGE uses so-called hidden data. The E-step and M-step are also slightly modified.

As with the EM algorithm, convergence of the SAGE algorithm is assured in a sense that the a posteriori probab-
ility/likelihood of successive estimates is non-decreasing. The convergence proof is similar to the proof of the EM
algorithm and can be found in [84].

Hidden Data

We break up de = [de,1,de,2, . . . ,de,M], where, with a slight abuse of notation, de,k ⊆ de, and de,k̄
.
= de \ de,k. Each

subset de,k has an associated so-called hidden data dh,k such that dh,k is a complete data for de,k when de,k̄ is known.
Mathematically, this translates to (see Eq. (8.7))

p (dh,k, r|de) = p
(
r|dh,k,de,k̄

)
p (dh,k|de) . (8.14)

When M = 1, the SAGE algorithm reduces to the standard EM algorithm.

Initial estimate

An initial estimate d̂
(0)
e of de is again required to start the SAGE algorithm.

E-step

We now execute the EM algorithm, with the following alteration: at each iteration we only update a single de,k, while
the estimate of de,k̄ is left unchanged. When updating de,k we use the hidden data space dh,k. The E-step (8.8) thus
becomes, at iteration i ≥ 0:

Q
(
de,k| d̂(i)

e

)

= Edh,k

[
log p

(
dh,k,de,k, d̂

(i)

e,k̄

) ∣∣∣r, d̂(i)
e

]
(8.15)

= log p
(
de,k, d̂

(i)

e,k̄

)
+ Edh,k

[
log p

(
dh,k

∣∣∣de,k, d̂
(i)

e,k̄

) ∣∣∣r, d̂(i)
e

]
(8.16)

= log p
(
de,k, d̂

(i)

e,k̄

)
+

∫
log p

(
dh,k

∣∣∣de,k, d̂
(i)

e,k̄

)
p
(
dh,k

∣∣∣r, d̂(i)
e

)
ddh,k (8.17)

which is now a function of de,k only.

M-step

The M-step now becomes:

d̂
(i+1)
e,k = arg maxde,k

Q
(
de,k| d̂(i)

e

)

d̂
(i+1)

e,k̄
= d̂

(i)

e,k̄

(8.18)

3It has been observed that in the selection of the complete data, one can trade convergence rate for complexity through the ’informativeness’ of
the complete data. Information should here be understood in the sense of the Fisher Information Matrix (FIM): when more information is added
to make up the complete data dc, the EM algorithm becomes easier to solve (both the E-step and the M-step), but the convergence rate decreases.
For proofs, see [81].

105

The main differences between the SAGE and the EM algorithm are:

• SAGE updates parameter subsets rather than the entire parameter set: this makes the maximizations tractable;

• SAGE uses hidden data spaces that are particular to the parameter subset. By creating hidden data spaces that
are sufficiently informative only for that subset, overall asymptotic convergence can be increased.

8.7 An example
The SAGE algorithm is commonly applied when the M-step in the EM algorithm is difficult or when the convergence
rate of the EM algorithm is poor. A popular example is that of signal decomposition. To allow the reader to get
some familiarity with the ML, EM and SAGE methods, we will consider this example in some detail. The problem
description is based on [86,87]. This example will turn out to be very relevant for our particular problem (estimation
of channel parameters) as will become apparent in Chapter 9, section 9.3.

8.7.1 Problem formulation
Suppose we have an observation, r, that is the sum of L signals, s0, . . . , sL−1, corrupted with AWGN. Each of the
signals sk depends on a parameter bk and a common nuisance parameter a. Introducing b =

[
bT

0 , . . . ,b
T
L−1

]T , we
have

r =

L−1∑

k=0

sk (a,bk) + n (8.19)

.
= s (a,b) + n (8.20)

where E
[
nnH

]
= 2σ2I. This implies

log p (r |b, a) ∝ − 1

2σ2
‖r − s‖2

. (8.21)

We will work under the following assumptions:

• b and a are a priori independent;

• p (a) is known;

• we have available or can easily compute4 p (a |r,b) for any b.

Suppose we want to obtain an ML estimate of de = b in the presence of a nuisance parameter dn = a. We will apply
three techniques to estimate b:

1. The ML-technique

2. The EM algorithm

3. The SAGE algorithms

8.7.2 ML estimation
The ML estimate is given by (8.4):

b̂ML = arg max
b

p (r |b) (8.22)

where
p (r |b) =

∫
p (r |b, a) p (a) da. (8.23)

Unfortunately, (8.23) is generally impossible to evaluate in a closed form. Furthermore, the maximization (8.22)
is hard when L is large or when each bk contains many components. These two problems make ML estimation
impossible to use in practice.

4Although this assumption may require a leap of faith on the part of the reader, a motivation will be provided in later chapters.

106

8.7.3 EM estimation

Let us try the EM approach.

Complete data definition

We consider a as missing data so that dc = [r, a].

E-step

Applying the EM algorithm with complete data dm = [r, a], the E-step (8.13) becomes

Q
(
b

∣∣∣b̂(i)
)

∝
∫

log p (r |a,b) p
(
a

∣∣∣r, b̂(i)
)
da (8.24)

∝ −
∫

‖r− s (a,b)‖2
p
(
a

∣∣∣r, b̂(i)
)
da (8.25)

∝ −Ea

[
‖s (a,b)‖2

∣∣∣ r, b̂(i)
]

(8.26)

+ 2<
{

rH
L−1∑

k=0

Ea

[
sk (a,bk)| r, b̂(i)

]}

Since p
(
a

∣∣∣r, b̂(i)
)

is assumed to be available, we can in principle evaluate Q
(
b

∣∣∣b̂(i)
)

. Hence, the first problem
related with ML estimation is now circumvented.

M-step

Since Q
(
b

∣∣∣b̂(i)
)

is a function of b, maximizing (8.26) w.r.t. b is still L-dimensional and thus still very hard.

8.7.4 SAGE estimation

We can also apply the SAGE algorithm with hidden data5 for bk, dh,k = [a, r]. In this case the E-step is given by

Q
(
bk| b̂(i)

)
(8.27)

∝
∫

log p
(
r|a,bk, b̂

(i)

k̄

)
p
(
a

∣∣∣r, b̂(i)
)
da

∝ −
∫ ∥∥∥∥∥∥

r−

∑

l 6=k

sl

(
a, b̂

(i)
l

)

− sk (a,bk)

∥∥∥∥∥∥

2

p
(
a

∣∣∣r, b̂(i)
)
da

∝ −Ea

[
‖sk (a,bk)‖2

∣∣∣ r, b̂(i)
]

+ 2<
{
Ea

[
ẑH

k

(
a, b̂

(i)

k̄

)
sk (a,bk)

∣∣∣ r, b̂(i)
]}

where
ẑk

(
a, b̂

(i)

k̄

)
= r−

∑

l 6=k

sk

(
a, b̂

(i)
l

)
. (8.28)

Note that the SAGE algorithm has a rather nice interpretation: to estimate bk, we deduct from r all interfering
signals (i.e.,

∑
l 6=k sk

(
a, b̂

(i)
l

)
). The remaining signal is then treated as the sum of sk (a,bk) and an AWGN term.

This removal of interference bears much resemblance to Serial Interference Cancellation (SIC), a common technique
in multi-user detection.

8.8 Main points
In this chapter we have given an overview of several general-purpose estimation techniques. We started with Max-
imum likelihood (ML) and Maximum A Posteriori (MAP) estimation. Both ML and MAP estimation suffer from

5Note that we select the hidden data to be the same for all parameter subsets.

107

several problems: they require the optimization of functions of many parameters. On top of that, the functions
themselves are generally very hard to compute.

The Expectation-Maximization algorithm can be used to iteratively solve MAP and ML problems at a lower
computational cost. Finally, we have briefly described the Space-Alternating Generalized EM algorithm (SAGE)
whereby at each iteration only a subset of parameters is updated. This last technique is especially well-suited to
multi-dimensional problems.

108

8.9 Appendix: Convergence of the EM algorithm
We will show that the MAP (or ML) estimate is a solution of the EM algorithm and that for any initial estimate,
d̂

(0)
e , subsequent estimates will have an increasing a posteriori probability (or likelihood, for ML). We focus on MAP

estimation.

Theorem 8.9.1. The a posteriori probability of two subsequent estimates in the EM algorithm is non-decreasing:

log p
(
d̂(i+1)

e |r
)
≥ log p

(
d̂(i)

e |r
)
. (8.29)

Proof. Due to the definition of the M-step (8.11), two subsequent estimates necessarily satisfy:

Q
(
d̂(i+1)

e

∣∣∣ d̂(i)
e

)
≥ Q

(
d̂(i)

e

∣∣∣ d̂(i)
e

)
. (8.30)

Furthermore, taking into account (8.7), it is easily verified that

Q
(
de| d̂(i)

e

)
= log p (r) −

∫
log p (r|dc) p

(
dc

∣∣∣d̂(i)
e , r

)
ddc (8.31)

+ log p (de |r) +

∫
log p (dc|de, r) p

(
dc

∣∣∣d̂(i)
e , r

)
ddc.

Hence, after some rearranging of (8.30), we obtain

log p
(
d̂(i+1)

e |r
)
− log p

(
d̂(i)

e |r
)

≥
∫

log
p
(
dc| d̂(i)

e , r
)

p
(
dc| d̂(i+1)

e , r
)p
(
dc

∣∣∣d̂(i)
e , r

)
ddc. (8.32)

The right-hand-side in (8.32) is nothing more than the Kullback-Leibler Distance (KLD) between two distributions
[88]. Since the KLD is non-negative, this proves (8.29).

Theorem 8.9.2. The MAP estimate is also a solution of the EM algorithm:

d̂e,MAP = arg max
de

Q
(
de| d̂e,MAP

)
(8.33)

Proof. This follows immediately from the previous Theorem and the fact that log p
(
d̂e,MAP |r

)
≥ log p (de |r) for all

de.

The convergence behavior of the EM algorithm should be interpreted as depicted in Fig. 8.3: for any value of de,
there are multiple solutions of the EM algorithm in the space where de resides. Around each of these solutions lies
a domain of attraction: when the initial estimate is within one of those domains, the EM algorithms converges (with
high probability6) to the corresponding solution. One of these solutions is the ML (or MAP) estimate. We will name
the domain of attraction around the ML (MAP) estimate, the acquisition region.

6The boundaries of the domains of attraction are not ’hard’ boundaries.

109

ML (or MAP) estimate

acquisition region

solutions of the EM algorithm

domain of de

Figure 8.3: Convergence behavior of the EM algorithm

110

Chapter 9

Code-aided estimation: the big picture

9.1 Introduction
Now that we have a firm grasp of the principles of estimation theory, we will apply Maximum Likelihood (ML)
techniques to the system from Chapter 2. We will consider three classes of algorithms to estimate the channel impulse
response and/or synchronization parameters. First of all, we describe a class of ’conventional’ estimation algorithms.
These can be divided in Data-Aided algorithms (which exploit the knowlegde of known data symbols in the burst -
known as pilot symbols or training symbols) and Non-Data-Aided (NDA) algorithms (which are based on statistical
properties of the incoming signal). Secondly, we will derive algorithms that are able to exploit code properties during
estimation through the EM and SAGE principles. We then briefly discuss a third class of algorithms that perform joint
decoding and estimation by extending the factor graph at the receiver to include the uncertainty w.r.t. the channel
parameters.

Many other such ’code-aided’ algorithms have been proposed in the last decade or so. Still, most of them are
either closely related to EM- or factor-graph-based estimators, or are more of an ad-hoc nature. As the latter class
of algorithms cannot be applied to a wide range of problems and are inherently sub-optimal, we will stick to more
systematic techniques in this dissertation.

In Fig. 9.1, the receiver from Fig. 6.1 is repeated with one additional block: the estimator. The estimator has as
inputs the received signal, exact knowledge regarding pilot symbols, and, for a code-aided estimator, some kind of
information from the detector. The output of the estimator is, depending on the set-up, an estimate of the channel
impulse response, or of the channel parameters, or of the synchronization parameters, or of the transmit mode.

This chapter deals mainly with describing how information should flow from the detector to the estimator. In a
first phase, we will assume that the transmit mode is known at the receiver.

9.2 Conventional estimation techniques
We will start with estimation techniques for frequency-selective channels. Since a frequency-flat channel is merely a
special case of a frequency-selective channel, estimation algorithms for the latter channel can be applied unmodified
to the former. However, we will point out that more suitable algorithms exist, tailored especially to the frequency-flat
channel. Tailoring algorithms to suit a certain estimation problem will be a common theme in this and the following
chapters: although the techniques we have presented (ML, MAP, EM and SAGE) are very general, care needs to be
taken when they are applied to specific estimation problems. Sometimes a certain algorithm will be overkill for a
certain estimation problem. Also, some parameters require different estimation strategies than others.

9.2.1 Frequency-selective channel

We start from the original model, given in Eq. (2.12) in Chapter 2. In frequency-selective channels, channel estimation
is usually performed by exploiting pilot symbols [16]. The signal at the input of the receiver is of the form

rBB (t) =

Ns−1∑

n=0

anh (t− nT) + w (t) (9.1)

=
L−1∑

l=0

αl

Ns−1∑

n=0

anp (t− nT − τl) + w (t) (9.2)

111

AAF

Matched Filter

Whitening resample

MMSE or SP equalizer

ADC

ESTIMATOR "information"

training

detector

rBB(t)

rate N/T

nTs c0

I[c = χ(b)]

p(b)

p(y|a)

a0 aNs−1

I[a = ϕ(c)]

b0 bNb−1

cNc−1

y

rBB(t)

Figure 9.1: Receiver with three main blocks: conversion of rBB (t) to y, factor graph detector and estimator.

112

h(t)

∆T/N Lhs
T/N

t

Figure 9.2: Channel estimation: unstructured approach

where an is the n-th data symbol, n (t) is a complex white Gaussian noise process with PSD σ2 per real dimension.
The first P symbols are pilot symbols (i.e., known to the receiver), while the remaining Ns − P are unknown coded
symbols, so that a = [aT

P aT
C]T . The signal is band-limited and sampled at a rate 1/Ts = N/T , yielding samples

{r (kTs)}. Considering the results from Chapter 5, we need to determine the overall impulse response

h (t) =

L−1∑

l=0

αlp (t− τl) (9.3)

We now have the choice to estimate h (t) either directly or through the parameters ({τk, αk}k=0,...,L−1) of the underly-
ing channel model. These approaches lead to what is known as unstructured and structured estimators1, respectively.
Once the channel impulse response is known, the equalization techniques from Chapter 5 can be applied.

9.2.1.1 Method 1: the unstructured estimator

We refer back to the three observation models from Chapter 5, section 5.3: the matched filter receiver, the whitening
matched filter receiver and the oversampling receiver. Note that the former two observation models require know-
ledge of the channel impulse response (CIR) to generate the observation, so it makes no sense to estimate the CIR
from them. Hence, we start from an oversampled version of the signal. In Chapter 5, we have seen that when we
start from an oversampled (at rate N/T) version of the received signal rBB (t), we obtain the following observation
(see Eq. (5.21)):

r = Ah + w (9.4)

where h is the sampled channel impulse response of h (t) and A is a matrix containing the data symbols a (see section
5.3.3 in Chapter 5). Generally, h (t) will be of the form shown in Fig. 9.2:

h (t) = hs

(
t− ∆

T

N

)
(9.5)

where hs (t) is the part of h (t) that takes on significant values (say, over a time interval t = −LlT,−LlT+T/N, . . . ,+LrT).
This leads to two estimation approaches:

Approach A Jointly estimating2 ∆ ∈ [0,∆max] and the sampled version of hs (t). Denoting by Lhs
the duration of

hs (t) expressed in number of symbol durations, this leads to the following observation model:

r =

0∆

AD

0(∆max−∆)

hs (−LlT)
...

hs (LrT)

+ w (9.6)

= A∆h + w (9.7)

where 0x is an x× (Lhs
N) matrix of all zeros, and AD is the matrix of data symbols, defined in section 5.3.3 in

Chapter 5.

1In the technical literature, one may also find the names parametric (instead of structured) and non-parametric (instead of unstructured) estimat-
ors.

2Assume we know a priori that ∆ lies in a known interval and have a rough idea of the duration of hs (t).

113

Approach B Estimating the sampled version of the entire channel impulse response h (t), in which case we replace
in (9.6) ∆max and ∆ with 0 and h with [h (−LlTs) , . . . , h (LrTs + ∆maxT/N)]T .

As Approach B can be cast within the framework of Approach A, we only focus on Approach A.
A data-aided estimation algorithm can be derived as follows: the receiver performs estimation under the assump-

tion that unknown data symbols are all zero. We then get the following observation model:

r =

0∆

AP

0(∆max−∆)

h + w (9.8)

= A∆,P h + w (9.9)

where AP is obtained by replacing in AD all unknown coded data symbols with zeros. Applying the ML principle
to obtain a data-aided estimate of h and ∆ now yields

[
ĥ, ∆̂

]
= arg max

h,∆
log p (r |h,∆) . (9.10)

Since
log p (r |h,∆) ∝ −hHAH

P AP h + 2<
{
rHA∆,P h

}
, (9.11)

(9.10) is solved by
∆̂ = arg max

∆

{
<
(
rHA∆,P

(
AH

P AP

)−1
AH

∆,P r
)}

(9.12)

and
ĥ =

(
AH

P AP

)−1
AH

∆̂,P
r. (9.13)

Note that in case we follow Approach B, the vector h will be much larger: it will contain (∆max + Lhs
)N entries

(rather than Lhs
N). For large ∆max, Approach B would require significantly more pilot symbols than the approach

where we estimate ∆ and h jointly. On the other hand, Approach B would not require the one-dimensional search
(9.12) over all possible values of ∆.

9.2.1.2 Method 2: the structured estimator

While (9.12)-(9.13) is conceptually straightforward, there is another way to proceed. Estimating the entire channel
vector h can be avoided by exploiting the underlying channel model (9.3): in principle we only need to estimate 2L
parameters (the L gains and the L propagation delays), rather than Lhs

N channel taps and 1 delay shift. We start
from a vector representation of rBB (t), say r. We again apply the ML principle, to obtain a data-aided estimate of
the 2L channel parameters3:

{τ̂k, α̂k}∀k = arg max
{τk,αk}∀k

log p (r |aP , aC = 0, {τk, αk}∀k) (9.14)

with

log p (r |aP , aC = 0, {τk, αk}∀k)

∝ −
L−1∑

l1,l2=0

αl1α
∗
l2

P−1∑

n1,n2=0

an1
a∗n2

q ((n1 − n2)T + τl1 − τl2)

+ 2

L−1∑

l=0

P−1∑

n=0

<{αlany
∗ (nT + τl)} (9.15)

where

y (t) =

∫ +∞

−∞

p∗ (−u) rBB (t− u) du/
√
Es

3The notation p
`

r
˛

˛aP ,aC = 0, {τk, αk}∀k

´

is somewhat misleading, as it gives the impression that the transmitted sequence contains only
pilot symbols. The true meaning is as follows: the receiver operates under the assumption that the transmitted sequence contains only pilot symbols.

114

and q (t) =
∫
p∗ (−u) p (t− u) du. Unfortunately (9.15) is difficult to maximize with respect to the gains and delays

when L > 1. We will introduce a common approximation. When we neglect the cross-terms (i.e., l1 6= l2) in the first
term in (9.15), we can reduce (9.15) to:

log p (r |aP , aC = 0, {τk, αk}∀k) (9.16)

≈
L−1∑

l=0

(
− |αl|2

P−1∑

n=0

|an|2 + 2<
{
αl

P−1∑

n=0

any
∗ (nT + τl)

})

which is the sum of L terms, each of which depends only on one delay and one complex gain. Hence, the resulting
maximization problem can easily be solved. This structured approach is common in DS/SS systems where inter-
path-interference is neglected.

Once the channel parameters have been estimated, the overall impulse response h (t) can be reconstructed, so that
the signal rBB (t) can further be processed.

9.2.2 Frequency-flat channel
In a frequency-flat channel, we are faced with the following received signal:

rBB (t) = Aejθ
Ns−1∑

n=0

anp (t− nT − τ) + w (t) (9.17)

where an is the n-th data symbol, A is the path amplitude, θ is the carrier phase and τ is the propagation delay. The
first P symbols are again pilot symbols. The noise w (t) is complex white Gaussian noise with variance σ2 per real
dimension. We will assume the following a priori distributions:

• A is a real, positive number

• θ is uniformly distributed in [−π,+π]

• τ is uniformly distributed in [−∆1,+∆2], for some known constants ∆1 and ∆2.

9.2.2.1 Data-aided estimation

Starting from (9.17), an unstructured channel estimate can be obtained by applying (9.12)-(9.13). Similarly, a struc-
tured estimate is obtained from (9.15), for L = 1:

log p (r |aP , τ, A, θ)

∝ −A2
P−1∑

n=0

|an|2 + 2A
P−1∑

n=0

<
{
ane

jθy∗ (nT + τ)
}

(9.18)

which is now solved as follows:

τ̂ = arg max
τ∈[−∆1,+∆2]

∣∣∣∣∣

P−1∑

n=0

any
∗ (nT + τ)

∣∣∣∣∣ (9.19)

θ̂ = − arg

{
P−1∑

n=0

any
∗ (nT + τ̂)

}
(9.20)

Â =
<
{∑P−1

n=0 ane
jθ̂y∗ (nT + τ̂)

}

∑P−1
n=0 |an|2

. (9.21)

9.2.2.2 Other estimation algorithms

By now, the reader might get the impression that all estimation techniques fall into the ML, EM or SAGE category.
This is far from true. Contrary to EM or SAGE methods, conventional algorithms are application specific and often
of very low complexity. It is simply impossible to give a comprehensive overview of standard estimation methods,
due to the huge number of algorithms available in technical literature. The reader is referred to the standard works
in estimation and synchronization theory [16, 17]. We simply present some simple algorithms relevant to our system
model. The entire process is depicted in Fig. 9.3 and consists of both data-aided and non-data-aided algorithms.

