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Abstract 

In an unfamiliar environment we spot and explore all available information which might guide us to a desired location. This 
largely unconscious processing is done by our trained sensory and cognitive systems. These recognise and memorise sets of 
landmarks which allow us to create a mental map of the environment, and this map enables us to navigate by exploiting 
very few but the most important landmarks stored in our memory. In this paper we present a route planning, localisation and 
navigation system which works in real time. It integrates a geographic information system of a building with visual 
landmarks for localising the user and for validating the navigation route. Although designed for visually impaired persons, 
the system can also be employed to assist or transport persons with reduced mobility in way finding in a complex building. 
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1. Introduction 

Finding an office or a room in a large public building, such as a university, a city hall or a shopping centre, 
is often difficult for normal persons. For blind persons it is far more difficult because they must completely rely 
on people passing by to ask for information. When a building is becoming more familiar, they can memorise all 
locations for moving about. 

There exist systems which try to alleviate the problems of blind and visually impaired persons. For the state-
of-the-art of existing systems we refer to [1-5]. Navigation is one of the fundamental problems to be solved in 
creating completely autonomous mobility systems, mainly for blind persons or mobile robots. Navigation 
models can be classified into local and global ones. Local models navigate by exploring information in the 
environment immediately around the actual position. They are completely blind to everything beyond the reach
of the system’s sensors. In contrast, global navigation takes into account the environment as a whole, far 
beyond the reach of the system’s sensors. They enable auto-localisation and optimisation of navigation routes. 

There are several systems which deal with simultaneous localisation and mapping (SLAM). Morioka et al. 
[6] proposed a model that allows navigation in crowded environments such as shopping centres and transport 
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service stations. Their method is based on 3D points extracted from image sequences and odometry 
calculations. A completely autonomous SLAM algorithm based only on image sequences was presented by 
Saleiro et al. [7], although it has only been tested with a small robot in a restricted area.  

Within the models based on pre-built maps there are several solutions which are based on topological 
relations or statistical methods for the determination of the location. Arras et al. [8] developed a method based 
on statistical Kalman filters. Position estimation is based on the average and variance of the information 
calculated at a previous location, data from odometry sensors, and the geometric observation of the 
environment. This method has the disadvantage that it cannot automatically recover when the location is lost. 
Seitz et al. [9] presented a pedestrian navigation algorithm optimised for smart mobile platforms with low-cost 
sensors and limited processing power. The algorithm is based on a Hidden Markov Model that combines WiFi 
positioning and dead reckoning. The hidden states are the positions of WiFi fingerprints in the database. State 
transitions include dead reckoning based on step-length estimation from acceleration measurements and 
compass heading. Positioning is achieved by correlating the actual WiFi signal strength with stored 
fingerprints.  

Schmitz et al. [10] developed a navigation system that seamlessly integrates static maps with dynamic 
location-based textual information from a variety of sources. Each information source requires a different kind 
of acquisition technique. All acquired information is combined by a context management platform, and then 
presented to the user as a tactile or acoustic map depending on the sources available at the current position. 
Positioning is achieved by a combination of an inertial tracking system, RFID technology and GPS, and the 
user is guided to a desired destination by speech output and a haptic cane. 

Almost all systems depend on different sensors to accomplish navigation. In this paper we present a 
navigation system which integrates data of a GIS of a building with only visual landmarks. Any normal camera 
can be used together with a small, portable computer like a netbook. GIS/vision-based localisation is 
complemented by navigation: at any time, the system traces and validates a route from the current position to a 
given destination. Although designed for being integrated in the Blavigator prototype [5], this system can be 
integrated in a robotic system that needs to navigate in a complex building. Summarising, we present a new 
navigation algorithm that works in real time, integrating existing GIS data with existing visual landmarks like 
objects and signs. We emphasise that, in contrast to other approaches, we do not distribute and employ special 
tags with location codes. 

2. The System  

 For the validation of the concept, the prototype was developed on a netbook with a standard WiFi webcam. 
It was tested at the Institute of Engineering (ISE) of the University of the Algarve (ISE/UAlg). The user holds 
the camera in his hand. In the case of the SmartVision [2] and Blavigator prototypes [5], the camera is worn at 
the chest. However, these prototypes are also being implemented on a Smartphone, such that its camera can be 
easily pointed to different directions. In case of an uncertain user location due to missing or ambiguous visual 
landmarks, the user can point the camera to different directions by rotating it 180º horizontally and about 45º 
vertically. Any detected landmarks are matched against those in the GIS for each space. By combining the 
detected landmark positions with the traced route, the user is informed about the current location by a speech 
module. Finally, since the GIS/landmark system must be integrated in the Blavigator prototype, all visual 
functions have been optimised for small CPU time and memory usage, and most visual functions are based on a 
few basic algorithms which are employed only once for each video frame. 

