3,858 research outputs found

    Navigation framework using visual landmarks and a GIS

    Get PDF
    In an unfamiliar environment we spot and explore all available information which might guide us to a desired location. This largely unconscious processing is done by our trained sensory and cognitive systems. These recognise and memorise sets of landmarks which allow us to create a mental map of the environment, and this map enables us to navigate by exploiting very few but the most important landmarks stored in our memory. In this paper we present a route planning, localisation and navigation system which works in real time. It integrates a geographic information system of a building with visual landmarks for localising the user and for validating the navigation route. Although designed for visually impaired persons, the system can also be employed to assist or transport persons with reduced mobility in way finding in a complex building. Š 2013 The Authors. Published by Elsevier B.V

    The urban heritage characterization using 3D geographic information systems. The system of medium-sized cities in Andalusia

    Get PDF
    The primary objective of this paper is to approach the use of the 3D Geographic Information Systems (3D GIS), as an instrumental tool that allows us to deal efficiently with the extensive amount of information that characterises a large part of the research carried out in the field of Urbanism and Regional Planning. Specifically, the study focuses on medium-sized cities in Andalusia, the most populous and the second largest region in Spain. The Andalusian urban system is substantially characterised by the historical importance of this type of cities within its territorial organisation, which dates back to more than two thousand years, and whose potential as sustainable and balanced stands out. In particular, it is intended to address features related to urban characterisation as medium-sized cities that have been declared as heritage sites, as well as, the integration of the cultural heritage into urban development planning as an active strategy by the cultural administration of the regional and local governments. In detail, this paper will analyse data relating to the development experienced, their characterisation through urban indicators or the evolution and traceability of their protection. In this sense, the use of 3D GIS will not only allow the efficient recording and the graphical representation of a significant amount of data resulting from the quantitative and qualitative analysis carried out but also model them using the third dimension to facilitate a cross analysis among the cities under study. Definitely, the aim is to demonstrate the suitability use of this technology in this type of scientific research.Ministry of Economy and Competitiveness of the Government of Spain HAR2016-79788-

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation

    A pathway to independence : wayfinding systems which adapt to a visually impaired person's context

    Get PDF
    Despite an increased amount of technologies and systems designed to address the navigational requirements of the visually impaired community of approximately 7.4 million in Europe, current research has failed to sufficiently address the human issues associated to their design and use. As more types of sensing technologies are developed to facilitate visually impaired travellers for different navigational purposes (local vs. distant and indoor vs. outdoor), an effective process of synchronisation is required. This synchronisation is represented through context-aware computing, which allows contextual information to not just be sensed (like most current wayfinding systems), but also adapted, discovered and augmented. In this paper, three user studies concerning the suitability of different types of navigational information for visually impaired and sighted people are described. For such systems to be effective, human cognitive maps, models and intentions need to be the focus of further research, in order to provide information that is tailored to a user's task, situation or environment. Methodologies aimed at establishing these issues need to be demonstrated through a multidisciplinary framework

    Evaluating indoor positioning systems in a shopping mall : the lessons learned from the IPIN 2018 competition

    Get PDF
    The Indoor Positioning and Indoor Navigation (IPIN) conference holds an annual competition in which indoor localization systems from different research groups worldwide are evaluated empirically. The objective of this competition is to establish a systematic evaluation methodology with rigorous metrics both for real-time (on-site) and post-processing (off-site) situations, in a realistic environment unfamiliar to the prototype developers. For the IPIN 2018 conference, this competition was held on September 22nd, 2018, in Atlantis, a large shopping mall in Nantes (France). Four competition tracks (two on-site and two off-site) were designed. They consisted of several 1 km routes traversing several floors of the mall. Along these paths, 180 points were topographically surveyed with a 10 cm accuracy, to serve as ground truth landmarks, combining theodolite measurements, differential global navigation satellite system (GNSS) and 3D scanner systems. 34 teams effectively competed. The accuracy score corresponds to the third quartile (75th percentile) of an error metric that combines the horizontal positioning error and the floor detection. The best results for the on-site tracks showed an accuracy score of 11.70 m (Track 1) and 5.50 m (Track 2), while the best results for the off-site tracks showed an accuracy score of 0.90 m (Track 3) and 1.30 m (Track 4). These results showed that it is possible to obtain high accuracy indoor positioning solutions in large, realistic environments using wearable light-weight sensors without deploying any beacon. This paper describes the organization work of the tracks, analyzes the methodology used to quantify the results, reviews the lessons learned from the competition and discusses its future

    The Application of Geographic Information Systems to Support Wayfinding for People with Visual Impairments or Blindness

    Get PDF
    People with visual impairments or legal blindness are relying on differing, comprehensive information utilized for their individual mobility. Increasing the personal mobility of people with disabilities and thereby achieving a self-determined life are major steps toward a more inclusive society. Research and applications on mobility issues of people with visual impairments or blindness mainly focus on technical applications or assistive orientation and navigation devices, and less work is covering the individual needs, e.g., regarding the information required for wayfinding. Moreover, active participation of people with disabilities in research and development is still limited. ways2see offers a new online application to support individual mobility in context of pre-trip planning for people with visual impairments or blindness based on a Geographic Information System (GIS). Obstacles, barriers, landmarks, orientation hints, and directions for wayfinding are generated by user profiles. The underlying network for GIS analysis is designed as pedestrian network. This individually coded network approach integrates sidewalks and different types of crossings and implements various orientation and navigation attributes. ways2see integrates three research realms: firstly, implementing a participative and transdisciplinary research design; secondly, integrating personalized information aligned with the individual user needs; and thirdly, presenting result of GIS analysis through an accessible designed user interface

    Expanding Navigation Systems by Integrating It with Advanced Technologies

    Get PDF
    Navigation systems provide the optimized route from one location to another. It is mainly assisted by external technologies such as Global Positioning System (GPS) and satellite-based radio navigation systems. GPS has many advantages such as high accuracy, available anywhere, reliable, and self-calibrated. However, GPS is limited to outdoor operations. The practice of combining different sources of data to improve the overall outcome is commonly used in various domains. GIS is already integrated with GPS to provide the visualization and realization aspects of a given location. Internet of things (IoT) is a growing domain, where embedded sensors are connected to the Internet and so IoT improves existing navigation systems and expands its capabilities. This chapter proposes a framework based on the integration of GPS, GIS, IoT, and mobile communications to provide a comprehensive and accurate navigation solution. In the next section, we outline the limitations of GPS, and then we describe the integration of GIS, smartphones, and GPS to enable its use in mobile applications. For the rest of this chapter, we introduce various navigation implementations using alternate technologies integrated with GPS or operated as standalone devices
    • …
    corecore