115

Step 0: burst detection

First of all, the receiver measures the energy of the incoming signal. When the receiver expects a burst, a number of
samples will be stored for further processing. Since such energy-detection is inherently sub-optimal, the exact time
of the beginning of the burst is unknown. The uncertainty is modeled in the distribution of τ . This explains the
introduction of the parameters ∆1 and ∆2 in the previous section. For convenience, we will assume ∆i/T ∈ N.

Step 1: (Fractional) delay estimation

Secondly, τ is estimated by exploiting the cyclostationarity present in the signal rBB (t) [16]: rBB (t) is filtered with
p∗ (−t) resulting in a signal y (t). As we will consider only digital implementation, we can start from the samples
y (kT/N). We process these samples, yielding an estimate of τ [89]:

τ̂ = − T

2π
arg

{
∑

k

F (y (kT/N)) exp

(
−j2π k

N

)}
(9.22)

where F (.) is a suitable non-linear function. A popular example is F (x) = |x|2, resulting in the well-known Oer-
der&Meyr synchronizer [90]. Taking into account the Bandpass Sampling Theorem, the Oerder&Meyr synchronizer
requires N ≥ 2BT , where B is the one-sided bandwidth of received signal. It is important to note that the Oer-
der&Meyr estimator requires no knowledge of A or θ.

The reader may notice that τ̂ ∈ [−T/2,+T/2]. When ∆i > T/2 (i = 1, 2), which is often the case, τ̂ should be
interpreted as an estimate of the fractional part of τ . To clarify this, let us break up τ as follows:

τ = ετ + kτT (9.23)

with ετ ∈ [−T/2,+T/2] and kτ an integer, belonging to the set Sτ , defined as

kτ ∈ [−∆1/T,∆2/T] . (9.24)

Hence, estimation of τ can be broken up into estimation ετ and estimation of kτ . The estimate τ̂ from (9.22) should
be understood as an estimate of ετ , rather than of τ . We will refer to (9.22) as fractional delay estimation and write ε̂τ in
lieu of the misleading τ̂ . The process of determining kτ is known as frame synchronization and is the next step in the
estimation process.

Step 2: Frame synchronization

Assuming the estimate of ετ to be correct, we now apply (9.19) to find an estimate of kτ :

k̂τ = arg max
kτ

∣∣∣∣∣

P−1∑

n=0

any
∗ (nT + kτT + ε̂τ)

∣∣∣∣∣ . (9.25)

This is again a famous algorithm [91], operating by correlating the pilot symbols with the time-shifted symbol-rate
matched filter outputs. The final estimate of τ is now given by τ̂ = k̂τT + ε̂τ .

Step 3: (Fractional) phase estimation

Once τ has been estimated, matched filter output samples at the symbol rate (i.e., y (nT + τ̂), n = 0, . . . , Ns − 1) are
used to estimate θ. Note that when τ̂ = τ , we have y (nT + τ̂) = Aejθan + nn. We will consider the Viterbi&Viterbi
phase estimator from [92]:

θ̂ =
1

MΩ
arg

{
Ns∑

k=0

(y (nT + τ̂))
MΩ

}
(9.26)

where MΩ is known as the phase ambiguity number of the constellation Ω, defined as follows: 2π/MΩ is the smallest
angle of rotational symmetry4 of Ω. For M-PSK constellations, MΩ = M , where M is the number of constellation
points. For square QAM constellations, MΩ = 4.

4ψ in an angle of rotational symmetry of Ω when rotating Ω over ψ yields Ω.

116

Similar to delay estimation, (9.26) provides an estimate in the range [−π/MΩ,+π/MΩ]. We write θ as

θ = εθ + 2π
kθ

MΩ
(9.27)

where εθ ∈ [−π/MΩ,+π/MΩ] and kθ ∈ {0, . . . ,MΩ − 1}. Hence, (9.26) should be interpreted as an estimate of εθ,
rather than of θ. Estimation of kθ is referred to as phase ambiguity resolution, which is the next step in the estimation
process.

Step 4: Phase ambiguity resolution

Similar to frame synchronization, we apply (9.20) to perform phase ambiguity resolution:

k̂θ = arg max
kθ

<
{

P−1∑

n=0

ane
jε̂θej2πkθ/MΩy∗ (nT + τ̂)

}
. (9.28)

The final estimate of θ is now given by θ̂ = k̂θ2π/MΩ + ε̂θ .

Step 5: Amplitude estimation

The last estimation step is estimation of A. A data-aided estimate of A is given by (9.21).

Step 6: Message computation

Once θ, τ and A have been estimated, the samples
{
y (nT + τ̂) e−jθ̂

}
are provided to the factor graph as parameters,

and messages µak→ϕ (ak) can be computed.

9.3 EM-based code-aided estimation
We have seen how a combination of data-aided and non-data-aided techniques can be used to estimate the channel
impulse response. However, they are one-shot algorithms: the estimate is provided to the factor graph detector,
where iterative equalization, demodulation and decoding is performed. No information flows back from the detector
to the estimator.

By applying the EM algorithm, we will introduce code-aided algorithms that are able to exploit information
from the detector in an elegant and intuitive way. Before we go into the details of EM-based code-aided estimation
algorithms, some important issues need to be addressed:

• What will we estimate? The data symbols or the channel parameters?

• Secondly, what would be an appropriate choice for complete/hidden data?

A most natural way to proceed is to estimate the data sequence while considering the channel parameters as nuisance
parameters. Indeed, the final goal of a receiver is recovering the data symbols, not estimating the channel parameters!

However, there are several problems with such an approach: in many cases p
(
dc

∣∣∣r, d̂e
(i)
)

will be impossible to
evaluate, so that the E-step (8.8) can only be performed approximately. Secondly, the M-step: we need to make
an estimate (=a hard decision) of the data sequence at each iteration of the EM algorithm. Not only does making
such a decision require searching exhaustively the space of all codewords, all state-of-the-art detectors require soft
information w.r.t. the coded data symbols to operate properly. Still, many papers on iterative EM-based estimation
apply the EM algorithm to estimate the data sequence, rather than the channel parameters [93–95].

Following [19,96–99], we have taken another, at first sight counter-intuitive approach: we treat the data symbols as
nuisance parameters in estimating the channel parameters. The complete/hidden data will contain the data sequence
and the received signal. It will turn out that the resulting estimation algorithm is able to exploit information from
the factor graph detector through the a posteriori probabilities of the coded symbols. This enables the estimator and
factor graph detector to cooperate in a seamless way. We follow the same pattern as in the previous section: we
first consider a frequency-selective channel and then a frequency-flat channel. We remind again that any technique
derived for a frequency-selective channel can be applied without alteration to a frequency-flat channel.

117

fractional delay estimation

interpolate

filter + sample

frame synchronization

fractional phase estimation

rotate

phase amb. resolution

rotate

amplitude estimation

compute message

ε̂τ

k̂θ

{y(kT/N)}

rBB(t)

select Ns samples

k̂τ

ε̂θ

Â

ỹe−jθ̂

ỹe−jε̂θ

ỹ

filter T/N{p∗(−kT/N)}

{y(kT + ε̂τ)}

Figure 9.3: Conventional estimation for flat fading channel, with ỹk = y (kT + τ̂), k = 0, . . . , Ns − 1.

118

9.3.1 Frequency-selective channel
The signal at the input of the receiver is of the familiar form

rBB (t) =
L−1∑

l=0

αl

Ns−1∑

n=0

anp (t− nT − τl) + w (t) . (9.29)

As before, we will describe two estimation techniques. The first one is unstructured and estimates the sampled
version of the overall impulse response h (t) directly, similar to the unstructured technique from section 9.2.1.1. The
second one exploits the underlying channel model and estimates the channel parameters, similar to section 9.2.1.2.

9.3.1.1 Method 1: the unstructured approach

Starting from (9.6)

r =

0∆

AD

0(∆max−∆)

h + w (9.30)

= A∆h + w (9.31)

and applying the EM algorithm with complete data dc = [a, r] to estimate de = [h,∆], yields the following E-step
(see Eq. (8.13)):

Q
(
de| d̂(i)

e

)

= Ea

[
log p (r |a,∆,h)

∣∣∣r, ∆̂(i), ĥ(i)
]

(9.32)

= Ea

[
−hHAH

DADh + 2<
{
rHA∆h

} ∣∣∣r, ∆̂(i), ĥ(i)
]

(9.33)

E-step We can evaluate Q
(
de| d̂(i)

e

)
as

Q
(
de| d̂(i)

e

)
= −hHÃH

DADh + 2<
{
rHÃ∆h

}
(9.34)

where Ã∆ = Ea

[
A∆| r, ∆̂(i), ĥ(i)

]
and ÃH

DAD = Ea

[
AH

DAD

∣∣ r, ∆̂(i), ĥ(i)
]
.

M-step Solving (9.34) w.r.t. h and ∆, yields the following solution of the M-step:

∆̂(i+1) = arg max
∆

{
<
(

yHÃ∆

(
ÃH

DAD

)−1

ÃH
∆r

)}
(9.35)

ĥ(i+1) =

(
ÃH

DAD

)−1

ÃH
∆̂(i+1)r (9.36)

The main question is of course, how can the quantities ÃH
∆̂(i+1)

and
(
ÃH

DAD

)−1

be computed? Ã∆̂(i+1) contains

elements of the form

ãn
.
= Ea

[
an| r, ∆̂(i), ĥ(i)

]
(9.37)

=
∑

ω∈Ω

ω × p
(
an = ω| r, ∆̂(i), ĥ(i)

)
(9.38)

for n ∈ {0, . . . , Ns − 1}. The matrix ÃH
DAD contains elements of the form Ea

[
ana

∗
m| r, ∆̂(i), ĥ(i)

]
. For m 6= n,

these elements can be approximated as Ea

[
ana

∗
m| r, ∆̂(i), ĥ(i)

]
≈ ãnã

∗
m, while for m = n, we obtain

˜|an|2 =
∑

ω∈Ω

|ω|2 × p
(
an = ω| r, ∆̂(i), ĥ(i)

)
. (9.39)

119

This reduces the question to: how can we compute the quantities ãn and ˜|an|2? And what is their interpretation?

It is clear that ãn and ˜|an|2 can be computed in terms of the marginal a posteriori probabilities (APPs) of the
coded symbols, conditioned on the previous estimate of the de. These APPs are of course computed by the
factor graph detector structures from Part II of this dissertation. In other words, when we provide the detector
with the observation r and the estimate d̂

(i)
e =

[
ĥ(i), ∆̂(i)

]
, the detector will compute (iteratively, through the

sum-product algorithm) the APPs p
(
an = ω| r, ĥ(i), ∆̂(i)

)
. Note that for pilot symbols the APPs do not depend

on d̂
(i)
e : the APPs are either zero or one, and perfectly known to the receiver, so that for pilot symbols ãn = an

and ˜|an|2 = |an|2.

The reader will notice the similarities between the data-aided algorithm (9.12)-(9.13) and the new EM-based al-
gorithm (9.35)-(9.36). An initial estimate for the EM-based algorithm can be obtained from (9.12)-(9.13).

A great deal has been achieved in this short paragraph: an important connection has been made between the
EM estimator and the factor graph detectors from Part II. An iterative estimation technique has been derived that
exploits information from the pilot symbols and coded symbols in a natural, almost intuitive way: the algorithm is
obtained by formally replacing the pilot symbols from a data-aided algorithm with the a posteriori expectation of the
coded symbols. These a posteriori expectations go under different names in technical literature: soft symbols, soft
symbol decisions, symbol expectations... With all the background knowledge we have amassed regarding ML, EM
and SAGE estimation, extending these concepts to structured estimation is a fairly straightforward task.

9.3.1.2 Method 2: structured approach

Using a vector representation of rBB (t), we can transform, with obvious notations, (9.29) into the following vector
representation

r =

L−1∑

l=0

sl (a, αl, τl) + w. (9.40)

where sl (a, αl, τl) is a vector representation of αl

∑Ns−1
n=0 anp (t− nT − τl). Let us contemplate (9.40): we are trying

to estimate parameters from the superposition of L signals. Referring to the example from section 8.7 in Chapter 8,
we notice that we have in fact already solved this problem by means of the SAGE algorithm! Applying (8.27), with
bk = [αk, τk] and dh,k = [r, a], the E-step of the SAGE algorithm is given by

Q
(
bk| b̂(i)

)
= (9.41)

Ea

[
−‖sk (a,bk)‖2

∣∣∣ r, b̂(i)
]

+ 2<
{
Ea

[
ẑH

k

(
a, b̂(i)

)
sk (a,bk)

∣∣∣ r, b̂(i)
]}

(9.42)

where

ẑk

(
a, b̂(i)

)
= r−

∑

l 6=k

sl

(
a, b̂

(i)
l

)
. (9.43)

In our case, since p (t) is a square root Nyquist pulse:

‖sk (a,bk)‖2
= |αk|2

Ns∑

n=0

|an|2 (9.44)

while

ẑH
k

(
a, b̂(i)

)
sk (a,bk) = (9.45)

rHsk (a,bk) −

∑

l 6=k

sl

(
a, b̂

(i)
l

)

H

sk (a,bk) .

120

The last term in (9.45) can be written as5

∑

l 6=k

sl

(
a, b̂

(i)
l

)

H

sk (a,bk)

= αk

∑

l 6=k

α̂∗
l

∑

n,n′

a∗nan′q (nT − n′T + τ̂l − τk) (9.46)

= αka
HR

(
τk, b̂

(i)
)
a (9.47)

where q (t) =
∫
p∗ (−u) p (t− u) du and

Rn,n′

(
τk, b̂

(i)
)

=
∑

l 6=k

α̂∗
l q (nT − n′T + τ̂l − τk) . (9.48)

Finally, rHsk (a,bk) is given by

rHsk (a,bk) = αk

∑

n

any
∗ (nT + τk) (9.49)

where y (t) =
∫
p∗ (−u) rBB (t− u) du. After substitution we obtain

Q
(
bk| b̂(i)

)

= − |αk|2
∑

n

Ea

[
|an|2

∣∣∣ r, b̂(i)
]

+ 2<
{
αk

∑

n

Ea

[
an| r, b̂(i)

]
y∗ (nT + τk)

}

− 2<
{
αkEa

[
aHR

(
τk, b̂

(i)
)
a

∣∣∣ r, b̂(i)
]}

(9.50)

Note that the first term is equal to |αk|2Ns for M -PSK constellations. Q
(
bk| b̂(i)

)
can be computed from the APPs

p
(
an| r, b̂(i)

)
when we again use the approximation

Ea

[
ana

∗
m| r, b̂(i)

]
≈ Ea

[
an| r, b̂(i)

]
Ea

[
a∗m| r, b̂(i)

]
(9.51)

for n 6= m. We can now maximize Q
(
bk| b̂(i)

)
w.r.t. τk and αk: for a given τk a closed form solution for αk can be

found. After back-substitution of this solution into (9.50), we can maximize w.r.t. τk with a one-dimensional search.

9.3.2 Frequency-flat channel

By now, it is a straightforward task to derive a similar algorithm for the frequency-flat channel estimator. We start
again from the following received signal

rBB (t) = Aejθ
Ns−1∑

n=0

anp (t− nT − τ) + w (t) . (9.52)

We simply specialize the multi-path case from section 9.3.1 to L = 1. In (9.50), the last term can now be dropped since
in the definition of R

(
τk, b̂

(i)
)

from (9.48), there are no terms in the summation. Hence, (9.50) becomes

Q
(
b| b̂(i)

)
= −A2

∑

n

Ea

[
|an|2

∣∣∣ r, b̂(i)
]

+ 2<
{
Aejθ

∑

n

Ea

[
an| r, b̂(i)

]
y∗ (nT + τ)

}
. (9.53)

Introducing ãn = E
[
an| r, d̂(i)

e

]
and ˜|an|2 = E

[
|an|2

∣∣∣ r, d̂(i)
]

, the maximization is now fairly straightforward. The
final result is given by (see also [19]):

5See Chapter 4, section 4.6 for information regarding vector represenations of signals.

121

τ̂ (i+1) = arg max
τ

∣∣∣∣∣

Ns−1∑

n=0

ãny
∗ (nT + τ)

∣∣∣∣∣ (9.54)

while

θ̂(i+1) = − arg

{
Ns−1∑

n=0

ãny
∗
(
nT + τ̂ (i+1)

)}
(9.55)

and

Â(i+1) =

∑Ns−1
n=0 <

{
ejθ̂(i+1)

ãny
∗
(
nT + τ̂ (i+1)

)}

∑Ns−1
n=0

˜|an|2
. (9.56)

The reader will notice (again) the striking similarities between (9.19) and (9.54), between (9.20) and (9.55) and between
(9.21) and (9.56). Indeed, the code-aided estimation algorithms are again obtained by formally replacing pilot sym-
bols with the corresponding a posteriori expectations.

Initialization

The EM algorithm requires an initial estimate of de. This estimate can be obtained through a conventional estimation
algorithm, as described in section 9.2.2.

9.3.3 Two extreme cases

9.3.3.1 Data-aided estimation

EM and SAGE estimators can be constructed to exploit solely pilot symbols. In this case, we simply ignore the
unknown data symbols (replace them with zeros in the receiver’s observation model) and place the pilot symbols in
the complete/hidden data space. This technique could be used, for instance, to refine a data-aided estimate of the
channel parameters for a frequency-selective channel, by incorporating the effect in inter-path-interference. In fact,
most existing algorithms for multi-path channel estimation that use SAGE are data-aided [100, 101].

9.3.3.2 Uncoded transmission

In some cases, decoding the packet is a very expensive operation and one may want to treat the data as uncoded
during the estimation stage. This can be achieved by removing, from the factor graph of the receiver (Fig. 9.1), that
part of the graph that corresponds to the error-correcting code I [c = χ (b)] and the part corresponding to the a priori
distribution p (b).

9.4 Sum-product code-aided estimation

As we have mentioned in Chapter 8, section 8.4, we can create a factor graph that includes the unknown channel
parameters and transmit mode parameters as variables (i.e., as edges). Although the exact execution of the sum-
product algorithm is generally fairly complex, the idea of performing joint estimation and detection through factor
graphs has received increased attention from the technical community. Interesting papers in this area can be found in
[102–104] (for phase estimation) and [105] (for auto-regressive model parameter estimation). These works capitalize
on an earlier paper [106], where a general framework for iterative receiver design using factor graphs was described
and applied to channel estimation. Also in [106] the problem related to message representation is tackled: the authors
propose to use canonical distributions. This idea was adopted in [102, 104, 105], where messages are represented by
distributions that can be described with few parameters (e.g., a mixture of Gaussian distributions) or by resorting to
Monte Carlo methods.

A more pragmatic approach was taken in [30, 107] and [85]: the authors break up the overall factor graph into
smaller graphs. Within each graph the sum-product algorithm is applied. However, messages between graphs are of
a different nature (e.g., hard or soft decisions).

122

=

(2) (1)

(1)

(2)

I[c = χ(b)]

p(b)

p0 pNs−1pk

I[a = ϕ(c)]

f f f

xNs−1

θ0

µ=→θk
(θ)

µθk→=(θ)

θk

aka0 aNs−1

x0 xk

θ
p(θ)µp0→x0(x0)

p(r|θ, a)

µak→ϕ(ak)

Figure 9.4: Factor graph representation of p (b, c,a,x, θ |r)with unknown carrier phase θ

9.4.1 Example

A most insightful example is that of phase estimation. Assume we are given an observation

r = aejθ + w (9.57)

where a is the sequence ofNs coded data symbols, θ is the carrier phase and w is a vector of iid AWGN samples with
E
[
wwH

]
= 2σ2INs

. Introducing x = aejθ, we can construct a factor graph of

p (b, c, a,x, θ |r) =

Ns−1∏

k=0

p (rk |xk) I
[
xk = ake

jθ
]
I [a = ϕ (c)] I [c = χ (b)] p (b) p (θ) (9.58)

where ϕ is the function that maps bits to constellation points, χ represents the transformation from information bits
to coded bits and

p (rk |xk) ∝ exp

(
− 1

2σ2
|rk − xk|2

)
. (9.59)

The corresponding factor graph is shown in Fig. 9.4, where we have abbreviated p (rk |xk) by pk. The nodes marked
f , represent the function

f (ak, xk, θk) = I
[
xk = ake

jθk
]

(9.60)

while the equality node assures all θk are equal to θ.
Applying the sum-product algorithm yields

1. A message is sent from the all the nodes of degree one:

µp(θ)→θ (θ) = p (θ)

µpk→xk
(xk) = p (rk |xk) , ∀k

123

2. The equality-node sends messages over all the θk-edges6:

µ = →θk
(θk) =

∫ 2π

0

I [θ = θk = θl 6=k]
∏

l 6=k

µf→θl
(θl)µp(θ)→θ (θ) dθdθl 6=k

=

∫ 2π

0

δ (θ − θk)µp(θ)→θ (θ)
∏

l 6=k

µf→θl
(θl) δ (θl − θk) dθdθl 6=k

=
∏

l 6=k

µf→θl
(θk)µp(θ)→θ (θk)

When µf→θl
(θk) is not available, µ = →θk

(θk) = µp(θ)→θ (θk).