The system's component which handles spatial data was developed by using the OGR Simple Features 
Library. OGR is a part of GDAL - the Geospatial Data Abstraction Library [11]. For details about the GIS of 
ISE/UAlg (testing site) see [5]. Figure 1 shows a map of an ISE/UAlg GIS (left) and respective data table 
(middle) with the attributes of the selected region highlighted in yellow. 
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Fig. 1 Left to right, map of a GIS, respective data table with the attributes of the selected region in yellow, and details of the bar room 
(yellow), neighbouring spaces (orange) and object reference positions marked by dots.  

 

The system comprises a Training Module for creating object libraries. These are formed by keypoints drawn 
from a set of images with different views of each object. Each keypoint is characterised by its neighbourhood 
by means of features extracted by the OpenSURF library [12]. After training, these libraries are then used to 
recognise the objects in the images captured by the camera (see Section 3 or [5]). The system is controlled by a 
Main Module for real-time localisation and navigation. 

The main module executes a set of sequential processes. In the initialisation process, all parameters and 
libraries for object recognition are loaded. Also the maps files containing geographic information to be 
extracted and handled through the GDAL library [11], and the auxiliary applications used for character 
recognition, Tesseract-OCR [13], and the text-to-speech module Jampal for generating audible information for 
the user [14].  

After initialisation, the object recognition process is responsible for analysing all image frames acquired by 
the camera, and it contextualises objects in the environment. Depending on the similarities between captured 
frames, it can assign unique identifiers for distinguishing visual landmarks. This serves to invalidate a same 
object (at a same position) when detected several times in consecutive frames. The localisation and navigation 
process is in charge of estimating the position of the user through the detected landmarks and of determining 
the shortest path between the current position and the intended destination.  The notification process informs 
the user through vocal commands (other interfaces can also be used, see [2]). It reports identified objects, 
location information, and instructions to reach the destination. Below we present very briefly the object 
recognition process; for more detail see [5,15,16]. We will mainly focus on localisation and navigation. For the 
notification process we refer to [2,5]. 

3. Object Recognition Using Vision 

As mentioned above, the data acquisition model is only based on vision by means of a normal camera. The 
goal is to extract reference or landmark objects such as doors, windows, lockers, text and figural signs, and fire 
extinguishers. The objects are contextualised through a frame identifier, the type of object and position 
coordinates (in the image), and they are stored in a first-in-first-out (FIFO) buffer.  This buffer, also called the 
“navigation history,” is later used for location estimation and navigation. 

The process of object recognition starts by (a) capturing an image, followed by (b) a process that aims to 
contextualise detected objects by checking if the objects are identical in previous images. Contextualisation is 
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performed by recognising (c) doors, (d) stairs, (e) rectangles, (f) texts - OCR and (g) general objects using 
SURF [12].  

 

 
Fig. 2 Top three rows show detected visual landmarks (at left) and their detected positions in the map (at right); in red the position of the 
landmark, in blue the next room along the route. The bottom row shows the same, plus all the positions of extinguishers in nearby rooms.   

 
Steps a) and c) to g) are due to lack of space not explained here. Detailed explanation is available in 

[5,15,16]. Examples of detected landmarks are shown in Fig. 2. In order to understand the next section, about 
route planning, localisation and navigation, we must keep in mind that object templates are captured at a 
distance of about 2 metres, and objects are usually detected at a distance between 1 to 3 metres. 

Step (b), visual contextualisation, needs to be explained in more detail, because of problems due to artificial 
lighting, reflections, and limitations caused by detection algorithms like SURF. It is impossible to capture all 
information available in the visual scene in a single image (frame). Usually several frames are necessary to 
capture various objects, even in combination with movement of the user (camera) to detect the objects. The 
information acquired, although captured at different stages (frames and positions), can be related, because they 
belong to a same visual scene. Likewise, a same object can be successively acquired in a sequence of frames. 
This can result in incorrect interpretations if it is assumed that the captured object represents different objects, 
when in reality it is the same one. Therefore it is necessary to contextualise the information obtained with the 
visual scenes to which the objects belong. 