3. Messages over the ak-edges are sent

µak→ϕ (ak) =

∫
I
[
xk = ake

jθk
]
µpk→xk

(xk)µ = →θk
(θk) dxkdθk

=

∫
δ
(
xk − ake

jθk
)
µpk→xk

(xk)µ = →θk
(θk) dxkdθk

=

∫ 2π

0

µpk→xk

(
ake

jθk
)
µ = →θk

(θk) dθk

4. Now messages are propagated upward from the node marked I [a = ϕ (c)] and further on in the graph.

5. Later in the sum-product algorithm, downward messages µϕ→ak
(ak) = µak→f (ak) over the ak-edges will be

sent. Now messages can be sent to the phase-equality-node

µθk→ = (θk) =
∑

ak

µak→f (ak)µpk→xk

(
ake

jθk
)

6. In the equality node, these messages are multiplied to update µ = →θk
(θk). Then we go back to step 2.

7. And so forth

Immediately, a problem arises: since θ is defined over a continuous domain, summations have become integrals. How
are these integrals computed? Connected to this is the question of how messages should be represented. Keeping
track of arbitrary messages is impossible. It is clear that even for this very simple estimation problem, the sum-
product algorithm runs into a number of difficulties, due to the domain over which the parameter is defined. This
makes joint decoding and estimation through factor graphs unattractive from a complexity point of view. A common
way (see also Chapter 8, section 8.4) to avoid the evaluation of the exact messages is to replace µ = →θk

(θk) with a
Dirac distributions δ (θk − θ∗), where θ∗ is a hard estimate of θ, for instance obtained by maximizing the real message
µ = →θ (θ). It is easily verified that the use of Dirac distribution results in an SP algorithm that requires no integrations.

Note that sum-product code-aided estimation on factor graphs is not really an estimation technique: the goal is
the computation of the a posteriori probabilities of the information bits. The messages related to the phase are simply
by-products of the sum-product algorithm. This technique will not be pursued further in this dissertation, except in
the context of discrete parameter estimation (where integrals are again replaced by summations), in Chapter 11.

9.5 Main points
In this chapter, we have derived estimation algorithms for frequency-selective and frequency-flat channels. We star-
ted with conventional data-aided algorithms for a frequency-selective channel: an unstructured approach results in
an estimate of a sampled version of the overall impulse response h (t). A structured approach can be used to find
estimates of the underlying channel parameters (i.e., the L propagation delays and the L complex gains). We have
specialized these algorithms to a frequency-flat channel and included some well-known non-data-aided algorithms
for fractional delay and fractional phase estimation.

We have then described a class of estimation algorithms based on the iterative EM and SAGE algorithms for both
frequency-selective and frequency-flat channels. It turns out that these algorithms require a posteriori probabilities
(APPs) of the coded symbols, conditioned on the previous estimate of the channel parameters. These APPs can be

6Note that the indicator function I
ˆ

θ = θk = θl6=k

˜

is now actually a Dirac distribution: δ (θ − θk)
Q

l6=k δ (θl − θk).

124

computed by the factor graph of the receiver. In many cases the resulting algorithms can be obtained from the corres-
ponding data-aided algorithms, by simply replacing the unknown symbols with so-called a posteriori expectations.

Finally, we mentioned the possibility of performing joint estimation and decoding by incorporating the unknown
channel parameters into the factor graph of the receiver. Although this solution is most elegant, the computational
complexity is extremely high. As an additional problem, such a factor graph solution requires severe modifications
to the detector. This is in stark contrast to the EM-based estimator, which can be combined with an off-the-shelf
detector.

v

In the next chapter we will make some subtle alterations to the EM-based estimation algorithms, resulting in two
novel versions of the EM algorithm. In the subsequent chapter these novel algorithms are applied to a set of problems
that the EM algorithm traditionally avoids: the estimation of discrete parameters. This includes the abovementioned
problems of frame synchronization and phase ambiguity resolution, but also the detection of the transmit mode.

To avoid confusion, we will name the factor graph representation of p (a,b, c,x |r) where x contains additional
parameters not present in de (de is the set of channel parameters, synchronization parameters and transmit mode
parameters) the synchronized factor graph (such as Fig. 9.1). On the other hand, the factor graph representation of
p (a,b, c,x,de |r) will be named the overall factor graph (such as Fig. 9.4).

125

Chapter 10

Code-aided estimation: the smaller picture

10.1 Introduction
In the previous chapter we have described how the EM algorithm may be applied to perform code-aided estimation
in a systematic way. Although the proposed algorithms seem to have solved all our problems, we are not out of
the woods just yet. First of all, we have not considered the problem of transmit mode detection. Secondly, we will
show that the EM and SAGE code-aided estimation algorithms are still too complex for a practical system. Thirdly,
the issue of convergence needs to be addressed. All these and more will be covered in the current chapter. We start
with the issue of computational complexity, followed by a discussion of convergence problems. It turns out that
convergence is closely related to the problem of estimating discrete parameters.

In short, this chapter will describe some important modifications to the algorithms from the previous chapter, in
order to make them more suitable for a practical system.

10.2 Computational complexity

10.2.1 The EM algorithm

In the EM algorithm, each time we update the estimate of de, we need to re-compute the APPs p
(
ak

∣∣∣r, d̂(i)
e

)
. To

compute these APPs, two steps are required: first of all, the synchronized factor graph1 of the receiver needs to
be reset (see Chapter 3, section 3.2.3). This means that all messages corresponding to cycles are reset to constant
messages (uniform pmfs). Secondly, based on the observation r and the current estimate of de (i.e., d̂

(i)
e), the sum-

product algorithm is applied to the synchronized factor graph of the receiver. After many iterations (say ND) within
this synchronized factor graph, reliable approximations of the APPs are delivered to the EM estimator and d̂

(i+1)
e is

computed. This situation is shown in Algorithm 3. Note that at the end of each decoding stage we check whether
or not the decoded word â corresponds to a valid codeword2. Since mapped codewords are sparse in ΩNs , the
probability of moving from one codeword to another during detection is negligible. Such a stopping criterion is
commonly applied to LDPC codes, but it is argumented in [108] that this technique should be applied to all codes.
The reason lies in the fact that (1) checking if a word is a codeword is generally an inexpensive operation, (2) it may
reduce decoding time significantly, especially for low BER scenarios.

Now, suppose the receiver has a reliable estimate of de at its disposal and that it requiresND iterations to compute
reliable approximations of the APPs. If each iteration takes T1 seconds, it takes a total of NDT1 seconds to detect
the packet when we perform one-shot estimation of de. On the other hand, if we perform NEM EM iterations to
obtain more and more reliable estimates of de, the total processing time grows to NDNEMT1 seconds. This is clearly
unacceptable.

Solution - embedded estimation

The most elegant way around this problem is by introducing the concept of embedded estimation [109]. The resulting
algorithm is shown in Fig. 4. The changes are quite subtle: we reset the synchronized factor graph only once, prior

1As defined at the end of the previous chapter: a factor graph where channel parameters and synchronization parameters do not appear as
variables (i.e., edges).

2â is valid codeword ⇐⇒ â = ϕ (χ (b)), for some b, with â = [â0, . . . , âNs−1]
T , where âk = arg maxa∈Ω p

“

ak = a
˛

˛

˛
r, d̂

(i)
e

”

.

127

Algorithm 3 EM estimation

1: input: observation r, initial estimate d̂
(0)
e

2: for i in 0 to NEM − 1 do
3: reset synchronized factor graph of detector
4: perform iterative detection with ND iterations to compute APPs p

(
ak

∣∣∣r, d̂(i)
e

)

5: if â is valid codeword then
6: break
7: end if
8: compute Q

(
de

∣∣∣d̂(i)
e

)

9: find maximum: determine d̂
(i+1)
e

10: end for

Algorithm 4 EM embedded estimation

1: input: observation r, initial estimate d̂
(0)
e

2: reset synchronized factor graph of detector
3: for i in 0 to NEM − 1 do
4: perform iterative detection with KD iterations to compute APPs p

(
ak

∣∣∣r, d̂(i)
e

)

5: if â is valid codeword then
6: break
7: end if
8: compute Q

(
de

∣∣∣d̂(i)
e

)

9: find maximum: determine d̂
(i+1)
e

10: end for

to the iterative process. Also, when computing the APPs, we perform only a limited number of iterations (say
KD < ND) within the synchronized factor graph. This means we no longer compute the APPs p

(
ak

∣∣∣r, d̂(i)
e

)
, but

rather a distribution depending on all previous estimates. Since the APPs we computed were only approximations
of the true APPs to begin with, these modifications may have little impact on the overall performance. Clearly,
embedded estimation is especially attractive when the sum-product algorithm on the synchronized factor graph is
itself iterative. When the synchronized factor graph does not contain any cycles, embedded estimation reduces to the
conventional EM algorithm, so no gain in terms of computational complexity can be obtained.

Returning to our example, we set KD = 1. Performing NEM EM iterations requires a total of NEM iterations
within the synchronized factor graph. So, after NEMT1 seconds, the packet is decoded and, at the same time, the
parameter de has been updated NEM times.

Unfortunately, embedded estimation comes with a hidden cost: for some estimation problems, embedded estim-
ation leads to biased3 estimates, which in turn impact the BER performance [99].

10.2.2 The SAGE algorithm
Of course, the SAGE algorithm suffers from exactly the same problem as the EM algorithm. However, even with
embedded estimation, SAGE estimation has another drawback. Each time the APPs are computed (or updated would
be a more apt term in the case of embedded estimation), we can update only a single component dk,e of de.

As before, we will denote by ND the number iterations required to compute reliable APPs in the synchronized
factor graph and by T1 the processing time related to a single one of these ND iterations. Suppose there are de is
broken into L parameter-components. We wish to update each of these parameter componentsNEM times. Then the
total processing time becomes a massive LNEMNDT1 seconds for the SAGE algorithm. With embedded estimation,
the processing time would drop to LNEMT1 seconds. Still, this is too large for a practical system.

Solution - multiple parameter updates
A pragmatic solution would be to update multiple parameters, say KP , based on the same APPs. In our example,
if we update all L parameters once for fixed APPs (i.e., KP = L), the total processing time would again be equal to
NEMT1 seconds.

3An estimate is biased when the estimation error has a non-zero mean.

128

10.2.3 Further approximations

Many variations can be conceived to reduce the computational complexity. For instance, one could perform EM
estimation without exploiting the code to improve the initial estimate. After this, the code-aided EM-estimation
algorithm kicks in. One could switch between exploiting code properties for some iterations and not exploiting them
for other iterations, etc. Each of these implementations will trade performance for computational complexity.

10.3 Convergence properties

In Chapter 8 we have seen that the EM algorithm delivers estimates with an ever increasing likelihood (or a posteriori
probability for MAP estimation). In the same chapter, it was shown that the ML or MAP estimate is always a solution
of the EM algorithm. These two statements do not imply that the EM algorithm always converges to the ML of MAP
estimate. Many technical papers that deal with code-aided estimation disregard this fact and merely state that ’EM
converges to ML under some mild conditions’. These mild conditions are related to the initial estimate. Because
the impact of the initial estimate has been mostly disregarded in technical literature, several types of estimation
problems could not be solved by the EM approach. In this section, we delve deeper into the problems related to the
initial estimate.

10.3.1 Convergence characteristic

Our goal is to (a) graphically describe the evolution of the parameter estimate from one iteration to the next and
(b) to investigate properties of solutions of the EM algorithm. We constrain ourselves to the estimation of a scalar
parameter.

We estimate a parameter de through an iterative estimation algorithm according to the update rule d̂
(i+1)
e =

f
(
d̂
(i)
e

)
. We start from an initial estimate d̂(0)

e , and compute a sequence of estimates d̂(1)
e , d̂

(2)
e , . . . We then define the

estimation error at the i-th iteration as e(i) = d̂
(i)
e − de. Hopefully e(i) will become very small as i increases. We also

know that any solution of an iterative estimation algorithm satisfies d̂e = f
(
d̂e

)
, i.e., it is a fixed point of the update

rule. Let us try to visually represent this information. We first define two additional parameters η (e, de) and ξ (e, de),
as described in Algorithm 5.

Algorithm 5 Convergence characteristic
1: for e in −∞ to +∞ do
2: set d̂(i)

e = e+ de

3: reset the synchronized factor graph of the receiver
4: generate a suitable observation r, given de

5: perform the sum-product algorithm
6: compute d̂(i+1)

e = arg maxde
Q
(
de

∣∣∣d̂(i)
e

)

7: compute η (e, de)
.
= e(i+1) = d̂

(i+1)
e − de

8: compute ξ (e, de)
.
= Q

(
d̂
(i)
e

∣∣∣d̂(i)
e

)
= Q (e+ de |e+ de)

9: store η (e, de) and ξ (e, de)
10: end for

• η (e, de) should be interpreted as the estimation error at the current iteration, given that the previous estimate of
de had estimation error e.

• ξ (e, de) is simply the value of the Q-function, evaluated in the previous estimate.

Note that, by construction, ξ (e, de) and η (e, de) do not depend on the iteration index i. We then plot, for a fixed de,
E [η (e, de)]−e and E [ξ (e, de)] as a function of e. Here, the expectations are taken over the observations r. Then, from
E [η (e, de)] − e we can investigate the evolution of the iterative estimation algorithm, while E [ξ (e, de)] allows us to
interpret properties of the solutions of the estimation algorithm.

The definitions of η (e, de) and ξ (e, de) may be somewhat contrived at first sight. We will now consider an example
to illuminate their use.

129

10.3.2 Example: phase estimation
To focus our attention, let us consider an example: phase estimation de = θ. In this case η (e, de) and ξ (e, de) do not
depend on de. Let us also consider a specific turbo code with QPSK mapping4.

If Fig. 10.1, we plot E [η (e, 0)] − e as a function of e for different SNRs. How to interpret this plot? We observe
a number of zero-crossings, namely at e ∈ {−π,−3π/4,−π/2,−π/4, 0, π/4, π/2, 3π/4, π}, independent of the SNR.
For these zero-crossings, we have E [η (e, de)] − e = 0, or E [η (e, de)] = e. Hence, these points correspond to fixed
points (solutions) of the EM algorithm: when e is such a fixed point, the estimate of de, on average, remains fixed.
The set of fixed points can be broken up into two subsets: those corresponding to positive zero-crossings (i.e., e ∈
{−3π/4,−π/4, π/4, 3π/4}) and those corresponding to negative zero-crossings (i.e., e ∈ {−π,−π/2, 0, π/2, π}). The
positive zero-crossings correspond to unstable fixed points: suppose e0 is such a point. Then, for some small δ,
e = e0 + δ leads to E [η (e, de)] > e, for δ > 0 and E [η (e, de)] < e for δ < 0. Hence, the estimation errors move
away from e0. On the other hand, negative zero-crossings correspond to stable fixed points: suppose e0 is such a
point. Then, for some small δ, e = e0 + δ leads to E [η (e, de)] < e, for δ > 0 and E [η (e, de)] > e for δ < 0. Hence,
the estimation errors move towards e0. Only for estimates within the range [−π/4,+π/4] will the estimation errors
converge to the desired (stable) fixed point: at e = 0. For estimates outside this range, it is unlikely that the solution
of the EM algorithm will give rise to a small estimation error. This observation is of course also true for the initial
estimate. Hence, the range [−π/4,+π/4] corresponds to the acquisition range of the EM algorithm. This means that
the EM algorithm must be provided an initial estimate within [−π/4,+π/4] if we want to have a good chance that the
solution of the EM algorithm coincides with the ML/MAP estimate. Additionally, we can infer from Fig. 10.1 that
more reliable estimates lead to faster convergence, especially at increased SNR.

In Fig. 10.2, we show E [ξ (e, de)] as a function of e. We see that the abovementioned stable (unstable) points
coincide with local maxima (minima) of E [ξ (e, de)]. The global maximum coincides with e = 0. For increased SNR,
the locations of extrema do not change, but the global maximum becomes more pronounced. Note that the solution
of the EM algorithm giving rise to the global maximum of E [ξ (e, de)] has the smallest estimation error.

Finally, as an illustration, we show in Fig. 10.3 some results for a short random code over QPSK (20 random words
in Ω10), for which ML evaluation is possible. On the left side, we show the likelihood function p (r| θ), while the right
side corresponds to Q (θ| θ). The true phase was θ = 0. Observe the striking similarities between the likelihood
function and the Q-function. Note especially the locations of the extrema: they are the same for both figures.

10.3.3 Conclusion
Although the above exposition is somewhat anecdotal, several things have become clear: first of all, the EM algorithm
is very sensitive to the initial estimate. A more reliable initial estimate leads to faster convergence, while a less reliable
estimate will result in slow convergence. When the initial estimate lies outside the acquisition region of the EM
algorithm, the estimates will generally converge to an incorrect solution. For phase estimation this means that the
EM algorithm cannot be used to perform joint phase estimation and phase ambiguity resolution, without resorting
to pilot symbols. We could have presented similar results for delay estimation; the conclusions would be the same
(our results are published in [110]): the EM algorithm cannot be used to perform joint delay estimation and frame
synchronization, without resorting to pilot symbols.

Now the good news: stable fixed points correspond to local maxima of Q (de |de), while unstable fixed points
correspond to local minima of Q (de |de). Most strikingly, the value of de that gives rise to the global maximum of
Q (de |de), seems to be the solution with the smallest estimation error. The question arises: how can we exploit this
new knowledge?

10.4 Extensions of the EM algorithm
Now that we have some more insight in the convergence behavior of EM estimation algorithms, we define some
variations of the EM algorithm that allow us to circumvent the convergence problems, albeit at the cost of some
increased computational complexity.

10.4.1 The parallel EM algorithm
The parallel EM algorithm, or P-EM algorithm, refers to the parallel execution of multiple (say MEM) instantiations
of the EM algorithm, each with a different initial estimate. These initial estimates give rise to MEM solutions5 of

4Parameters: PCCC, RSC constituent convolutional codes, rate 1/2, generator polynomials (21, 37)8, pseudo-random interleaver of size 334
bits, overall rate 1/3, Gray mapping. Only the first convolutional code is terminated.

5Some of these solutions may coincide.

130

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

e/(2π)

(E
[η

(e
,0

)]
−

e)
/(

2π
)

E
b
/N

0
 = −1 dB

E
b
/N

0
 = 0 dB

E
b
/N

0
 = 1 dB

E
b
/N

0
 = 2 dB

E[η(e,0)] = 0

Figure 10.1: Phase estimation: convergence behavior

131

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

e/(2π)

E
[ξ

 (
e,

d e)]
 /

N
s

E
b
/N

0
 = −1 dB

E
b
/N

0
 = 0 dB

E
b
/N

0
 = 1 dB

E
b
/N

0
 = 2 dB

Figure 10.2: Phase estimation: solutions of the EM algorithm.

132

−1 −0.5 0 0.5 1
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

θ/π

ML: p(r|θ)

−1 −0.5 0 0.5 1

0.4

0.5

0.6

0.7

0.8

0.9

1

θ/π

EM: Q(θ|θ)

Figure 10.3: Phase estimation for a short random code of length Ns = 10 with 20 codewords: ML vs. EM estimation

the EM algorithm,
[
d̂

(+∞)
e,0 , . . . , d̂

(+∞)
e,MEM−1

]
. We then try to decide which is the ’best’ solution of the EM algorithms.

According to the MAP (ML) criterion, all we have to do is select the estimate with the largest a posteriori probability
(likelihood for ML). In the case of MAP, this means

d̂e = arg max
d̂

(+∞)
e,0

p
(
d̂

(+∞)
e,0 |r

)
. (10.1)

However, the computation of p
(
d̂

(+∞)
e,0 |r

)
is very hard; in fact, it is the reason why we considered using the EM

algorithm in the first place! On the other hand, if we take into account the behavior of Q (de |de) and the location of
the solutions of the EM algorithm, a more practical decision rule pops up:

d̂e = arg max
d̂

(+∞)
e,0

Q
(
d̂

(+∞)
e,0

∣∣∣d̂(+∞)
e,0

)
. (10.2)

The combination of multiple initial estimates with the rule (10.2) is the parallel EM algorithm. It should be noted
that (10.2) is an ad-hoc criterion: from (8.31) we know that Q (de |de) ≥ Q

(
d̃e

∣∣∣d̃e

)
does not necessarily imply

p (de |r) ≥ p
(
d̃e |r

)
.

10.4.1.1 Applications

This technique can be applied when no reliable initial estimate can be found. By choosing MEM sufficiently large,
and by careful selection of the initial estimates, we hope that at least one of them will lie within the acquisition region.

The parallel EM algorithm will be applied in Chapter 12 to the problems of joint phase estimation and phase
ambiguity resolution, as well as joint delay estimation and frame synchronization.

133

10.4.1.2 Complexity

Although computational complexity in terms of floating point operations (flops) scales as MEM , the computation time
does not necessarily scale with MEM : when the MEM EM algorithms are executed on parallel processing units,
computational complexity can be made independent of MEM .

A further reduction in computational complexity can be achieved by performing the decision (10.2) after very few
EM iterations, and then refining the best estimate with the standard EM algorithm.

10.4.2 The discrete EM algorithm
The discrete EM algorithm (D-EM) is a specialized version of the P-EM algorithm. When the space over which de

is defined (say, Sde
), is discrete and finite, it is well known that the standard EM algorithm may not work [111]. In

particular, a situation may arise where every element de in Sde
is a solution of the EM algorithm:

de = arg max
x∈Sde

Q (x |de)

so that the EM algorithm converges after a single iteration.
The D-EM estimate avoids this problem by searching the best estimate in the entire de-space:

d̂e = arg max
de∈Sde

Q (de |de) . (10.3)

Note that, contrary to the P-EM algorithm, the discrete EM algorithm is no longer an iterative algorithm.

10.4.2.1 Applications

This technique can be applied to hypothesis-testing problems. This includes phase ambiguity resolution and frame
synchronization, but also mode detection. Note that no initial estimate of de is required.

In Chapter 11, we will apply the discrete EM algorithm to some well known hypothesis testing problems: frame
synchronization, phase ambiguity resolution and rate detection.

10.4.2.2 Complexity

The number of flops is increased with a factor equal to the size of the de-space. Still, a reduction in computational
complexity can be achieved by making a decision (10.3) after very few iterations of the sum-product algorithm on
the synchronized factor graph. Also, complexity can be reduced further by the use of thresholds or by first creating a
list of the most likely values of de, based solely on a pilot sequence (a technique known as a list synchronizer) [112].

10.5 Main points
In this chapter we have exposed some of the key weaknesses of EM-based estimation algorithms. First of all, compu-
tational complexity is very high. This may be circumvented by embedding estimation iterations within the iterations
of the synchronized factor graph of the detector and by performing multiple parameter updates at each iteration.
Secondly, the EM algorithm suffers from severe convergence problems. Most disappointingly, the acquisition range
of the EM estimator turns out to be very small. Based on a visualization of the iterative behavior of the EM algorithm,
we have proposed two variations of the EM algorithm: the parallel EM algorithm, whereby multiple initial estimates
are considered, and afterwards the ’best’ estimate is selected. Another variation, the discrete EM algorithm, suitable
for the estimation of discrete parameters, does not require an initial estimate. Again, selection of a ’best’ estimate is
required. Finally, based on the convergence study of the EM algorithm, we have defined a pragmatic approach to
select a ’best’ estimate.

134

Chapter 11

Estimation of discrete parameters

11.1 Introduction

Conventionally, problems such as frame synchronization and phase ambiguity resolution are solved by inserting
pilot symbols in the data stream [91, 113]. As this leads to a reduction in bandwidth- and power-efficiency, many
research groups have been motivated to look into code-aided hypothesis testing algorithms. The same is true to
some extent for mode detection: the receiver can discover the transmit mode by inspection of the data stream and
pilot symbols. Applying code-aided techniques can improve the detection performance. Note that the transmit mode
could be sent from the transmitter to the receiver through a separate channel, removing the need for mode detection.
Hence, the computational complexity associated with mode detection should be low. An exception to this is the
problem of signal identification for military applications (i.e., eavesdropping).

In the context of frame synchronization and phase ambiguity resolution, we mention the following technical pa-
pers. Code-aided frame synchronization was discussed in [112, 114–117]: [112] uses a list-based synchronizer and
makes the pilot sequence part of the codeword, thus forcing the coder into a sequence of known states. The decoder
verifies this sequence to determine whether or not frame synchronization is achieved. In [114] the so-called path
surface metric, based on the forward and backward metrics in the BCJR algorithm [33], is used for frame synchroniza-
tion. The properties of this metric change when the decoder is not synchronized. In [115] termination symbols in the
convolutional codes are taken into account in deriving the ML frame position. Yet another approach is mentioned
in [116], where it was observed that a frame synchronization failure reduces the amplitude of the so-called extrinsic
log-likelihood ratios (LLRs) as compared to a synchronized decoder. This idea was reconsidered very recently: a
powerful frame synchronizer was proposed in [117], based on Mode Separation (MS): the extrinsic LLRs computed
by the decoder have a bi-modal distribution. The distance between these modes is maximal when the frame is per-
fectly synchronized. Finally, code-aided phase ambiguity resolution was investigated in [118] where it was observed
that the statistics of the branch metrics in the Viterbi decoder change depending on the phase shift. We should men-
tion that many code-aided frame synchronization algorithms can be applied to phase ambiguity resolution with only
minor modifications.

In the context of mode detection, the problem of rate detection (i.e., detecting the symbol rate 1/T) has attracted
most of the attention of the technical community. The problem of blind rate detection has already been treated extens-
ively for DS-CDMA systems for 2nd and 3rd generation wireless devices (see for example [27,119,120] and references
therein). In DS-CDMA the symbol rate is changed by fixing the chip rate and varying the length of the spreading
codes (i.e., number of chip per symbol). However, the considered rate detection algorithms are very application-
specific, are often developed specifically for BPSK, and, more importantly, are derived under the assumption that all
channel parameters (such as channel gains, propagation delays etc.) are known. Apart from the abovementioned
work for DS-CDMA, most blind rate detectors exploit the cyclostationarity of the received signal [121, 122]. Al-
though such detectors have some very attractive properties, they fail to operate properly when the excess bandwidth
decreases or when the SNR is not sufficiently high. Since the data will generally be protected by an error-correcting
code, a low SNR operating point can be assumed, so that these algorithms are no longer suitable. Another type of
symbol rate detector was proposed in [123]: the received signal was filtered using an analog filter bank. Through an
ad-hoc criterion, the most likely signal bandwidth was determined. The authors reported an estimation accuracy of
99.5% (i.e., a rate detection error probability of 0.005).

In this chapter, we demonstrate how the discrete EM algorithm can be applied to mode detection (in particular we
will focus on the important problem of rate detection) and synchronization (in particular frame synchronization and
phase ambiguity resolution). We will compare the discrete EM algorithm (which accepts APPs from the synchronized
factor graph, as described in the previous chapters) with the sum-product estimation technique, where we apply the SP

135

filter ADC

se
le

ct
io

n

other DSP

(a) (b)

COR

COR

EST

EST

EST

COR

(c)

rBB(t)

p∗T|ST |
(−t)

p∗T2
(−t)

p∗T1
(−t)

Figure 11.1: Generic multi-rate receiver

algorithm on the overall factor graph (where the synchronization parameters appear as variables (edges), as described
in Chapter 9, page 125).

11.2 Mode detection

11.2.1 System model
We will demonstrate how the EM algorithm can be applied to perform mode detection. We will focus on the import-
ant problem of rate detection. The transmitted signal is given by

sT (t) =
√
Es

Ns−1∑

k=0

akpT (t− kT) (11.1)

where Es denotes the energy per transmitted symbol, a = [a0, . . . , aNs−1]
T is the vector of data symbols and pT (t)

is the transmit pulse corresponding to symbol rate 1/T . We assume that pT (t) is a square-root Nyquist pulse. The
symbol interval T belongs to a finite set of equiprobable values: T ∈ ST = {Tmin, . . . , Tmax}. The receiver is assumed
to know the set ST . For a flat, quasi-static channel, the complex envelope of the received signal can be expressed as

rBB (t) = αsT (t− τ) + n (t) (11.2)

where α = A exp (jθ) denotes the complex channel gain, τ the propagation delay and n (t) a complex AWGN process
with spectral density N0. We model the phase θ as uniformly distributed in [0, 2π[; the probability density function
of the magnitude is arbitrary (e.g., in case of fading, a Rayleigh distribution is appropriate), while τ is uniformly
distributed in [−∆,+∆].

We consider a fully digital receiver whereby the signal rBB (t) is band-limited through analog filtering and
sampled at a fixed rate 1/Ts:

rBB (kTs) = AejθsT (kTs − τ) + n (kTs) (11.3)

with E [n (kTs)n
∗ (lTs)] = N0Tsδk−l.

11.2.2 Symbol rate detection
The main goal of the receiver is to recover the data symbols. In order to do this, the receiver requires reliable estimates
ofA, θ, τ , and T . A generic multi-rate receiver is shown in Fig. 11.1. Its main blocks are an ADC, a matched filter bank1

(i.e., one matched filter per symbol rate), parameter estimators and correctors. The parameter estimators (denoted by

1In practice this bank of matched filters could be replaced by a single matched filter, preceded by an interpolator, as explained in Chapter 7.

136

EST) estimate τ , θ and A, while the parameter correctors (denoted by COR), perform compensation for carrier phase,
amplitude and delay. The latter operation, which includes timing correction and possibly sample rate conversion, is
performed by a digital interpolator. From Chapter 9 we know that the first step in the estimation process is timing
recovery. As timing recovery requires knowledge of T , rate detection should ideally take place prior to any other
estimation algorithms. We will consider three rate detection algorithms.

11.2.2.1 Cyclic correlation-based algorithm

A cyclic correlation-based algorithm from [121] performs rate detection in front of the matched filter bank. The
branch corresponding to the estimated rate is selected. Such an approach, exploiting the cyclo-stationary character
of the incoming signal, has the advantage of very low complexity. This algorithm corresponds to performing rate
detection at point (a) in Fig. 11.1.

The idea is as follows: in order to eliminate excess noise, we first apply the signal samples {rBB (kTs)} to a
low-pass filter. This results in a sequence of N samples, denoted by z. We then define, for some Υ ∈ N:

y2 (n)
.
= [z (n− Υ) z∗ (n) , . . . , z (n+ Υ) z∗ (n)] (11.4)

rN (T)
.
=

1

N

N−1∑

n=0

y2 (n) e−j2πnTs/T . (11.5)

Here rN (T) measures the spectral line at f = 1/T . Note that a signal with symbol rate 1/T should yield spectral
lines in the FT of its autocorrelation at frequencies, f ∈ {0,−1/T,+1/T}. The final rate detection algorithm is given
by

T̂ = arg max
T

‖rN (T)‖2 . (11.6)

The parameter Υ will be set to 0 for the remainder of this text.

11.2.2.2 Low-SNR approximation

A second algorithm is based on a low-SNR approximation of the likelihood function [124]. This algorithm requires
no knowledge of τ , A or θ.

This algorithm, the details of which can be found in the Appendix of this chapter (section 11.6), can be interpreted
as selecting the branch in the matched filter bank that yields the largest output energy. It is computationally more
complex than the cyclic correlation approach from [121], since now the incoming signal has to be filtered by each of
the matched filters. Only after considering the outputs of the matched filter bank, a decision is made w.r.t. the symbol
rate. This corresponds to performing rate detection at point (b) in Fig. 11.1.

11.2.2.3 Discrete EM

Applying the discrete EM algorithm leads to the following E-step, with de = T :

Q (T |T) = <
{
α̂

Ns−1∑

k=0

ãky
∗
T (kT + τ̂)

}
(11.7)

where yT (t) = Ts

∑
k rBB (kTs) p

∗
T (t− kTs) /

√
Es and ãk is the familiar a posteriori symbol expectation of the k-th

symbol:
ãk =

∑

ω∈Ω

ω × p (ak = ω|T, r, τ̂ , α̂) (11.8)

and α̂ and τ̂ are estimates of the complex gain and the propagation delay, respectively. For fixed T , finding these
estimates can be achieved through the techniques described in Chapter 9. Hence, the symbol rate estimate is given
by

T̂ = arg max
T∈ST

Q (T |T) . (11.9)

In the case of uncoded transmission, computation of the a posteriori symbol probabilities is a simple task:

p (ak = ω|T, r, τ̂ , α̂) = C exp

(
− 1

N0
|yT (kT + τ̂) − α̂ω|2

)
(11.10)

137

with C a normalizing constant. In the case of coded transmission, the a posteriori symbol probabilities are computed
by the sum-product algorithm on the synchronized factor graph. As the latter approach will drastically increase
the overall computational complexity, it is preferred to treat the data symbols as uncoded during the rate detection
process: this is achieved by simply removing the part corresponding to the code in the synchronized factor graph
during rate detection.

From (11.7), we see that the received signal rBB (t) is applied to the matched filter bank, and to each filter output,
an algorithm for estimating τ ,A and θ is applied. This estimation can be performed by means of a classical algorithm
(see [16, 17, 21]) or by means of a more sophisticated EM algorithm (see [19, 98, 125]). Hence, for each branch in
the matched filter bank there are corresponding estimates of τ , A and θ. These estimates are used to compute the
marginal APPs required by the discrete EM algorithm. When we treat the data as uncoded during rate detection, this
corresponds to performing rate detection at point (c) in Fig. 11.1.

A similar line of reasoning can be applied to detect any type of mode, such as the signaling constellation, the code
rate, etc. In some cases it will be necessary to exploit information from the code, possibly leading to fairly complex
algorithms.

Performance results are postponed until Chapter 12.

11.3 Code-aided estimation of discrete synchronization parameters
Code-aided frame synchronization and phase ambiguity resolution can be performed either on the synchronized factor
graph (e.g., using the discrete EM algorithm), or on the overall factor graph (whereby the delay shift and phase ambigu-
ity are considered as variables (edges) in the factor graph). This latter technique was discussed in section 9.4, where
we have shown that for continuous parameters, the sum-product algorithm runs into some practical difficulties.
When the synchronization parameters are discrete, these problems are removed and the sum-product algorithm
again becomes an attractive way to perform joint detection and estimation.

11.3.1 Phase ambiguity resolution
11.3.1.1 System model

We start from the following model: a sequence a in ΩNs is transmitted, rotated over θ and corrupted by AWGN:

r = aejθ + n (11.11)
= x + n (11.12)

whereE
[
nnH

]
= 2σ2INs

. The phase θ is constrained to the following set of (equiprobable) values Sθ = {0, 2π/MΩ, . . . , 2π (MΩ − 1) /MΩ},
where MΩ is the ambiguity number of the constellation (as defined in section 9.2.2). We remind that for M-PSK con-
stellations, MΩ = M , where M is the number of constellation points. For square QAM constellations, MΩ = 4.

11.3.1.2 ML approach

According to the ML criterion, we obtain an estimate of the data sequence as:

â = arg max
a

p (r|a) (11.13)

= arg max
a

∑

θ

p (r| a, θ) . (11.14)

The computation (11.13) is intractable in practice.

11.3.1.3 EM approach

Applying the discrete EM algorithm leads to

θ̂ = arg max
θ

<
{
rH ãejθ

}
(11.15)

where ã = [ã0, . . . , ãNs−1]
T and ãk = E [ak |r, θ]. The required APPs are computed through the sum-product al-

gorithm on the synchronized factor graph.

138

=

(2) (1)

(1)

(2)

I[c = χ(b)]

p(b)

p0 pNs−1pk

I[a = ϕ(c)]

f f f

xNs−1

θ0

µ=→θk
(θ)

µθk→=(θ)

θk

aka0 aNs−1

x0 xk

θ
p(θ)µp0→x0(x0)

p(r|θ, a)

µak→ϕ(ak)

Figure 11.2: Overall factor graph with phase ambiguity. The f -nodes enforce f (ak, xk, θk) = I
ˆ

xk = ake
jθk

˜

.

11.3.1.4 Overall factor-graph approach

The overall factor graph corresponding to p (a,b, c,x, θ |r) is shown in Fig. 11.2. This is an exact copy of Fig. 9.4, with
the important difference that in Fig. 11.2 the phase can only take on discrete values. Replacing in the sum-product
algorithm from page 124, integrals with summations, at the first iteration, we obtain

µ = →θk
(θk) =

1

MΩ
(11.16)

so that the messages to the mapper nodes are given by

µak→ϕ (ak) =
∑

θk∈Sθ

µpk→xk

(
ake

jθk
)
µ = →θk

(θk) (11.17)

=
1

MΩ

∑

θk∈Sθ

µpk→xk

(
ake

jθk
)

(11.18)

Due to the symmetries in the constellations,

µf→ak
(ak) = µf→ak

(
ake

jθ
)

(11.19)

for any θ ∈ Sθ. Hence, µf→ak
(ak) can only take on |Ω| /MΩ different values. Let us focus on the interesting case of

M-PSK2 signaling: then |Ω| /MΩ = 1, so that µf→ak
(ak = ω) = 1/M , ∀ω ∈ Ω. This means that no useful information

is sent over the ak edges to the mapper nodes. The block I [a = ϕ (c)] is not provided with any useful information by
the messages µf→ak

(ak). It can be shown that for most practical codes and mapping strategies, after application of
the SP algorithm in the nodes I [a = ϕ (c)] and I [c = χ (b)], the downward messages µak→f (ak) will also be uniform
(and hence contain no useful information). This causes the sum-product algorithm on the overall factor graph to
converge after a single iteration! Even for general codes and mapping strategies, there is no guarantee that the sum-
product algorithm will always converge to the correct a posteriori probabilities (due to the cycles in the overall factor
graph). Furthermore, it may take many iterations for the sum-product algorithm to converge.

2With Ω = {exp (j2πk/M)}M−1
k=0 .

139

−10 −9 −8 −7 −6 −5 −4 −3 −2
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

perfect PAR
discrete EM
Maximum Likelihood
Sum Product

Figure 11.3: Phase Ambiguity resolution - 16-PSK - random code

11.3.1.5 Performance results

To compare these algorithms, we have carried out computer simulations for a short random code, consisting of 16
codewords of 120 bits, mapped to a 16-PSK constellation. To remove the effect of cycles within and between the nodes
I [a = ϕ (c)] and I [c = χ (b)], we create a cycle-less factor graph of the function I [a = ϕ (χ (b))], without further
factorization. Hence, the SP algorithm within this part of the graph is exact. We have considered three detectors:

1. the ML detector which performs data detection according to (11.13)

2. the discrete EM estimator in combination with the synchronized factor graph

3. the sum-product algorithm on the overall factor graph

In Fig. 11.3 we show bit-error-rate (BER) results for phase ambiguity resolution. Clearly the discrete EM algorithm
outperforms the sum-product algorithm by a wide margin. Most strikingly, the discrete EM estimator has nearly
the same performance as the ML detector. Note also that there remains a gap between the performance of the ML
detector and the BER of a perfectly synchronized system: this degradation is related to the inherent properties of the
code and mapping and cannot be bridged by any estimation algorithm. We have also evaluated the performance of
a similar system with 16-QAM signaling, and the results (not shown) are roughly the same.

11.3.2 Frame synchronization
11.3.2.1 System model

Now, the model is a little more complex. Let us start again from a discrete-time system where the transmitted
sequence is delay-shifted over kτ symbol durations and corrupted with AWGN. We assume the delay shift to be in
the set kτ ∈ {0, . . . ,Mτ − 1}. This yields the following model:

r =
[
0T

kτ
aT 0T

Mτ−1−kτ

]T
+ n (11.20)

= Dkτ (a) + n (11.21)
= x + n (11.22)

where 0m is a vector consisting of m zeros, E
[
nnH

]
= 2σ2I, and Dk (.) is an invertible function Dk : ΩNs →

{Ω ∪ {0}}Ns+Mτ−1, which, for k ∈ {0, . . . ,Mτ − 1}, prefixes to its argument k zeros and postfixes Mτ − 1 − k zeros.
The inverse of this function will be denoted by D−k (.), so that D−k

(
Dk (a)

)
= a.

140

= == =

=

x0

p0

I[c = χ(b)]

p(b)

I[a = ϕ(c)]

a0

f f f

pNs−1

f

p2p1 pNs

p(kτ)

p(r|kτ , a)

kτ

x1 x2

a1 a2

f

aNs−1

xNs−1 xNs

Figure 11.4: Overall factor graph with delay shift kτ . A cycle of length 4 is shown in bold.

11.3.2.2 EM approach

Applying the discrete EM algorithm leads to

k̂τ = arg max
kτ

<
{
rHDkτ (ã)

}
− 1

2

Ns−1∑

k=0

˜|ak|2. (11.23)

where ã = [ã0, . . . , ãNs−1], ãk = E [ak |r, kτ] and ˜|ak|2 = E
[
|ak|2 |r, τ

]
.

11.3.2.3 Overall factor graph approach

A factor graph of the factorization of p (a,b, c,x, kτ | r) is depicted in Fig. 11.4 for Mτ = 2. The nodes marked by f
correspond to the following constraint:

f (ak, ak−1, xk, kτ) = I [(ak = xk ∧ kτ = 0) ∨ (ak−1 = xk ∧ kτ = 1)] (11.24)

where ∧ (∨) denotes the logical ’and’ (’or’). Application of the sum-product algorithm on the overall factor graph is
straightforward and omitted here.

Contrary to the problem of phase ambiguity resolution, the overall factor graph from Fig. 11.4 has one important
weakness: the node corresponding to p (r |kτ , a) contains many very short cycles (of length 4). Such cycles will
seriously degrade the performance of the sum-product algorithm, especially when they occur in great number [8,34,
126].

11.3.2.4 Performance results

To compare the performance of the frame synchronization techniques, we have again carried out computer simula-
tions, for the same code as in section 11.3.1.5. We set Mτ = 3 and consider three detectors:

1. the ML detector which performs data detection according3 to (11.13)

3With θ replaced by kτ , of course.

141

−10 −9 −8 −7 −6 −5 −4 −3 −2
10

−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

perfect FS
discrete EM
Maximum Likelihood
Sum Product

Figure 11.5: Frame Synchronization - 16-PSK - random code

2. the discrete EM estimator in combination with the synchronized factor graph

3. the sum-product algorithm on the overall factor graph

In Fig. 11.5 we see that the sum-product algorithm is again outperformed by the discrete EM algorithm, which in
turn attains near-ML performance. In light of this evidence, the sum-product algorithm may not be the best tool for
performing detection in the presence of unknown discrete parameters.

11.4 Other code-aided hypothesis testing algorithms

We briefly describe two hypothesis-testing algorithms from technical literature that operate on the synchronized factor
graph, much like the discrete EM algorithm. We refer to Fig. 11.6 for the relevant notations. These algorithms will be
applied in Chapter 12.

Mode Separation

The first algorithm (Mode Separation [117]) is based on the following observation: the messages that are computed by
the decoder µck→ϕ (ck) will have a different distribution depending on whether or not the receiver is synchronized.
The technique is described in Algorithm 6. Note that messages are first converted to log-likelihood ratios.

142

Algorithm 6 Mode Separation
1: for kτ = 0 to Mτ − 1 do
2: for kθ = 0 to MΩ − 1 do
3: y = D−kτ (r) e−jkθ2π/MΩ

4: perform SP algorithm:
*compute µak→ϕ (ak) ∝ p (yk| ak)
*compute µϕ→ck

(ck)
*decode and compute µck→ϕ (ck)

5: estimate Mode Separation
*λk = log (µck→ϕ (ck = 1)) − log (µck→ϕ (ck = 0))
*M+ = E [λ|λ > 0]
*M− = E [λ|λ < 0]
*MS (kτ , kθ) = M+ −M−

6: end for
7: end for
8:
[
k̂τ , k̂θ

]
= arg maxkτ ,kθ

MS (kτ , kθ)

Pseudo-ML

A second ad-hoc technique (pseudo-ML [127]) is described in Algorithm 7.