Before objects are added to the navigation history, newly detected objects are compared to those already 
present in the FIFO buffer: the image identifier from which they were extracted, object type, and area in which 
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they are located within the image. Objects can be discarded if they were already recognised in the same image 
and at the same position. 

This evaluation is done by a very simple and fast process: (a) the centre and area of any new object are 
compared with those of already detected objects (with the same frame identifier). If there is significant overlap, 
the object already recognised is removed; otherwise it is added to the history as a new object. (b) Also, to create 
and update the context of the objects it is necessary to test the similarity of a sequence of frames, in order to 
verify whether or not there is a transition to a new visual scene. There are various techniques to test the 
correlation between images and check their similarity: subtraction of images, colour histogram correlation [17], 
Hilbert transform [18], motion flow analysis [19] and correlation of key points from SIFT or SURF [20]. Here 
we use colour histogram correlation based on the work of Gargi et al. [17]. 

4. Route Planning, Localisation and Navigation 

Using GDAL (see Section 2 or [5]) it is possible to extract the geographical information of the spaces, 
reference points and structures such as walls, doors and windows. This information is stored in memory by 
creating a database which includes all information necessary for navigation, such as the type of structure (room, 
wall, window, door) or reference object (fire extinguisher, exit sign, locker, etc.). Their geographical locations 
through the geometric centroids and neighbour relations are extracted. Neighbour relations are extremely 
important for navigation, route planning and determination of the current location. 

Reference points of objects were introduced in the GIS vector map, using the Quantum GIS editing tool 
[21]: their global positions in geographical coordinates, and their region (space) identification. The regions are 
spatially grouped, forming neighbour relations with each other through walls, windows, doors and stairs. These 
relations allow us to determine the neighbourhoods of all regions by analysing the contiguity of access 
structures such as doors or stairs.  

4.1 Route Planning 

Figure 1 (right) shows an example of a room: a bar (marked in yellow) and nearby rooms (marked in 
orange) that can be accessed through a door, as well as their geometric centroids indicated by crosses. Also 
shown are reference object points in the regions, marked by black dots. These are referenced by a common 
identifier which relates the room with the object by the attribute “EspacoID” (Fig. 1 middle). Figure 2 (bottom 
right) shows for example positions of fire extinguishers on the ground floor near the bar.  

Spatial relations allow us to build a matrix map, in binary format, indicating the neighbourhoods of all 
regions, with common access structures and reference objects. The matrix map enables efficient and fast 
examinations for determining the location and for planning the navigation route, i.e., the navigation path 
between a start and a destination point on the map (see Fig. 3). We implemented the lowest-cost path between 
these two points (rooms/divisions), taking into account access points between rooms like doors and stairs.  

Calculating the navigation route is an iterative process that computes at every step the shortest path to the 
destination: (a) In the first step, the algorithm checks which access structure (door or stairs) neighbouring to the 
start region (room), is in the same direction and has the shortest distance to the destination. (b) Once this access 
structure has been determined, the room to which it gives access is determined. This yields a new starting point 
and (c) the direction to the destination is (re-)computed and the next access point (door or stairs) that is closest 
in the indicated direction is found (Fig. 3 left). (d) This process is repeated until the destination is reached. This 
process yields the most appropriate route in vector format. (e) Every time when a room is found without further 
accesses, like a room with only one door, the corresponding neighbourhood map (including the access 
structures) are updated and marked as invalid for the desired route (see yellow dots in Fig. 3 left and right). (f) 
The algorithm returns to its initial stage, and from the starting point a new route is calculated with the updated 
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neighbourhood maps. (g) If the start and destination points are on different floors (example of Fig. 3), then 
partial destination points (and partial starting points) are common stairs or elevators, depending on the user’s 
preference, on each floor. The path is computed as explained before for each floor, taking into consideration the 
partial points. The final path is a single vector from the start to the destination that merges all partial start and 
destination points on each floor. Figure 3, from left to right, exemplifies route planning from floor 0 to an 
office on floor 2, using the stairs, with all vectors linking the geometric centroids of all selected rooms.   

  

 
Fig. 3 Route planning, taking as starting point a room on floor 0, passing via a staircase to floor 2, and arriving at an office on floor 2. 

4.2 Localisation and Navigation 

As mentioned, a planned route is stored in a sequentially organised vector format, which includes pointers to 
the GIS of each room and access structures (doors and stairs). To guide the user along the route it is essential to 
determine the actual location, such that the system can generate the correct instructions to follow the path or to 
correct the position of the user.  