Algorithm 7 Pseudo-ML
1: for kτ = 0 to Mτ − 1 do
2: for kθ = 0 to MΩ − 1 do
3: y = D−kτ (r) e−jkθ2π/MΩ

4: perform SP algorithm:
*compute µak→ϕ (ak) ∝ p (yk| ak)
*compute µϕ→ck

(ck)
*decode and compute µck→ϕ (ck) and µak→ϕ (ak)

5: compute pseudo-likelihood
*λk = log

(∑
ω∈Ω µak→ϕ (ak = ω) × µak→ϕ (ak = ω)

)

*PML (kτ , kθ) =
∑

k λk

6: end for
7: end for
8:
[
k̂τ,MS , k̂θ,MS

]
= arg maxkτ ,kθ

PML (kτ , kθ)

11.5 Main points
In this chapter, we have described two hypothesis testing algorithms. The first is the discrete EM algorithm which
accepts a posteriori probabilities from the synchronized factor graph. The second is the sum-product algorithm on the
overall factor graph. In the discrete EM algorithm the different hypotheses are tested separately (possibly in parallel),
while the SP algorithm on the overall factor graph can be interpreted as testing all hypotheses simultaneously.

We have considered the following hypothesis testing problems: symbol rate detection, frame synchronization
and phase ambiguity resolution. We have argued that for practical systems, applying the SP algorithm on the overall
factor graph may not be the best choice: for both phase ambiguity resolution and frame synchronization, cycles in the
overall factor graph cause the sum-product algorithm to converge to incorrect APPs. Through computer simulations
we have shown that, for the same two problems, the discrete EM algorithm systematically outperforms the sum-
product algorithm on the overall factor graph, and even achieves near-ML performance.

143

detector

I[c = χ(b)]

ϕ ϕI[a = ϕ(c)]

channel parameters
transmit mode
observation y

c0 cm−1 cNc−m cNc−1

a0 aNs−1

p(y|a)

b0 b1 bNb−1

p(b)

Figure 11.6: Data detection: factor graph of p (b) I [c = χ (b)] I [a = ϕ (c)] p (y| a). The observation y, the channel parameters and
transmit mode are parameters (not variables) in this graph.

11.6 Appendix: Rate detection - low-SNR method
We denote by r the expansion of rBB (t) onto a suitable basis. The ML estimate of T is obtained by maximizing the
likelihood function [17]:

T̂ML = arg max
T∈ST

p (r |T) (11.25)

with
p (r |T) = Ea,τ,α [p (r |a, τ, α, T)] (11.26)

where Ea,τ,α [.] denotes the averaging over all possible data sequences, τ and α. We model the phase θ as uniformly
distributed in [0, 2π[; the probability density function of the magnitude is arbitrary (e.g., in case of fading, a Rayleigh
distribution is appropriate), while τ is uniformly distributed in [−∆,+∆]. Taking into account the AWGN noise, we
can write

p (r |a, τ, α, T)

= C exp

(
− 1

N0

∑

k

|rBB (kTs) − αsT (kTs − τ)|2
)

(11.27)

= C ′ exp

(
2Es

N0
<
{
α∗

Ns−1∑

k=0

a∗kyT (kT + τ)

})
(11.28)

where C and C ′ do not depend on T and yT (t) = Ts

∑
k rBB (kTs) p

∗
T (t− kTs) /

√
Es. The quantities yT (kT + τ)

are obtained by applying the received signal to a filter matched to the transmit pulse, corresponding to symbol rate
1/T . Unfortunately, averaging in (11.26) w.r.t. the unknown data symbols is generally intractable. Let us expand
p (r |a, τ, α, T) in a Taylor series. We start from p (r |T) = Ea,τ,α [p (r |a, τ, α, T)] with (up to an irrelevant multiplicat-
ive constant):

p (r |a, τ, α, T) = exp

(
2Es

N0
<
{

Ns−1∑

k=0

zk

})
(11.29)

144

where we have introduced zk
.
= α∗a∗kyT (kT + τ). Expansion in a Taylor series yields

p (r |a, τ, α, T) ≈ 1 +
2Es

N0
<
{

Ns−1∑

k=0

zk

}
(11.30)

+
1

2

(
2Es

N0

)2
(
<
{

Ns−1∑

k=0

zk

})2

The first term in (11.30) is independent of T and can be dropped. The second term is linear in ak, so that, since
E [ak] = 0, E [zk] = 0. Within irrelevant constants, this results in

p (r |τ, α, T) = Ea

(
<
{

Ns−1∑

k=0

zk

})2

 (11.31)

∝ Ea

∑

k,k′

(zk + z∗k) (zk′ + z∗k′)

 (11.32)

=
∑

k

Ea

[
(zk + z∗k)2

]
(11.33)

since Ea [zkz
∗
k′] = 0 and Ea [zkzk′] = 0 when k 6= k′. We now evaluate Ea

[
(zk + z∗k)2

]
, abbreviating yT (kT + τ) with

yk:

Ea

[
(zk + z∗k)2

]
=

α2 (y∗k)2 Ea

[
a2

k

]
+ (α∗)2 y2

kEa

[
(a∗k)2

]
+ |α|2 |yk|2Ea

[
|ak|2

]
(11.34)

It can easily been seen that Ea

[
|ak|2

]
= 1, Ea

[
a2

k

]
= Ea

[
(a∗k)

2
]

= C where C = 0 for complex constellations

and C = 1 for real constellations. Additionally, since α = Aejθ with θ uniformly distributed in [0, 2π[, Eθ

[
α2
]

=

Eθ

[
(α∗)2

]
= 0, so that averaging over θ of (11.33) yields (irrespective of the distribution of A):

p (r |τ, T) ∝
Ns−1∑

k=0

|yT (kT + τ)|2 . (11.35)

Averaging over τ yields:

p (r |T) ∝
Ns−1∑

k=0

∫ +∆

−∆

|yT (kT + τ)|2 dτ (11.36)

=

∫ (Ns−1)T+∆

−∆

w (u) |yT (u)|2 du (11.37)

where w (u) is a window function that depends on Ns, ∆ and T . Assuming NsT ≥ 2∆, w (u) is constant and
proportional to 1/T in the interval ∆ ≤ u ≤ NsT − ∆. For ∆/T � Ns, we can approximate (11.37) with

p (r |T) ∝ 1

T

∫ (Ns−1)T+∆

−∆

|yT (u)|2 du (11.38)

≈ Ts

T

d((Ns−1)T+∆)/Tse∑

k=0

|yT (kTs)|2 . (11.39)

Substituting (11.39) into (11.25) yields the final symbol rate detection algorithm. This algorithm can be interpreted as
selecting the branch in the matched filter bank that yields the largest output energy.

145

Chapter 12

Code-aided estimation: performance results

12.1 Introduction
Now that we have given a detailed description of the application of the EM and SAGE algorithms to channel estima-
tion, synchronization, mode detection, frame synchronization and phase ambiguity resolution, we will present some
simulation results. Before we continue, note that many of the examples below are chosen especially to show off the
power of EM-based estimation. In some cases, more conventional algorithms will perform satisfactorily. In other
cases, the EM-based estimation can be applied without use of the error-correcting code. So, the choice of estimation
algorithms should be made on a case-by-case basis.

This chapter is organized as follows. We first define the performance measures we will consider to compare differ-
ent estimation algorithms in section 12.2. We then move on to practical estimation problems: first the frequency-flat
channel is investigated in considerable detail in section 12.3. This is followed by a more concise look into frequency-
selective channels in section 12.4. We end with the application of the discrete EM algorithm to rate detection in
section 12.5.

12.2 Performance measure

12.2.1 Measures
The ultimate performance criterion is without any doubt the Frame-Error-Rate (FER, also known as Packet-Error-
Rate), i.e., the fraction of packets that could not be recovered correctly. For some applications, the Bit-Error-Rate
(BER) is also a useful performance measure. Finally, we will also consider the Mean Square Estimation Error (MSEE),
i.e., the variance of the estimation error. Note that these performance measures are not equivalent: two algorithms
may yield very different MSEE, but achieve the same BER performance (and the other way round). Similarly, different
algorithms may give rise to different BER performance but the same FER performance (and the other way round). We
mention this to warn the reader that an impressive gain in terms of one performance measure does not necessarily
correspond to an equally impressive gain in terms of another performance measure.

12.2.2 Benchmarks
The FER and BER performance of estimation algorithms will be compared to the FER and BER performance of a
receiver with perfect knowledge of all unknown parameters (a genie receiver1). The MSEE performance of estimation
algorithms is benchmarked against the Modified Cramer-Rao Bound (MCRB) [128]. For unbiased estimators, the
MCRB is a lower bound on the MSEE: no algorithm can achieve an MSEE lower than the MCRB. The MCRB generally
becomes tighter with increasing SNR.

12.3 Channel estimation: frequency-flat channel

12.3.1 System set-up
We will consider a turbo code where the constituent convolutional encoders are recursive and systematic with octal
generators (21, 37)8 and constraint length ν = 5. Only the first convolutional code is terminated. The interleaver is

1A genie provides the receiver with all unknown parameters. Also: a genie-aided receiver.

147

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

Figure 12.1: BER (left) and FER (right) performance of genie receiver. Different curves correspond to different iterations (from one to ten).

pseudo-random, varies from frame to frame and has length Nb = 240 bits. The turbo code has a rate 1/3, yielding
Nc = 720 coded bits. These bits are interleaved prior to Gray-mapping onto a 4-PSK constellation. This results in a
scheme known as bit-interleaved coded modulation (BICM) [35,129,130]. TheNs = 360 4-PSK symbols are placed on
square-root cosine roll-off pulses with roll-off factor 0.2 (20%). The resulting signal is transmitted over an equivalent
complex baseband channel

hBB (t) = ejθδ (t− τ) . (12.1)

This means we consider the channel amplitude to be known. The received complex baseband signal is sampled at
four times the symbol rate. After estimation of θ and τ , matched filter outputs are timing-corrected and rotated,
yielding y = [y0, . . . , yNs−1]

T , which is provided as a parameter to a synchronized factor graph, representing the
factorization of p

(
a,b, c,x

∣∣∣r, τ̂ , θ̂
)

= p (a,b, c,x |y), where x is a vector of additional variables and where τ̂ and

θ̂ are the estimates of the propagation delay and carrier phase, respectively. Applying the sum-product algorithm
on this graph results in (approximations of) the a posteriori probabilities

{
p
(
ak

∣∣∣r, τ̂ , θ̂
)}

,
{
p
(
bk

∣∣∣r, τ̂ , θ̂
)}

and
{
p
(
ck

∣∣∣r, τ̂ , θ̂
)}

. Due to the cycles in the graph, the sum-product algorithm will be iterative. We will perform 10
decoding iterations in the synchronized factor graph at the receiver.

Estimation

All code-aided estimation algorithms are embedded algorithms (as described in Chapter 10), whereby we update the
parameter estimates after each decoding iteration, without resetting the synchronized factor graph. More details
w.r.t. the exact implementation will be provided as we go along.

12.3.2 Genie receiver

Let us first evaluate the performance of the genie receiver, which has perfect knowledge of both θ and τ . In Fig. 12.1
we show BER and FER as a function of the SNR (expressed in Eb/N0 in dB) for different iterations.

12.3.3 Phase estimation

In a first phase, we will assume that τ is perfectly known to the receiver.

Fractional phase estimation

Consider the problem where the carrier phase ambiguity has been resolved. Hence, the (initial) estimation error is in
the interval [−π/4,+π/4]. Three estimation algorithms will be investigated:

148

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

E
b
/N

0
 [dB]

M
S

E
E

MCRB
VV
VV EM
VV P−EM

Figure 12.2: Phase estimation: MSEE performance for fractional phase estimation after 10 EM iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
VV
VV EM
VV P−EM

Figure 12.3: Phase estimation: BER performance for fractional phase estimation after 10 EM iterations.

149

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
VV
VV EM
VV P−EM

Figure 12.4: Phase estimation: FER performance for fractional phase estimation after 10 EM iterations.

• The Viterbi&Viterbi (VV) algorithm (see Chapter 9, section 9.2),

• The embedded EM algorithm (see Chapter 9, section 9.3), initialized by the VV algorithm,

• The parallel embedded EM algorithm (see Chapter 10), with two initial estimates: one from the VV algorithm
and a second estimate obtained by rotating the VV estimate over kπ/4, where k ∈ Z0 is selected such that the
resulting estimate gives rise to an estimation error in the interval [−π/4,+π/4].

The MSEE performance after 10 decoding iterations is shown in Fig. 12.2. The VV algorithm results in a MSEE
that is far away from the MCRB. The EM algorithm is able to reduce the MSEE. A small extra gain is achieved by the
application of the P-EM algorithm. However this latter approach doubles the computational cost. Note that the P-EM
algorithm attains the MCRB for Eb/N0 > 2 dB. Hence, beyond 2 dB, no other estimation algorithm can outperform
the P-EM algorithm in terms of MSEE performance.

The corresponding BER is shown in Fig. 12.3: in terms of BER, the VV algorithm gives rise to a degradation of
up to 1 dB. The EM algorithm is again able to reduce the degradation to around 0.5 dB, while the P-EM algorithm
results in a BER degradation of less than 0.2 dB. So, even-though the computational complexity related to estimation
is fairly large, from a BER point of view, the P-EM algorithm is required to reduce the degradations to an acceptable
level.

Let us now see how this all translates in FER performance (see Fig. 12.4): again the VV algorithm leads to a de-
gradation (now less than 1 dB), while both variations of the EM algorithm lead to roughly the same FER performance.

Phase ambiguity resolution

Of course, the above problem of fractional phase estimation is not realistic. In reality the phase ambiguity has not
alway been resolved perfectly. Before we move on to more realistic scenarios, we first tackle the problem of phase
ambiguity resolution, whereby we assume that θ ∈ {0, π/2, π, 3π/2}. Again τ is perfectly known to the receiver. We
will consider three code-aided algorithms to perform phase ambiguity resolution:

• the discrete EM algorithm from Chapter 10, section 10.4.2;

150

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
Mode Separation
pseudo−ML
D−EM

Figure 12.5: Phase ambiguity resolution: BER performance after 10 decoding iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
Mode Separation
pseudo−ML
D−EM

Figure 12.6: Phase ambiguity resolution: FER performance after 10 decoding iterations.

151

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
P−EM with 8 initial estimates
P−EM with 4 initial estimates

Figure 12.7: Phase estimation: BER performance for total phase estimation after 10 EM iterations.

• the Mode Separarion algorithm [117];

• the pseudo-ML algorithm from [127].

The latter two algorithms were described at the end of the previous chapter. These three algorithms operate in a
similar way: for each of the four possible hypotheses, the packet is decoded using the synchronized factor graph.
The outputs of the decoder are used to compute a certain metric. Based on this metric, a decision w.r.t. the correct
hypothesis is made.

To reduce the computational complexity, we perform one decoding iteration for each of the four hypotheses, then
make a decision w.r.t. the phase ambiguity and then perform the remaining nine iterations for the selected estimate
of the ambiguity. This requires a total of 4 + 9 = 13 decoding iterations, as opposed to 40 decoding iterations for the
full-blown algorithms.

The BER (FER) performance of the three algorithms is shown in Fig. 12.5 (Fig. 12.6). The different algorithms lead
to roughly the same performance. Observe the near-perfect FER performance: even without training symbols, the
ambiguity does not cause a noticeable degradation.

Total phase estimation

We now combine the ideas from the previous paragraphs to perform phase estimation, without any assumptions re-
garding the possible values of the phase (or the estimation error). As we are not using pilot symbols, there is no con-
ventional algorithm that is able to estimate the phase. Furthermore, the Mode Separation and pseudo-ML algorithms
from the previous section cannot be applied2, as they are hypothesis testing algorithms, not estimation algorithms.
Hence, we can only apply the parallel EM algorithm: we first estimate the phase with the VV algorithm to obtain an
estimate θ̂V V in the interval [−π/4,+π/4]. Then MEM initial estimates are constructed as θ̂(0)

k = θ̂V V + k2π/ (MEM),
k = 0, . . . ,MEM − 1. For each of these estimates, we perform a single decoding iteration in the synchronized factor
graph of the receiver. We then select the ’best’ initial estimate according to the parallel EM algorithm, and perform
the remaining 9 EM iterations using only that initial estimate. After each iteration, the phase estimate is updated.

2To be fair, we could replace the decision rule of the parallel EM algorithm with those of the Mode Separation or Pseudo-ML techniques.
Considering the previous results from this section, we expect little performance difference as compared to the parallel EM algorithm.

152

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
P−EM with 8 initial estimates
P−EM with 4 initial estimates

Figure 12.8: Phase estimation: FER performance for total phase estimation after 10 EM iterations.

In Fig. 12.7 and Fig. 12.8 BER and FER results are shown forMEM = 4 (the smallest possible value) andMEM = 8.
It is clear that in order to achieve small FER degradations, only MEM = 8 gives acceptable results. Note that we have
not optimized MEM . In practice, one would try to minimize MEM ≥ 4 to achieve a target FER.

12.3.4 Delay estimation

In this second phase, we assume the receiver has perfect knowledge of the carrier phase θ.

Fractional delay estimation

As a first step, we consider fractional delay estimation: assume the receiver has perfect knowledge of the carrier phase
θ, and perfect frame synchronization has been achieved. Hence, the initial delay error is in the interval [−T/2,+T/2].
Two estimation algorithms will be considered:

• The Oerder&Meyr (OM) algorithm (see Chapter 9, section 9.2),

• The embedded EM algorithm (see Chapter 9, section 9.3), initialized by the OM algorithm. The maximization
from (9.54) is performed by the well-known Newton-Raphson algorithm.

In parallel to the results for fractional phase estimation, we first show the MSEE performance in Fig. 12.9: the OM
estimator is far away from the MCRB, while the EM estimator attains the MCRB for Eb/N0 > 1.5 dB. Hence, beyond
this SNR, no other estimation algorithm can outperform the EM algorithm in terms of MSEE performance.

The corresponding BER is shown in Fig. 12.10: in terms of BER, the OM algorithm gives rise to a degradation of
up to 0.8 dB. The EM algorithm is again able to reduce the degradation to less than 0.1 dB for all considered SNR. FER
performance is depicted in Fig. 12.11: the degradation of around 0.3 dB from OM estimation is almost completely
removed by the EM algorithm.

153

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

M
S

E
E

MCRB
OM
OM EM

Figure 12.9: Delay estimation: MSEE performance for fractional delay estimation after 10 EM iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
OM
OM EM

Figure 12.10: Delay estimation: BER performance for fractional delay estimation after 10 EM iterations.

154

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
OM
OM EM

Figure 12.11: Delay estimation: FER performance for fractional delay estimation after 10 EM iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
Mode Separation
pseudo−ML
D−EM

Figure 12.12: Frame synchronization: BER performance after 10 decoding iterations.

155

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

BER: FS

genie
Mode Separation
pseudo−ML
D−EM

Figure 12.13: Frame synchronization: FER performance after 10 decoding iterations.

Frame synchronization

Again, the problem of fractional delay estimation is not realistic. In reality we cannot assume that perfect frame
synchronization has been achieved. Before we move on to more realistic scenarios, we first tackle the problem of
frame synchronization, whereby we assume that τ ∈ {−2T, . . . , 2T}. We will consider three code-aided algorithms
to perform frame synchronization: the discrete EM algorithm as well as the two algorithms from recent technical
literature: Mode Separation and pseudo-ML (as described at the end of the previous chapter).

To reduce the computational complexity, we perform one decoding iteration for each of the five hypotheses, then
make a decision w.r.t. the frame position and then perform the remaining nine iterations for the selected estimate of
the frame position. This requires a total of 5 + 9 = 14 decoding iteration, as opposed to 50 decoding iterations for the
full-blown algorithms.

The BER (and FER) performance of the three algorithms is shown in Fig. 12.12 (and Fig. 12.13). The different
algorithms lead to roughly the same performance. Observe the near-perfect FER performance: even without training
symbols, frame synchronization can be performed without a noticeable degradation.

Total Delay estimation

Combining the results from the previous sections, we construct the following code-aided algorithm to perform joint
delay estimation and frame synchronization: we estimate the fractional part of τ through the OM algorithm, resulting
in τ̂OM . ThenMEM initial estimates can be constructed as τ̂ (0)

k = τ̂OM +kT/M̃ for suitable values of k and M̃ , so that
all τ̂ (0)

k are in the interval [−M1T, . . . ,M2T]. For each of these estimates, we decode the packet. We then select the
best initial estimate according to the parallel EM algorithm, and perform the remaining 9 EM iterations using only
that initial estimate. After each iteration, the delay estimate is updated.

In Fig. 12.14 and Fig. 12.15 results are shown for MEM = 5 and M̃ = 1, which are the minimal values to perform
joint delay estimation and frame synchronization (as demonstrated in [110]). A non-negligible BER degradation is
noticeable. This degradation can be removed by making a decision w.r.t. the best initial estimate after more than one
decoding iteration, at an increase in computational complexity. On the other hand, the FER performance is quite
acceptable.

156

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
P−EM with 5 initial estimates

Figure 12.14: Delay estimation: BER performance for total delay estimation after 10 EM iterations.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
P−EM with 5 initial estimates

Figure 12.15: Delay estimation: FER performance for total delay estimation after 10 EM iterations.

157

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
conventional estimation (NDA + DA)
EM with 1 initial estimate

Figure 12.16: Joint delay and phase estimation: BER performance after 10 EM iterations for conventional estimation and EM estimation. A
pilot sequence of 10 pilot symbols was assumed.

12.3.5 Joint delay and phase estimation
As a final step, we will consider joint delay and phase estimation, including frame synchronization and phase am-
biguity resolution. Clearly, when no pilot symbols are present, conventional estimation algorithms cannot be ap-
plied. So, let us first consider a situation where we include 10 pilot symbols in the data stream. This will result in a
rate/power loss of around 0.12 dB. Performing estimation without exploiting code properties leads to BER (resp. FER)
results shown in Fig. 12.16 (resp. 12.17) (denoted ’conventional estimation’). We see very high degradations, both in
terms of BER and FER. Suppose we now take the obtained estimate from the conventional estimation algorithms as
an initial estimate for our code-aided EM estimator (denoted ’EM with 1 initial estimate’) in Fig, 12.16-12.17. The EM
estimator was not able to reduce the degradations because of the poor quality of the initial estimates.

Let us now see what happens when we perform the parallel EM algorithm without using pilot symbols. We con-
sider the same number of initial estimates as for total delay estimation and total phase estimation: 5 initial estimates
for τ , and 8 initial estimates for θ. We make a decision w.r.t. initial estimate after the n-th decoding iteration, and
show results for n = 1, . . . , 10.

In Fig. 12.18 and Fig. 12.19 we show BER and FER performance results, respectively. Different curves correspond
to different iterations when the decision w.r.t. the frame position and phase ambiguity is made (i.e., after 1 iteration
in the top-most curve, after 2 iterations in the curve below and so forth). The topmost curve leads to the largest
degradations, but at the same time corresponds to the lowest complexity.

While the degradations compared to the genie receiver are non-negligible, the reader should be aware of the fact
that no pilot symbols are used in any of these simulations. The code is able to synchronizes itself. In that respect, the
performance of the code-aided estimation algorithms is very impressive.

12.4 Channel estimation: frequency-selective channel

12.4.1 System set-up
As our research in this area was mainly focused on DS/SS systems, the system model will be slightly different. We
will consider a convolutional code which is recursive and systematic with octal generators (23, 35)8 and constraint

158

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
conventional estimation (NDA + DA)
EM with 1 initial estimate

Figure 12.17: Joint delay and phase estimation: FER performance after 10 EM iterations for conventional estimation and EM estimation. A
pilot sequence of 10 pilot symbols was assumed.

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
P−EM

Figure 12.18: Joint delay and phase estimation: BER performance after 10 EM iterations. There are no pilot symbols present.

159

−1 −0.5 0 0.5 1 1.5 2 2.5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
P−EM

Figure 12.19: Joint delay and phase estimation: FER performance after 10 EM iterations. There are no pilot symbols present.

length ν = 5. The informationNb = 180 bits are encoded with this rate 1/2 code, yielding Nc = 360 coded bits. These
bits are interleaved prior to Gray-mapping onto an 8-PSK constellation. The 120 8-PSK symbols are preceded by 10
pilot symbols and are placed on a unit-energy pulse. We consider a pulse of the form

p (t) =
1

Ng

Ng∑

k=0

ρkpc (t− kT/Ng) (12.2)

where pc (t) is a square-root cosine roll-off pulse with roll-off factor 0.3 (30%) and we set Ng = 7 with [ρ0, . . . , ρ6] =
[−1,+1,−1,+1,+1,+1,−1]. The resulting signal is transmitted over an equivalent complex baseband channel

hBB (t) =
L−1∑

l=0

αlδ (t− τl) . (12.3)

As different channels lead to different BER and FER performance, we have chosen to select a fixed instantiation of
the channel with L = 3 taps with

[α0, α1, α2] = [−0.299 − j0.567, 0.307 + j0.609, 0.301 + j0.378] (12.4)

and
[τ0, τ1, τ2] = [1.5, 3.5, 6] ∗ T/Ng. (12.5)

The detector consists of an augmented MMSE equalizer (as described in Chapter 5), and a sum-product demodu-
lator/decoder.

Estimator set-up

To estimate the channel impulse response, we will consider a structured estimator, based on the SAGE algorithm,
that estimates the channel gains and propagation delays. The initial estimate is purely data-aided (see Chapter 9,
section 9.2.1.2): for the initial estimate, the maximization w.r.t. the delays is performed by a line search in the range3

3Hence, strictly speaking, we will not consider frame synchronization.

160

−4 −3 −2 −1 0 1 2 3 4 5
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

M
S

E
E

 (
ga

in
s)

MCRB 10 symbols
MCRB 130 symbols
DA
SAGE

−4 −3 −2 −1 0 1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

E
b
/N

0
 [dB]

M
S

E
E

 (
de

la
ys

)

MCRB 10 symbols
MCRB 130 symbols
DA
SAGE

Figure 12.20: Channel parameter estimation - MSEE performance for gain estimation (left) and delay estimation (right).

τk ∈ [0, T]. Subsequent maximizations w.r.t. the propagation delays are performed through the Newton-Raphson
algorithm. For frequency-selective channels, we have to be less ambitious with respect to the number of training
symbols, as compared to frequency-flat channels: too few pilot symbols will result in unreliable initial estimates,
while too many pilot symbols will degrade the system performance because of the reduction of power and bandwidth
efficiency4. For our system model, we have found that 10 pilot symbols is a reasonable trade-off: the resulting loss
amounts to around 0.35 dB. We will perform 6 decoding iterations. After each decoding iteration, we update all the
channel parameters according to the embedded SAGE algorithm (see Chapter 10).

12.4.2 MSEE performance

Let us start with MSEE performance. In Fig. 12.20, we show the MSEE of the estimated channel gains (on the left)
and propagation delays (on the right). We have added the MCRBs corresponding to 10 symbols (the pilot sequence)
and to 130 symbols (the entire frame). We see that the DA estimates result in an MSEE that is above the 10-symbols
MCRB, and converges to that MCRB for increasing SNR, as we would expect. When we apply the SAGE estimator,
we come closer to the 130-symbols MCRB. We see that at high SNR, we achieve optimal MSEE performance, both for
delay and for gain estimation.

12.4.3 Error rate performance

We will now see how the impressive MSEE results translate into BER and FER performance. We remind that, due to
pilot insertion, we expect a performance loss (also: rate loss, pilot insertion loss) of at least 0.35 dB as compared to a
genie receiver (i.e., a receiver that knows the channel perfectly and thus requires no pilot symbols). In Fig. 12.21, we
plot BER and FER performance for three scenarios: the genie receiver, the receiver where the channel parameters are
estimated exploiting only the pilot symbols (DA estimator), and the SAGE estimator. We see that the DA estimator
leads to degradations of around 1 dB, both in terms of BER and FER performance. The SAGE estimator is able to
reduce this degradation to around the rate loss due to pilot insertion.

We conclude that the SAGE estimator can achieve good performance in terms of MSEE, BER and FER, but at a
cost of bandwidth and power efficiency. In contrast to the frequency-flat channel, we were not able to create a SAGE
estimator that does not require pilot symbols. However, should a reliable channel estimation algorithm be found that
requires less (or no) pilot symbols, it can be used in conjunction with our code-aided SAGE estimator.

4Assuming the total power to be allocated to the packet to be constant.

161

−4 −3 −2 −1 0 1 2 3
10

−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

genie
DA
SAGE

−4 −3 −2 −1 0 1 2 3
10

−2

10
−1

10
0

E
b
/N

0
 [dB]

F
E

R

genie
DA
SAGE

Figure 12.21: Channel parameter estimation - BER performance (left) and FER performance (right)

12.5 Rate detection

12.5.1 System Model
The last problem we will consider is that of rate detection (see Chapter 11, section 11.2). The transmitter sends a
sequence of Ns symbols using a transmit pulse pT (t), corresponding to symbol rate 1/T . The symbol interval T
belongs to a finite set of equiprobable values: T ∈ ST = {Tmin, . . . , Tmax}. The receiver knows the set ST .

The channel is assumed to be frequency-flat. We consider a fully digital receiver whereby the signal rBB (t) is
band-limited through analog filtering and sampled at a fixed rate 1/Ts:

rBB (kTs) = AejθsT (kTs − τ) + n (kTs) (12.6)

with E [n (kTs)n
∗ (lTs)] = N0Tsδk−l and sT (t) the transmitted signal, corresponding to an unknown symbol rate

1/T . For convenience, issues related to frame synchronization and phase ambiguity resolution will not be addressed
in this section.

12.5.2 Rate detection algorithms
We will consider the three rate detection (RD) algorithms that were described in Chapter 11, section 11.2:

• A cyclic correlation-based algorithm from [121] performs rate detection in front of the matched filter bank. This
algorithm requires no knowledge of τ , A or θ.

• A second algorithm is based on a low-SNR approximation of the likelihood function [124]. This algorithm
requires no knowledge of τ , A or θ. It is computationally more complex than the cyclic correlation approach
from [121], since now the incoming signal has to be filtered by each of the matched filters.

• A last algorithm is the discrete EM algorithm from Chapter 11, section 11.2. The received signal is applied to
the matched filter bank, and to each filter output, an algorithm for estimating τ , A and θ is applied. For reasons
of computational complexity, we treat the data as uncoded during rate detection.

The performance measure we consider is the RD error probability (RDEP), i.e., the fraction of frames for which the
symbol rate is not correctly detected. As a detection error results in the loss of an entire frame, the RDEP should be
sufficiently low. More specifically, if we denote the BER of a (coded or uncoded) system under perfect symbol rate
detection by BER0, then the BER in the presence of occasional RD errors is upper-bounded by

BERRD < BER0 (1 −RDEP) + 1 ×RDEP (12.7)

≈ BER0

(
1 +

RDEP

BER0

)
. (12.8)

162

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 [dB]

R
D

E
P

N
s
=128

cyclostationary
low SNR
EM−NDA−est.(τ,θ)
EM−NDA−perfect(τ,θ)
EM−DA−est.(τ,θ)
EM−DA−perfect(τ,θ)

Figure 12.22: Rate detection error probability (RDEP) as a function of the SNR for block length Ns = 128

Consequently, in order to obtain a low BER degradation due to RD, the ratio RDEP/BER0 should be below 1, in
which case we obtain BERRD < 2BER0. A similar reasoning can be applied to frame error rate performance.

12.5.3 Performance results

We have carried out computer simulations for BPSK transmission, with pT (t) a square-root cosine roll-off pulse with
roll-off α = 0.5. We set S = {4Ts, 8Ts, 16Ts} and consider frame lengths Ns= 128 and Ns = 512. The propagation
delay τ and the carrier phase θ will be estimated using the conventional Oerder&Meyr [90] and Viterbi&Viterbi [92]
algorithm, respectively. We assume A = 1 and A is known to the receiver.

In the discrete EM algorithm we discern four sub-cases: the propagation delay τ and the carrier phase θ are either
known at the receiver or are estimated using conventional algorithms from [90] and [92], respectively. These cases
are denoted by ’perfect(τ, θ)’ and ’est(τ, θ)’ in Fig. 12.22-12.23, respectively. On the other hand, the data symbols a

are either known at the receiver (to be denoted ’EM-DA’, for Data-Aided) or unknown (to be denoted ’EM-NDA’, for
Non-DA). Simulations for a given RD algorithm were halted after at least 100 rate detection errors.

Fig. 12.22 (resp. Fig. 12.23) displays RDEP for the different configurations for Ns = 128 (resp. Ns = 512). We
observe that the cyclic correlation-based approach exhibits very poor performance in the considered SNR range.
This is due to two factors: for low rates, excess noise will degrade the performance, while for high rates, the number
of samples per symbol interval is too low to accurately detect T . The EM-NDA algorithm outperforms the low-
SNR algorithm by about one order of magnitude. The performance of the NDA EM-based algorithm can be further
improved by around 1 dB by applying more advanced estimation algorithms for τ and θ (see EM-NDA-perfect(τ, θ)).
On the other hand, an improvement of around 3.5 dB is visible when the data symbols are assumed to be known at the
receiver. This gives us some idea of the performance improvements attainable by exploiting code properties during
RD. Combining these two (i.e., exploiting the code during RD and using superior algorithms for estimation), can give
us a total improvement of around 7 to 8 dB. We remind that exploiting code properties during rate estimation gives
rise to a significant computational overhead, so that the resulting computational complexity may not justify such a
code-aided approach.

163

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 [dB]

R
D

E
P

N
s
=512

cyclostationary
low SNR
EM−NDA−est.(τ,θ)
EM−NDA−perfect(τ,θ)
EM−DA−est.(τ,θ)

Figure 12.23: Rate detection error probability (RDEP) as a function of the SNR for block lengthNs = 512

164

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 [dB]

B
E

R

N
s
 = 128

BER
0

cyclic correlation
low SNR
EM−NDA−est.(τ,θ)
EM−NDA−perfect(τ,θ)

Figure 12.24: BER performance for turbo code for Ns = 128

165

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
s
/N

0
 [dB]

B
E

R

N
s
 = 512

BER
0

cyclic correlation
low SNR
EM−NDA−est.(τ,θ)

Figure 12.25: BER performance for turbo code for Ns = 128

166

In Fig. 12.24 (resp. Fig. 12.25), the impact of rate detection on the overall BER for a turbo-coded system5 can be
observed for Ns = 128 (resp. Ns = 512). For Ns = 512, both the low-SNR and EM-based algorithm yield excellent
performance. ForNs = 128, the situation is somewhat different: the low-SNR method gives rise to a BER degradation
of around 2 dB. Application of the EM-based algorithm reduces this degradation to around 1 dB. For the sake of
illustration, we have included the BER performance when τ and θ are perfectly known at the receiver. The resulting
degradation is around 0.5 dB. This means that by applying superior propagation delay and carrier phase estimation
algorithms, a small reduction in BER degradation is possible. In order to reduce the degradation even further, one
must consider code-aided rate detection algorithms.

12.6 Main Points
In this chapter, we have applied the code-aided EM and SAGE algorithms to some specific estimation problems. We
first treated estimation of carrier phase and propagation delay for frequency-flat channels, where we illustrated that
different estimation problems call for different estimation algorithms. When ample computational power is available,
code-aided estimation can be performed, removing the need for training sequences in state-of-the-art error-correcting
codes. This remarkable feat is mainly due to the inherent randomness of these codes.

For frequency-selective channels, a short pilot sequence is required to obtain an initial estimate of the channel
parameters, resulting in a performance penalty. For the system we considered, any degradation due to unreliable
channel estimation has been removed by the application of the SAGE estimator.

Finally, we investigated different rate detection algorithms. The conventional algorithms are all outperformed by
the discrete EM algorithm, at the cost of some computational overhead. For some situations (e.g., bursts with many
symbols), conventional techniques perform satisfactory.

While we have selected some examples that really make code-aided estimation shine, we stress that each problem
requires a specially tailored estimation algorithm. This algorithm will be a trade-off between performance, affordable
complexity and processing delay. The main message is that there is no hard and fast solution for all estimation
problems.

5We consider a rate 1/3 turbo code whereby the constituent convolutional codes are recursive, systematic and separated by a pseudo-random
interleaver. The codes have generator polynomials (21, 37)8 and constraint length 5. Only the first convolutional code is terminated.

167

Part IV

Concluding Remarks

Chapter 13

Open Issues and Loose Ends

13.1 Introduction
In this dissertation, we have tackled problems related to mode adaptation and estimation for coded multi-mode
receivers. Although the algorithms we have derived are quite general, we have limited ourselves in many ways. For
instance, we only considered a scenario with a single user, where transmitter and receiver are equipped with a single
antenna. How will the detection and estimation algorithms behave in a multi-antenna and/or multi-user setting? We
focused on linear modulations for a single carrier system. What modifications are required for multi-carrier systems?
Also, the channel model was limited to a quasi-static block fading channel, which may be unrealistic in practical
applications (e.g., when transmitter and/or receiver are moving). When the channel parameters and synchronization
parameters are time-varying, other estimation techniques may be called for. Furthermore, we selected a particular
set of parameters to estimate. Some parameters, such as oscillator frequency offsets, Doppler shifts, thermal noise
variance were assumed to be known at the receiver. Additionally, although we have discussed mode adaptation (i.e.,
how the receiver can adapt to different transmit modes), we did not pay much attention on link adaptation (i.e., when,
according to which criteria, to select a given mode). How much can be gained by clever link adaptation? How does
all this translate into information-theoretical concepts? How much do we lose, in terms of capacity, by not having
perfect knowledge of the channel parameters, synchronization parameters and/or transmit mode? This is related to
the impact of imperfect channel knowledge at the transmitter: link adaptation requires some type of channel state
information to be fed back from the receiver to the transmitter.

By its very nature, this dissertation cannot encompass all these aspects. In the current chapter, we briefly touch
upon some of these issues.

13.2 Parameter estimation

13.2.1 Static parameters
The proposed algorithms can be easily altered/extended to suit different scenarios. Factor graph descriptions of
almost any conceivable receiver configuration can be created. Once an observation model is constructed, the EM
and SAGE algorithms can be obtained in a straightforward way. For instance, we have applied the SAGE algorithm
to channel estimation and synchronization for multi-user, multi-antenna systems in [131–133]. The mathematical
manipulations become somewhat cumbersome, but the principles remain the same: an iterative detector computes
(approximations of) the APPs of the coded symbols. These are used in the evaluation of the E-step of the EM or SAGE
algorithms.

Estimation of additional parameters such as thermal noise variance and frequency offsets can easily be included
in the EM and SAGE estimation algorithms. Code-aided frequency offset estimation has already been described
in [19] and applied in [134]. EM-based noise variance estimation has been addressed in [135].

13.2.2 Time-varying parameters
Code-aided estimation of time-varying parameters is a very challenging subject. A simple, yet illustrative example is
the following. Assume a frequency-flat, time-varying channel. The channel inputs are symbols ak, k = 0, . . . , Ns − 1.
The channel outputs are rk, k = 0, . . . , Ns − 1, with

rk = αkak + nk

171

where nk ∼ CN
(
0, 2σ2

)
. The a priori distribution of α = [α0, . . . , αNs−1]

T , p (α), is known. MAP estimation of α

leads to

α̂MAP = arg max
α

p (r |α) p (α) . (13.1)

Different ways of solving (13.1) by exploiting code properties can be conceived. First of all, we can simply apply
the EM-based techniques operating on the synchronized factor graph of the factorization of p (a |r, α̂). Since the
parameter to be estimated contains many components, SAGE-like algorithms are required. Alternatively, overall
factor graphs can be constructed that incorporate the unknown parameter α, as well as its a priori distribution.
Finally, more ad-hoc techniques have been developed. These three types of estimators are currently receiving much
attention from the technical community.

EM-based techniques

The most obvious way to proceed, would be to apply the SAGE algorithm to estimate the different αk’s. Unfor-
tunately, although such a technique guarantees convergence to a local maximum of the a posteriori distribution
p (α |r), many local maxima are present. This makes straightforward SAGE estimation of time-varying parameters
very sensitive to the initial estimate.

More successful attempts are reported in [136, 137]: in [136] the recursive EM algorithm is applied with fixed-
interval Kalman smoothing for tracking fast Rayleigh frequency-flat channels. Kalman smoothing is also used in a
similar way in [137] for under-sampled frequency selective fading channels.

Overall Factor Graphs

The use of overall factor graphs for estimating time-varying parameters has received some attention in the last few
years. In the context of phase estimation, we mention [102–104]: assuming a simple auto-regressive model, the a
priori knowledge about the phase was be incorporated into the overall factor graph. As we explained in Chapter
9, the main problem with this approach lies in the computation and representation of messages. This problem is
avoided in [30, 107] for tracking frequency-flat channels, modeled as a first-order Markov chain: the overall factor
graph is broken into two parts, one corresponding to the detector, operating under the assumption of perfect channel
knowledge, and a second part corresponding to the channel, operating under the assumption of perfect knowledge
of the transmitted sequence. The part of the factor graph corresponding to the channel then accepts decisions (either
hard or soft) from the part corresponding to the decoder. The part corresponding to the decoder, accepts an estimate
of the channel coefficients. Within both parts, the standard sum-product algorithm is applied. For the part of the
graph corresponding to the channel, this turns out to be equivalent to standard Kalman smoothing. As is shown
in [8], the corresponding messages can be represented and computed in a very simple way.

Ad-hoc methods

While the EM-based techniques as well as overall factor graphs have the benefit of providing near-optimal solutions
(in some sense), they have a common drawback: they require explicit knowledge of the a priori distribution of the
channel parameters. When such knowledge is not available, a mismatch occurs between the channel model and the
actual channel, which in turn will degrade the performance [138].

Many other code-aided estimators have been described, which do not require exact knowledge of this a priori
distribution, and are therefore inherently sub-optimal. Some of these estimators require significant modifications to
the detector (e.g., techniques based on per-survivor processing [139], and those from [140, 141]).

An important class are the augmented estimators. These are conventional estimators (i.e., from before the turbo-
era), that have been augmented1 to accept soft information from a detector/decoder. This idea was applied in [142]
for timing recovery and in [143] for phase noise estimation. In both cases, a Phase-Locked Loop (PLL) is used,
whereby the conventional hard decisions are replaced with soft decisions.

13.2.3 Discussion
When designing code-aided estimation algorithms, care must be taken to develop algorithms that (i) do not cause too
much computational overhead, (ii) do not require severe modifications to the detector. In both respects, embedded
EM-based estimation techniques seem the most promising for estimating static parameters.

As far as code-aided estimation of time-varying parameters is concerned, the race is still very much open. Factor
graphs are attractive from a theoretical point of view, but may be too complex to implement and require significant

1much like the MMSE equalizer we described in Chapter 5.

172

modifications to existing, off-the-shelf receivers. EM-based techniques seem to offer a good performance-complexity
trade-off, but a general framework is still absent. For very specific problems, such as phase noise estimation and
timing jitter, more ad-hoc approaches may be the best solution. In any case, it would seem that the most promising
approaches to perform code-aided estimation will be a combination of existing techniques (PLLs, Kalman Filters, the
EM algorithm etc.), and new insights (such as factor graphs and the sum-product algorithm).

13.3 Link adaptation
Already briefly mentioned in Chapter 6, the problem of link adaptation has been studied extensively in the last few
years. See [13, 20, 144] and references therein. The idea behind link adaptation is to define a strategy to dynamically
adapt the transmit mode, in order to increase both the spectral efficiency and the data rate. For instance, when
information cannot be conveyed reliably over the channel in a given transmit mode (e.g., when the channel is in a
deep fade), a different code and/or modulation scheme may be employed.

This approach to link adaptation brings to mind the following problem: for the transmitter to adapt to the channel
conditions, it needs to have some kind of knowledge regarding the current channel state. This implies that the
receiver must send back channel state information to the transmitter. Hence, there is a strong link between link
adaptation and channel estimation.

Information-theoretic approaches to the impact of channel knowledge at the transmitter and the receiver were
treated in [145]. With the advent of multi-antenna (MIMO) systems, with their enormous potential for capacity
gains, this issue is again receiving increased attention. A recent overview on this topic can be found in [146]. Many
aspects need to be considered: what type of channel state information will be sent back to the receiver, long-term
or short-term information, how often, with what delay? In theory, when both transmitter and receiver have perfect
channel knowledge, the transmitter can often be designed in such a way that the task of the receiver becomes much
more simple. For instance, a MIMO system can be converted into a number of parallel, non-interfering systems,
making detection a very simple task of low computational complexity [147]. In practice, one often assumes that only
the receiver has perfect channel state information. This makes the receiver much more difficult to implement, with a
very high computational cost [148].

We conclude that channel estimation and link adaptation are closely related.

13.4 Main Points
The estimation algorithms proposed in Part III of this dissertation can (and have been) extended to a wide variety of
estimation and synchronization problems in quasi-static environments. In order to perform code-aided estimation
of time-varying parameters, no best solution has yet been found. We have touched upon some important links
between the problem of estimating the channel state and link adaptation. A unified theory encompassing code-aided
estimation algorithms, channel state feedback, link adaptation and the impact of the complexity of the transmitter
and the receiver are important topics for future work, especially for time-varying channels.

173

Chapter 14

Conclusions

14.1 Introduction
In this dissertation, we have striven to design a receiver, suitable for coded multi-mode transmission in a quasi-static
block-fading environment. In multi-mode transmission, the transmitter can select one of several transmit modes,
depending on channel conditions, content type etc. The transmit mode is completely defined by a set of parameters.
These may include the code, code rate, modulation format, bandwidth, transmission rate, transmit power, etc. Both
the transmitter and the receiver are required to adapt to the transmit mode in an efficient way. In general, the receiver
has no exact knowledge of the current transmit mode and must perform mode detection. The receiver also faces the
challenges present in mono-mode receivers: namely those of channel estimation, delay estimation, synchronization,
equalization, and demodulation. On top of all these problems, we have assumed coded transmission, whereby the
data-stream is protected by a powerful error-correcting code (such as a turbo- or an LDPC code). Although such
codes are very promising in a sense that they achieve performance near the Shannon limit, they operate at extremely
low signal-to-noise-ratios (SNR). This makes the tasks of estimation very difficult.

The goal of this thesis was two-fold: on the one hand we wanted to develop a detector that can efficiently adapt to
varying channel conditions and transmit modes. On the other hand, we have derived a class of code-aided estimation
algorithms that may be used in low-SNR environments. Of course, the detector and the estimator have to be designed
to cooperate in a seamless way.

14.2 Adaptation
Capitalizing on the concepts from Factor Graphs and the Sum-Product Algorithm, we have described several iterative
detectors. All these detectors require the conversion of the received continuous-time signal to a suitable discrete-time
observation model, from which a factor graph is constructed. To keep the factor graphs simple, the observation model
assumes exact knowledge of the channel state, synchronization parameters and transmit mode. Applying the sum-
product algorithm on the resulting factor graph results in the computation of the a posteriori probabilities (APPs)
of the coded bits, the information bits, the coded symbols, etc. The transmitted information stream can then be
recovered by making decisions based on these APPs.

When the channel conditions change, part of this factor graph may have to be altered to accommodate these
changes. The same is true for mode adaptation: when a new transmit mode is selected, the corresponding part in
the factor graph is altered. As a factor graph is an abstract notion that would be implemented in software in the
receiver, adaptation to channel state and transmit mode are achieved by simply loading the appropriate software.
One important exception is the symbol rate: a change in the symbol rate translates into a change of the conversion
from the continuous-time signal to the discrete-time observation model, and cannot easily be captured in the factor
graph framework. This conversion should be implemented as efficiently as possible. Since multi-rate transmission
is an important feature in current- and next-generation communication standards, we have examined in great detail
several low-complexity multi-rate receivers. Our main conclusion was that such a receiver could be constructed so
that

• the IF signal can be sampled directly, removing the need for identical analog in-phase an quadrature compon-
ents;

• most digital filters operate at a rate that is independent of the symbol rate;

• the corresponding BER degradation is negligible (less than 0.1 dB).

175

ASP

ADC

DSP

incoming signal

detector

factor graph

observation model

APPs
estimator

Figure 14.1: Detector and Estimator: through analog signal processing (ASP) and digital signal processing (DSP) the received signal is
converted to a suitable observation. A model of this observation is cast into a factor graph. The estimator updates parameters of this observation
model, based on a posteriori probabilities (APPs) computed on the factor graph.

Such a receiver could be applied to Variable Chip Rate (VCR) DS/SS systems, and as such, removes one of the
important drawbacks of VCR-transmission, namely the complexity of the receiver.

14.3 Estimation
The abovementioned detectors all rely on the knowledge of the channel state, synchronization parameters and trans-
mit mode. In practice, some of these parameters will have to be estimated by the receiver. Developing estimation
algorithms was the second main topic of this thesis. These estimation algorithms should be of relatively low com-
plexity, should not require significant modifications to the existing detector, have short acquisition times, and be very
reliable, even at low SNR. Rather than developing ad-hoc algorithms, we have taken a more systematic approach
and started from the Maximum Likelihood (ML) principle. Since ML estimation is not tractable in practice, we have
considered estimation on factor graphs, the Expectation-Maximization (EM) and the Space-Alternating Expectation
Maximization (SAGE) algorithms as a means to perform ML estimation in an iterative and computationally attractive
way. From these very general techniques, we have derived estimation algorithms for our coded multi-mode receiver
that iterate between data detection on factor graphs and parameter estimation. A diagram depicting this interaction
is shown in Fig. 14.1.

In its pure form, these estimation algorithms are outrageously complex. To alleviate this, we introduced several
ways to reduce the complexity without significantly impacting the performance. Based on a study of the convergence
properties of the EM-based estimation algorithms, we have defined two variations: the parallel EM algorithm and the
discrete EM algorithm. The former can be applied when no reliable initial estimate is available, while the latter has
applications in problems dealing with the determination of discrete parameters (e.g., frame synchronization, mode
detection).

These code-aided estimation algorithms have been applied successfully to the estimation of both frequency-
selective and frequency-flat channels, to the estimation of both continuous and discrete parameters, and to the es-
timation of transmit modes. Furthermore, the algorithms can easily be applied to different estimation problems in
quasi-static environments.

176

14.4 Publications
The research described in this dissertation has led to the following publications in refereed international conferences
and journals.

Factor graphs and the sum-product algorithm [149–153]

Low-complexity receivers for Software Radio [73, 75, 77, 154–156]

Code-aided estimation

• Frequency-flat channels: [110, 127, 157–163]

• Frequency-selective channels: [125, 131–133, 164–168]

• Discrete Parameters: [169–173]

• Mode detection: [124, 174]

177

Bibliography

[1] Politis, C.; Oda, T.; Dixit, S.; Schieder, A.; Lach, H.-Y.; Smirnov, M.I.; Uskela, S.; Tafazolli, R. "Cooperative
networks for the future wireless world". IEEE Communications Magazine, 42(9):70–79, September 2004.

[2] Asatani, K.; Bigi, F.; Probst, P.-A. "Telecommunications standardization for the new millennium: ITU-Tś
strategies". IEEE Communications Magazine, 37(4):124–130, April 2001.

[3] J.M. Wozencraft and I.M. Jacobs. Principles of Communications Engineering. John Wiley & Sons, 1967.

[4] C.E. Shannon. "A mathematical theory of communication". Bell System Technical Journal, 27:379–423, July 1948.

[5] S.-Y. Chung, G.D. Forney, T.J. Richardson and R. Urbanke. "On the desing of low-density parity check codes
within 0.0045 dB of the Shannon limit". IEEE Communications Letters, 5(2):58–60, February 2001.

[6] R.G. Gallager. "Low density parity-check codes". IRE Trans. Inform. Theory, IT-8:pp. 21–29, Jan. 1962.

[7] C. Berrou, A. Glavieux and P. Thitimajsima. "Near Shannon limit error-correcting coding and decoding: Turbo
Codes". In Proc. IEEE International Conference on Communications (ICC), pages 1064–1070, Geneva, Switzerland,
May 1993.

[8] F. Kschischang, B. Frey and H.-A. Loeliger. "Factor graphs and the sum-product algorithm". IEEE Trans. Inform.
Theory, 47(2):pp.498–519, February 2001.

[9] S. Aji and R. McEliece. "The generalized distributive law". IEEE Transactions on Information Theory, 46:325–353,
March 2000.

[10] Seong Taek Chung and A.J. Goldsmith. "Degrees of freedom in adaptive modulation: a unified view". IEEE
Trans.. on Communications, 49(9):1561–1571, September 2001.

[11] J.F. Hayes. "Adaptive feedback communications". IEEE Trans. on Communications, 16(1):71–81, February 1968.

[12] J. Hancock and W. Lindsey. "Optimum performance of self-adaptive systems operating through a Rayleigh-
fading medium". IEEE Trans. on Communications, 11(4):443–453, December 1963.

[13] Mallik, R.K.; Win, M.Z.; Shao, J.W.; Alouini, M.-S.; Goldsmith, A.J. "Channel capacity of adaptive transmis-
sion with maximal ratio combining in correlated Rayleigh fading". IEEE Trans. on Wireless Communications,
3(4):1124–1133, July 2004.

[14] J. Mitola. "The Software Radio Architecture". IEEE Comm. Mag., 30(5):26–38, May 1995.

[15] T. Hentschel. Sample rate conversion in software configurable radios. Artech House, Boston, London, 2002.

[16] H. Meyr, M. Moeneclaey, S.A. Fechtel. Synchronization, Channel Estimation, and Signal Processing, volume 2 of
Digital Communication Receivers. John Wiley & Sons, 1997.

[17] U. Mengali and A.N. D’Andrea. Synchronization Techniques for Digital Receivers. Plenum Press, 1997.

[18] A. Glavieux, C. Laot and J. Labat. "Turbo equalization over a frequency selective channel". In Proceedings of the
International Symposium on Turbo Codes, pages 96–102, Brest, France, September 1997.

[19] N. Noels, C. Herzet, A. Dejonghe, V. Lottici, H. Steendam, M. Moeneclaey, M. Luise and L. Vandendorpe.
"Turbo-synchronization: an EM algorithm interpretation". In Proc. IEEE International Conference on Communica-
tions (ICC), Anchorage, May 2003.

179

[20] S. Vishwanath and A. J. Goldsmith. "Adaptive Turbo Coded Modulation for Flat Fading Channels". IEEE Trans.
on Communications, 51(6):964–972, June 2003.

[21] J.G. Proakis. Digital Communications. McGraw-Hill, 4th edition, 2001.

[22] J.E. Brittain. "The legacy of Edwin Howard Armstrong". Proceedings of the IEEE, 79(2), 1991.

[23] G.D. Forney. "Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol
interference". IEEE Trans. on Information Theory, 18(3):363–378, May 1972.

[24] R. Koetter, A.C. Singer and M. Tüchler. "Turbo equalization". Signal Processing Magazine, 21(1):67–80, January
2004.

[25] D. Raphaeli and Y. Zarai. "Combined turbo equalization and turbo decoding". In Proceedings of the International
Symposium on Turbo Codes, pages 180–183, Brest, France, Sept. 1997.

[26] A. M. Guidi and L. P. Sabel. "Digital demodulator architectures for bandpass sampling receivers". Proceedings
of the 7th International Tyrrhenian Workshop on Digital Communications, pages 183–194, 1995.

[27] S. Buzzi and A. De Maio. "Code-aided blind rate detection for multirate DS/CDMA". In Proc. IEEE 7th Inter-
national Symposium on Spread Spectrum Techniques and Applications, pages 19–23, vol. 1, 2002.

[28] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San
Mateo, 1988.

[29] G.D. Forney. "Codes on Graphs: Normal Realizations". IEEE Trans. on Information Theory, 47(2):520–545, Febru-
ary 2001.

[30] Manyuan Shen, Huaning Niu and Hui Liu. "Iterative receiver design in Rayleigh fading using factor graph".
In Proc. IEEE Vehicular Technology Conference (VTC Spring), Hong-Kong, April 2003.

[31] A. Viterbi. "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm". IEEE
Trans. on Information Theory, 13(2):260–269, April 1967.

[32] X. Li, A. Chindapol and J.A. Ritcey. "Bit-interleaved coded modulation with iterative decoding and 8PSK
signaling". IEEE Trans. on Comm., 50(8):1250–1257, August 2002.

[33] L.R. Bahl, J. Cocke, F. Jelinek and J. Raviv. "Optimal decoding of linear codes for minimising symbol error rate".
IEEE Trans. Inform. Theory, 20:pp. 284–287, March 1974.

[34] D.J.C. MacKay. "Good error-correcting codes based on very sparse matrices". IEEE Trans. Inform. Theory,
45(2):pp. 399–431, March 1999.

[35] X. Li and J.A. Ritcey. "Trellis-coded modulation with bit interleaving and iterative decoding". IEEE Journal on
Selected Areas in Comm., 17(4), April 1999.

[36] J.J. Boutros, F. Boixadera and C. Lamy. "Bit-interleaved coded modulations for multiple-input multiple-output
channels". In Proceedings of the IEEE 6th Int. Symp. on Spread-Spectrum Tech. & Appli., pages 123–126, New Jersey,
USA, September 2000.

[37] H.-A. Loeliger. "An introduction to factor graphs". IEEE Signal Processing Magazine, 21(1):28–41, January 2004.

[38] J. Hagenauer and P. Hoeher. "A Viterbi algorithm with soft-decision outputs and its applications". In Proc.
IEEE Globecom, pages 1680–1686, vol. 3, November 1989.

[39] F. Gardner. "Interpolation in digital modems - Part I: Fundamentals". IEEE Trans. Comm., 41(3):501–507, 1993.

[40] F. Gardner, L. Erup and R.A. Harris. "Interpolation in Digital Modems, Part II: implementation and perform-
ance". IEEE Trans. Comm., 41(6):pp. 998–1008, 1993.

[41] C.W. Farrow. "A Continuously Variable Digital Delay Element". In Proc. IEEE International Symposium on
Circuits and Systems, pages 2641–2645, Espoo, Finland, June 1988.

[42] E.B. Hogenauer. "An economical class of digital filters for decimation and interpolation". IEEE Trans. on Acous-
tics, Speech and Signal Processing, ASSP-29(2):155–162, April 1981.

180

[43] W. A. Abu-Al-Saud and G.L. Stüber. "Modified CIC filter for sample rate conversion in software radio systems".
Proc. IEEE Signal Processing Letters, 10(5):152–154, May 2003.

[44] K. Bucket and M. Moeneclaey. "BER degradation caused by non-ideal interpolation of bandlimited DS/SS
signals". AEÜ International Journal of Electronics and Communications, 48(5):231–236, 1994.

[45] K. Bucket and M. Moeneclaey. "The effect of interpolation on the BER performance of narrowband BPSK and
(O)QPSK on rician fading channels". IEEE Trans. Comm., 42(11):2929–2933, 1994.

[46] H.L. Van Trees. Detection, Estimation,and Modulation Theory, Part I. Wiley and Sons, October 2001.

[47] R.W. Lucky. "Automatic equalization for digital communications". Bell Syst. Tech. Journal, 44:547–588, April
1965.

[48] M.E. Austin. "Decision-feedback equalization for digital communication over dispersive channels". Technical
Report 437, MIT Lincoln Library, Lexington, Mass., August 1967.

[49] X. Wang and H. V. Poor. "Iterative (turbo) soft interference cancellation and decoding for coded CDMA". IEEE
Trans. Comm., 47(7):pp.1046–1061, July 1999.

[50] J. Hagenauer, E. Offer, C. Méasson and M. Mörz. "Decoding and equalization with analog non-linear networks".
European Trans. Comm., 10:pp.659–680, November 1999.

[51] M. Tüchler, R. Koetter and A.C. Singer. "Turbo-equalization: principles and new results". IEEE Trans. on
Communications, 50(5):754–767, May 2002.

[52] Zi-Ning Wu and J.M. Cioffi. "Low-complexity iterative decoding with decision-aided equalization for magnetic
recoding channels". IEEE Journal on Selected Areas in Communications, 19(4):699–708, 2001.

[53] J. Hagenauer. "Rate-compatible puncture convolutional codes (RCPC codes) and their applications". IEEE
Trans. on Communications, 36(4):389–400, April 1988.

[54] A.S. Barbulescu and S.S. Pietrobon. "Rate-compatible turbo codes". Electronics Letters, 31(7):535–536, March
1995.

[55] A.J. Goldsmith and S. Chua. "Adaptive coded modulation for fading channels". IEEE Trans. on Comm.,
46(5):595–602, May 1998.

[56] M.-S. Alouinim X. Tang and A.J. Goldsmith. "Adaptive modulation scheme for simultaneous voice and data
transmission over fading channels". IEEE Journal on Selected Areas in Communications, 75(5):837–850, 1999.

[57] T. Keller and L. Hanzo. "Adaptive modulation techniques for duplex OFDM transmission". IEEE Transactions
on Vehicular Technology, 49(5):1893–1906, September 2000.

[58] Ue, T.; Sampei, S.; Morinaga, N.; Hamaguchi, K. "Symbol rate and modulation level-controlled adaptive mod-
ulation/TDMA/TDD system for high-bit-rate wireless data transmission". IEEE Trans. on Vehicular Technology,
47(4):1134–1147, November 1998.

[59] Shengli Zhou and G.B. Giannakis. "Adaptive Modulation for multiantenna transmissions with channel mean
feedback". IEEE Trans. on Wireless Communications, 3(5):1626–1636, September 2004.

[60] S. Roy and H. Yan. "Blind channel estimation in multi-rate CDMA systems". IEEE Trans. on Communications,
50(6):995–1004, June 2002.

[61] T. Ottosson and A. Svensson. "Multi-rate schemes in DS/CDMA". In Proc. IEEE Vehicular Technology Conference,
pages 1006–1010, Chicago, July 1995.

[62] Srinivasan, R.; Mitra, U.; Moses, R.L. "Design and analysis of receiver filters for multiple chip-rate DS-CDMA
systems". IEEE Journal on Selected Areas in Communications, 17(12):2096–2109, December 1999.

[63] Buzzi, S.; Lops, M.; Tulino, A.M. "Blind adaptive multiuser detection for asynchronous dual-rate DS/CDMA
system". IEEE Journal on Selected Areas in Communications, 19(2):233–244, February 2001.

[64] E. Buracchini. "The Software Radio Concept". IEEE Comm. Mag., 38(9):138–143, September 2000.

181

[65] T. Hentschel and G. Fettweis. "Sample Rate Conversion for Software Radio". IEEE Comm. Mag., 38(8):142–150,
August 2000.

[66] C.L. Liu. "Impacts of I/Q imbalance on QPSK-OFDM-QAM detection". IEEE Trans. on Consumer Electronics,
44(3):984–989, August 1998.

[67] K. Bucket and M. Moeneclaey. "Digital modems using non-synchronized sampling: matched filter + inter-
polator versus interpolator + matched filter". In Proc. IEEE Signal Processing Symposium, SPS98, pages 31–34,
Leuven,Belgium, March 1998.

[68] H.G. Göckler, G. Evangelista and A. Groth. "Minimal block processing approach to fractional sample rate
conversion". Signal Processing, 81(4):673–691, April 2001.

[69] M. Henker and G. Fetweiss. "Combined Filter for Sample Rate Conversion, Matched Filtering and Symbol
Synchronization in Software Radio Terminals". In Proceedings of the European Wireless, pages 61–66. VDE Verlag
Berlin Offenbach, September 2000.

[70] T. Hentschel and G.P. Fetweiss. "Continuous-Time Digital Filters for Sample-Rate Conversion in Reconfigurable
Radio Terminals". In Proceedings of the European Wireless, pages 55–59. VDE Verlag Berlin Offenbach, September
2000.

[71] L. Lundheim and T.A. Ramstad. "An efficient and flexible structure for decimation and sample rate adaptation
in Software Radio receivers". In Proc. ACTS Mobile Comm. Summit, pages 663–668, June 1999.

[72] D. Babic, J. Vesma and M. Renfors. "Decimation by irrational factor using CIC filters and linear interpolation".
In Proc. ICASSP’01, Utah, May 2001.

[73] H. Wymeersch and M. Moeneclaey. "Multi-rate receiver design with IF sampling and digital timing correction".
In Proc. VTC fall, Orlando, USA, October 2003.

[74] T. Hentschel, M. Henker and G.P. Fetweiss. "The digital front-end of software radio terminals". IEEE Personal
Communications, 6(4):40–46, August 1999.

[75] H. Wymeersch and M. Moeneclaey. "Low complexity multi-rate IF sampling receivers using CIC filters and
polynomial interpolation". In Proc. Sixth Baiona Workshop on Signal Processing in Communications, Baiona, Spain,
September 2003.

[76] M.P. Donadio. "CIC filter introduction". 2000.
http://www.dspguru.com/info/tutor/cic.htm.

[77] H. Wymeersch and M. Moeneclaey. "BER performance of software radio multirate receivers with nonsynchron-
ized IF sampling and digital timing correction". In Proc. ICASSP’03, Hong Kong, April 2003.

[78] C. Mosquera and M. Cacheda. "Feedback timing synchronization for IF-sampled systems". In Proc. 8th Interna-
tional Workshop on Signal Processing for Space Communications, SPSC 2003, 2003.

[79] S. Mollenkopf. "Aperture jitter in IF sampling CDMA receivers". In Proc. IEEE MTT-S Symposium on Technologies
for Wireless Applications, pages 69–72, February 1997.

[80] Hae-Moon Seo; Chang-Gene Woo; Pyung Choi. "Relationship between ADC performance and requirements of
digital-IF receiver for WCDMA base-station". IEEE Trans. on Vehicular Technology, 52(5):1398–1408, September
2003.

[81] A.P. Dempster, N.M. Laird and D.B. Rubin. "Maximum likelihood from incomplete data via the EM algorithm".
Journal of the Royal Statistical Society, 39(1):pp. 1–38, 1977. Series B.

[82] C. F. J. Wu. "On the convergence properties of the EM algorithm". The Annals of Statistics, 11(1):95–109, 1983.

[83] Gallo, A.S.; Vitetta, G.M.; Chiavaccini, E. "A BEM-based algorithm for soft-in soft-output detection of co-
channel signals". IEEE Transactions on Wireless Communications, 3(5):1533–1542, September 2004.

[84] J.A. Fessler and A.O. Hero. "Space-alternating generalized expectation-maximization algorithm". IEEE Trans.
Signal Processing, 42(10):2664–2677, Oct. 1994.

[85] A.W. Eckford. "Channel estimation in block fading channels using the factor graph EM algorithm". In Proc.
22nd Biennial Symposium on Communications, Kingston, Canada, 2004.

182

[86] M. Feder and E. Weinstein. "Parameter estimation of superimposed signals using the EM algorithm". IEEE
Trans. on Acoustics, Speech and Signal Processing, 36:477–489, April 1988.

[87] B.H. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus and K.I. Pedersen. "Channel parameter estimation
in mobile radio environments using the SAGE algorithm". IEEE Journal on Selected Areas in Communications,
17(3):pp.434–450, March 1999.

[88] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in Telecommunications. John Wiley
and Sons, Inc, New York, 1991.

[89] M. Morelli, A. D’Andrea and U. Mengali. "Feedforward ML-based timing estimation with PSK signals". IEEE
Trans. Comm., 1(3):80–82, May 1997.

[90] M. Oerder and H. Meyr. "Digital filter and square timing recovery". IEEE Trans. on Comm., 36:605–612, May
1988.

[91] J.L. Massey. "Optimum frame synchronization". IEEE Trans. Comm., com-20(2):pp. 115–119, April 1972.

[92] A.J. Viterbi and A.M. Viterbi. "Nonlinear estimation of PSK-modulated carrier phase with application to burst
digital transmission". IEEE Trans. Inform. Theory, IT-29:pp. 543–551, July 1983.

[93] Y. Li, C.N. Georghiades and G. Huang. "Sequence estimation for space-time coded systems". IEEE Trans.
Comm., 49(6):948–951, June 2001.

[94] E. Panayirci, U. Aygoly and A.E. Pusane. "Sequence estimation with transmit diversity for wireless communic-
ations". International Journal of Electronics and Communications, 57(5):309–316, September 2003.

[95] C. N. Georghiades and J. C. Han. "Sequence estimation in the presence of random parameters via the EM
algorithm". IEEE Trans. Comm, 45(3):pp.300–308, March 1997.

[96] N. Noels, V. Lottici, A. Dejonghe, H. Steendam, M. Moeneclaey, M. Luise , L. Vandendorpe. "A Theoretical
Framework for Soft Information Based Synchronization in Iterative (Turbo) Receivers". EURASIP Journal on
Wireless Communications and Networking JWCN, Special issue on Advanced Signal Processing Algorithms for Wireless
Communications, 2005. Accepted for publication.

[97] V. Ramon, C. Herzet, L. Vandendorpe and M. Moeneclaey. "EM algorithm-based multiuser synchronization in
turbo receivers". In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Montreal, Canada,
May 2004.

[98] C. Herzet, V. Ramon, L. Vandendorpe and M. Moeneclaey. "EM algorithm-based timing synchronization in
turbo receivers". In Proc. International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hong
Kong, April 2003.

[99] M.A. Khalighi and J.J. Boutros. "Modified unbiased EM-based channel estimation for MIMO turbo receivers".
In Proc. IEEE Symposium on Signal Processing and Information Technology, Rome, Italy, December 2004.

[100] A.A. D’Amico, U. Mengali and M. Morelli. "Channel estimation for the Uplink of a DS-CDMA system". IEEE
Trans. on Wireless Comm., 2(6):1132–1137, November 2003.

[101] A. Kocian and B.H. Fleury. "EM-based joint data detection and channel estimation of DS-CDMA signals". IEEE
Trans. on Comm., 51(10):1709–1720, October 2003.

[102] J. Dauwels and H.-A. Loeliger. "Joint decoding and phase estimation: an exercise in factor graphs". In Proc. Int.
Symposium in Information Theory, Yokohama, Japan, July 2003.

[103] I. Sutskover, S. Shamai and J. Ziv. "A novel approach to iterative joint decoding and phase estimation". In Proc.
3rd Int. Symp. on Turbo Codes and Related Topics, pages 87–90, Brest, France, September 2003.

[104] G. Colavolpe, A. Barbieri, G. Caire and N. Bonneau. "Bayesian and non-Bayesiab methods for joint decoding
and detection in the presense of phase noise". In Proc. IEEE Int. Symposium on Information Theory (ISIT), Chicago,
USA, July 2004.

[105] K. Sasha, H.-A. Loeliger, A.G. Lindgren. "AR model parameter estimation: from factor graphs to algorithms".
In Proc. IEEE International Conference of Acoustics, Speech and Signal Processing (ICASSP), Montreal, Canada, May
2004.

183

[106] A.P. Worthen and W.E. Stark. "Unified design of iterative receivers using factor graphs". IEEE Transactions on
Information Theory, 47(2):843–849, February 2001.

[107] T. Wadayama. "An iterative decoding algorithm for channels with additive linear dynamical noise". IEICE
Transactions on Fundamentals, E86-A(10):2452–2460, October 2003.

[108] David J.C. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University Press, 2003.

[109] V. Lottici and M. Luise. "Embedding carrier phase recovery into iterative decoding of turbo-coded linear mod-
ulations". IEEE Transactions on Communications, 52(4):661–669, April 2004.

[110] H. Wymeersch and M. Moeneclaey. Code-aided ML joint delay estimation and frame synchronization, volume 27
of Signal Processing for Telecommunications and Multimedia, Multimedia Systems and Applications, chapter 8, pages
97–110. Springer-Verlag, 2005.

[111] P. Spasojevic and C.N. Georghiades. "On the (non) convergence of the EM algorithm for discrete parameter
estimation". In Proc. Allerton Conference, Monticello, Illinois, Oct. 2000.

[112] M.K. Howlader and B.D. Woerner. "Decoder-assisted frame synchronization for packet transmission". IEEE
journal on selected areas in comm., 19(12):pp. 2331–2345, Dec. 2001.

[113] E. Cacciamani and C. Wolejsza. "Phase-ambiguity resolution in a four-phase PSK communications system".
IEEE Trans. on Comm, COM-19(6):1200–1210, Dec. 1971.

[114] J. Sodha. "Turbo code frame synchronization". Signal Processing Journal, Elsevier, 82:pp. 803–809, 2002.

[115] P. Robertson. "Improving frame synchronization when using convolutional codes". In Proc. IEEE GLOBECOM,
pages 1606–1611, Houston, 1993.

[116] B. Mielczarek and A. Svensson. "Timing error recovery in turbo coded systems on AWGN channels". IEEE
Trans. on Comm., 50(10):pp. 1584–1592, Oct. 2002.

[117] T.M. Cassaro and C.N. Georghiades. "Frame synchronization for coded systems over AWGN channel". IEEE
Trans. on Comm., 52(3):484–489, March 2004.

[118] U. Mengali, A. Sandri and A. Spalvieri. "Phase ambiguity resolution in trellis-coded modulations". IEEE Trans.
Comm, 38(12):2087–2088, Dec. 1990.

[119] A. Sharma and U. Mitra. "Blind rate detection for multirate UMTS DS-CDMA signals". In Proc. IEEE Interna-
tional Conference on Communications (ICC’01), pages 2504–2509, vol. 8, Helsinki, Finland, June 2001.

[120] A. Gutierrez, Y.K. Lee and G. Mandyam. "A ML rate detection algorithm for IS-95 CDMA". In IEEE Vehicular
Technology Conference (VTC Spring’99), pages 417–421, vol. 1, May 1999.

[121] P. Ciblat, P. Loubaton, E. Serpedin and G.B. Giannakis. "Asymptotic Analysis of blind cyclic correlation-based
symbol-rate estimators". IEEE Trans. on Information Theory, 48(7):1922–1934, July 2002.

[122] A.V. Dandawaté and G.B. Giannakis. "Statistical tests for presence of cyclostationarity". IEEE Trans. on Signal
Processing, 42:2355–2369, September 1994.

[123] Jong Youl Lee, Young Mo Chung, and Sang Uk Lee. "On a timing recovery technique for a variable symbol rate
signal". In Proc. IEEE Vehicular Technology Conference, pages 1724–1728, Phoenix, AZ, USA, May 1997.

[124] H. Wymeersch and M. Moeneclaey. "ML-based blind symbol rate detection for multi-rate receivers". In Proc.
IEEE International Conference on Communications (ICC05), Seoul, Korea, May 2005.

[125] M. Guenach, H. Wymeersch and M. Moeneclaey. "Joint estimation of path delay and complex gain for coded
systems using the EM algorithm". In Proc. International Zürich Seminar (IZS’04), Zürich, Switserland, February
2004.

[126] J. Campello and D.S. Modha. "Extended bit-filling and LDPC code design". In Proc. Globecom, San Antonio,
USA, November 2001.

[127] J. Dauwels, H. Wymeersch, H.-A. Loeliger and M. Moeneclaey. "Phase Estimation and Phase Ambiguity Res-
olution by Message Passing". Lecture Notes in Computer Science, Springer-Verlag, 3124:150–155, 2004.

184

[128] M. Moeneclaey. "On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in
the presence of nuisance parameters". IEEE Trans. Comm., 46(11):1536–1544, November 1998.

[129] G. Caire, G. Taricco and E. Biglieri. "Bit-interleaved coded modulation". IEEE Trans. on Information Theory,
44:927–946, May 1998.

[130] E. Zehavi. "8-PSK trellis codes for Rayleigh fading channels". IEEE Trans. on Comm., 41:873–883, May 1992.

[131] M. Guenach, H. Wymeersch and M. Moeneclaey. "Iterative joint timing and carrier phase estimation using the
SAGE algorithm for a coded DS-CDMA system". In Proc. International Symposium on Control, Communications
and Signal Processing (ISCCSP) , Hammamet, Tunisia, March 2004.

[132] M. Guenach, H. Wymeersch and M. Moeneclaey. "On DS-CDMA uplink channel parameter estimation for
bit-interleaved-coded modulation". In Proc. 2nd International Workshop on Signal Processing for Wireless Commu-
nications (SPWC’04), London, UK, June 2004.

[133] M. Guenach, H. Wymeersch and M. Moeneclaey. "On soft multiuser channel estimation of DS-CDMA up-
link using different mapping strategies". In Proc. IEEE International Conference on Communications (ICC), Seoul,
Korea, May 2005.

[134] M. Guenach, F. Simoens and M. Moeneclaey. "Parameter estimation in a space-time bit-interleaved coded
modulation scheme for DS-CDMA". In Proc. International Conference on Acoustics, Speech and Signal Processing,
Philadelphia, USA, March 2005.

[135] Z. Baranski, A.M. Haimovich and J. Garcia-Frias. "EM-based iterative receiver for space-time coded modulation
with noise variance estimation". In Global Telecommunications Conference, pages 355–359, November 2002.

[136] M. Yan, B.D. Rao. "Soft decision-directed MAP estimate of fast Rayleigh flat fading channels". IEEE Transactions
on Comm., 51(12):1965–1969, December 2003.

[137] M. Nissilä and S. Pasupathy. "Adaptive Bayesian and EM-based detectors for frequency-selective fading chan-
nels". IEEE Transactions on Comm., 51(8):1325–1336, August 2003.

[138] C. Komninakis, C. Fragouli, A.H. Sayed and R.D. Wesel. "Multi-input multi-output fading channel tracking
and equalization using kalman estimation". IEEE Trans. on Signal Processing, 50(5), May 2002.

[139] R. Raheli, A. Polydoros, C.-K. Tzou. "Per-survivor processing: a general approach to MLSE in uncertain envir-
onments". IEEE Trans. on Communications, 43(2):354–364, February 1995.

[140] A. Anastasopoulos and K.M. Chugg. "Adaptive iterative detection for phase tracking turbo-coded systems".
IEEE Transactions on Communications, 49(12):2135–2144, December 2001.

[141] B. Mielczarek and A. Svensson. "Phase offset estimation using enhanced turbo decoders". In Proc. IEEE Inter-
national Conference on Communications (ICC), 2002.

[142] J.R. Barry, A. Kavcic, S.W. McLaughlin, A. Nayak and Wei Zeng. "Iterative timing recovery". IEEE Signal
Processing Magazine, 21(1):89–102, January 2004.

[143] N. Noels, H. Steendam and M. Moeneclaey. "A maximum-likelihood based feedback carrier synchronizer for
turbo-coded systems". In Proc. IEEE Vehicular Technology Conference (VTC Spring), Stockholm, Sweden, May
2005.

[144] S. Catreux, V. Erceg, D. Gesbert, and R. W. Heath, Jr. "Adaptive Modulation and MIMO Coding for Broadband
Wireless Data Networks". IEEE Communications Magazine, pages 108–115, June 2002.

[145] E. Biglieri, J. Proakis and S. Shamai. "Fading channels: information-theoretic and communications aspects".
IEEE Trans. on Information Theory, 44(6):2619–2692, October 1998.

[146] A. Goldsmith, S.A. Jafar, N. Jindal and S. Vishwanath. "Capacity limits of MIMO channels". IEEE Journal on
selected areas in Communications, 21(5):684–702, June 2003.

[147] D. Gesbert, M. Shafi, D. Shiu, P.J. Smith and A. Naguib. "From theory to practice: an overview of MIMO
space-time coded wireless systems". IEEE journal on Selected Areas in Comm., 21(3):281–302, April 2003.

[148] H. Viklalo, B. Hassibi and T. Kailath. "Iterative decoding for MIMO channels via modified sphere decoding".
IEEE Trans. on Wireless Communications, 3(6), November 2004.

185

[149] H. Wymeersch, H. Steendam and M. Moeneclaey. "Interleaved coded modulation for non-binary codes: a factor
graph approach". In Proc. IEEE Global Telecommunications Conference (Globecom’04), Dallas, USA, November
2004.

[150] H. Wymeersch, H. Steendam and M. Moeneclaey. "Computational complexity and quantization effects of
decoding algorithms of LDPC codes over GF (q)". In Proc. ICASSP, Montreal, Canada, May 2004.

[151] H. Wymeersch, H. Steendam and M. Moeneclaey. "Log-domain decoding of LDPC codes overGF (q)". In Proc.
IEEE International Conference on Communications (ICC), June 2004.

[152] F. Simoens, H. Wymeersch and M. Moeneclaey. "Spatial mapping for MIMO systems". In Proc. Information
Theory Workshop (ITW04), San Antonio, USA, October 2004.

[153] F. Simoens, H. Wymeersch, H. Bruneel and M. Moeneclaey. "Multi-dimensional mapping for bit-interleaved
coded modulation with BPSK/QPSK signaling". IEEE Communications Letters, 9(5):453–455, May 2005.

[154] H. Wymeersch and M. Moeneclaey. "The impact of the intermediate frequency selection on the performance
of an all-digital bandpass receiver with interpolator". In Proc. IEEE Benelux Symposium on Communications and
Vehicular Technology, Louvain-La-Neuve, Belgium, October 2002.

[155] H. Wymeersch and M. Moeneclaey. "Multi-rate receivers with IF sampling and digital timing correction".
Elsevier Signal Processing, 81(11):2067–2079, November 2004.

[156] H. Wymeersch and M. Moeneclaey. "Blind symbol rate detection for low-complexity multi-rate receivers". In
Proc. IEEE Vehicular Technology Conference (VTC Spring), Stockholm, Sweden, June 2005.

[157] N. Noels, H. Wymeersch, H. Steendam and M. Moeneclaey. "True Cramer-Rao bound for timing recovery from
a bandlimited linearly modulated waveform with unknown carrier phase and frequency". IEEE Transactions on
Communications, 52(3):473–483, March 2004.

[158] F. Simoens, H. Wymeersch, H. Steendam and M. Moeneclaey. Synchronization for MIMO systems, volume Smart
Antennas - State-of-the-art, chapter 6. 2005.

[159] F. Simoens, H. Wymeersch, N. Noels, H. Steendam and M. Moeneclaey. "Turbo channel estimation for bit-
interleaved coded modulation". In XI National Symposium of Radio Science (invited paper - NEWCOM session),
Poznan, Poland, April 2005.

[160] C. Herzet, H. Wymeersch, M. Moeneclaey and L. Vandendorpe. "on maximum-likelihood timing synchroniz-
ation". IEEE Trans. on Comm., 2005. Accepted.

[161] H. Wymeersch, N. Noels, H. Steendam and M. Moeneclaey. "Synchronization at low SNR: performance bounds
and algorithms".
Invited presentation at the Communication Theory Workshop, Capri, Italy, May 2004. Available at
http://telin.ugent.be/∼hwymeers/publications.html.

[162] H. Wymeersch and M. Moeneclaey. "Iterative code-aided ML phase estimation and phase ambiguity resolu-
tion". EURASIP Journal on Applied Signal Processing, Special Issue on Turbo Processing, 2005(6), May 2004.

[163] H. Wymeersch, F. Simoens and M. Moeneclaey. "Code-aided joint channel estimation and frame synchron-
ization for MIMO systems". In Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Lisbon, Portugal, July 2004.

[164] M. Guenach, F. Simoens, H. Wymeersch and M. Moeneclaey. "Frequency offset and channel parameters es-
timation for a multi-user DS-CDMA system using the code-aware SAGE algorithm". In Proc. first annual IEEE
Benelux/DSP Valley Signal Processing Symposium, Antwerp, Belgium, April 2005.

[165] M. Guenach, H. Wymeersch and M. Moeneclaey. "On channel parameter estimation in a space-time bit-
interleaved coded modulation systems for multi-path DS-CDMA uplink with receive diversity". IEEE Trans.
on Vehicular Technology, 2005. accepted, available at http://telin.ugent.be/∼hwymeers/publications.html.

[166] M. Guenach, H. Wymeersch, H. Steendam and M. Moeneclaey. "Code-aided ML joint frame synchronization
and channel estimation for downlink MC-CDMA". IEEE Journal on Selected Areas in Communications, 2005.
Submitted.

186

[167] M. Guenach, F. Simoens, H. Wymeersch and M. Moeneclaey. "Code-aided joint channel and frequency estim-
ation for a ST-BICM multi-user DS-CDMA system". In Proc. Eusipco, Antalya, Turkey, September 2005.

[168] H. Wymeersch M. Guenach, F. Simoens and M. Moeneclaey. "Code-aided Joint Channel and Frequency Offset
Estimation for DS-CDMA". IEEE Journal on Selected Areas in Comm., 2005. Accepted for publication in the
special issue of Next Generation CDMA Technologies.

[169] H. Wymeersch and M. Moeneclaey. "Code-aided frame synchronizers for AWGN channels". In Proc. Interna-
tional Symposium on Turbo Codes & related topics, Brest, France, September 2003.

[170] H. Wymeersch, H. Steendam and M. Moeneclaey. "Analysis of an ML data-aided phase ambiguity resolution
algorithm for M-PSK". In Proc. IEEE symposium on Comm. and Vehicular Technology, Ghent, Belgium, November
2004.

[171] H. Wymeersch, H. Steendam, H. Bruneel and M. Moeneclaey. "Code-aided frame synchronization and phase
ambiguity resolution". IEEE Transactions on Signal Processing, 2005. Accepted for publication.

[172] H. Wymeersch and M. Moeneclaey. "ML frame synchronization for turbo and LDPC codes". In Proc. 7th Int.
Symp. on DSP and Comm. Systems, Coolangatta, Australia, December 2003.

[173] H. Wymeersch and M. Moeneclaey. "Code-aided phase and timing ambiguity resolution for AWGN channels".
In Proceedings IASTED Intl. Conf. on Acoustics, Signal and Image Processing (SIP03), Honolulu, Hawaii, August
2003.

[174] H. Wymeersch and M. Moeneclaey. "ML rate detection for multi-rate TH-UWB impulse radio". In Proc. IEEE
Int. Conference on Ultra-Wideband, Zürich, Switzerland, September 2005.

187