The overall algorithm is shown in a block diagram in Fig. 4. The determination of the user location is 
supported by FIFO buffer data with the navigation history of the last four detected objects. The number of four 
was experimentally chosen for not compromising the performance of the algorithm. Using less objects results 
in a greater degree of uncertainty. To validate or determine the location, the localisation algorithm is executed 
every time when a reference object has been detected.  

In the first step (a) weight values are assigned to all reference objects based on the route vector and floor 
transitions, emphasising those to be expected according to the estimated direction and last known floor. (b) 
Then, for each of the regions of the SIG (hallways, rooms, bar, bathrooms, etc.) a voting value is computed 
based on the quantitative distribution of objects stored in the navigation history, both for the regions/rooms and 
for their neighbours. The distribution is weighted by a value in function of the reference object in the region 
and identical to the last detected one with the highest weight (assigned in (a)), last known approximate position, 
navigation route, and relationship in the region between previous objects that were detected in frames with the 
same likelihood (by means of contextualisation; see Section 4).    

The next step (c) consists of verifying which region has the largest voting value. This region/room is chosen 
as the new user position. (d) Once the possible location is chosen, it is necessary to check whether it is possible 
to find the exact position within the room by analysing the reference object (identical to the last detected) with 
a greater weight, assuming a new location with the same object but with a larger weight value, that is, if its 
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value is unique among similar objects within the region. Having a new position, (e) the data for the current 
position is updated, and (f) the navigation path and the vector for the next displacement are (re-)computed. 

 
 

Fig. 4 Block diagram of localisation and navigation. 
 
Steps (a) and (b) of the algorithm need to be more detailed. The first step (a) serves to highlight the GIS 

objects that are most likely to be detected by weighting them. The calculation of the weight of the object (Pobj) 
is applied to each of the GIS objects, taking into consideration a relative weight of the displacement vector 
(Pdir) and a relative weight of a floor transition (Pf), i.e., the presence of a staircase or elevator: Pobj = Pdir + Pf. 

The weight factor for displacement (Pdir) allows to assign a greater weight to objects which are in the 
estimated direction (displacement) of the user relative to the last known position. The 2D displacement vector 
is composed of components according to the GIS south-north (ey) and west-east (ex) axes, see Fig. 5 (left), with 
the displacement vector in green (dirdisp) and the object vector in red (dirobj). In the same figure, the 2nd column 
illustrates the values of the components ex and ey for each of the quadrants. To facilitate the calculation, these 
components can only be plus one, minus one, or zero. In Fig. 5 (2nd column) dirobj = (-ex, +ey) and dirdisp = (-ex, 
-ey). 

Now we can assign Pdir a weight by checking similarities found between the vertical and horizontal 
directions of dirdisp and dirobj. The maximum weight is assigned to objects in the direction of the displacement:  
Pdir = 3 if dirdisp (ex) = dirobj (ex) and  dirdisp (ey) = dirobj (ey). Objects that agree with a single component (vertical 
or horizontal) of the displacement vector are given a smaller value: Pdir = 2 if dirdisp (ex) = dirobj (ex) or dirdisp 
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(ey) = dirobj (ey). A lower weight is assigned to objects that are in the opposite direction of the displacement 
vector. The value, however, should be more than 0 such that these objects are not totally discarded: Pdir = 1 if 
dirdisp (ex) ≠ dirobj (ex) and dirdisp (ey) ≠ dirobj (ey). 

In the case of a building with multiple floors, we emphasise GIS objects that are on the user’s current floor, 
by assigning a weight Pf (in the case of a single-floor building Pf =0). The weight is zero (Pf =0) during the 
initial phase where the position of the user is unknown, or in case when the system loses completely the 
position of the user (when the user chose a path different from the one suggested by the system), or every time 
there is a staircase (in order not to inhibit a possible floor transition). This way identical weights Pf  are given to 
objects, regardless of the floor to which they belong. The user position then only influences the region vote; see 
step (b) below. However, when the position of the user is far from a staircase, it is likely that the user will 
remain on the same floor, and it is therefore necessary to assign a greater weight to objects situated on the same 
floor. For this reason we use Pf =3 for objects on the same floor and Pf =0 for objects on the other floors.   

Step (b) consists of computing the vote for the region (room) were the user is. For each region the vote is 
calculated by Vreg = Preg × Rp + (Preg -1) × Rv, with Rp the region under analysis and Rv the neighbour region. 
Here Rp = Np /Nobj and Rv = Nv /Nobj, with Np the number of objects from the navigation history found in the 
region in question, and Nv the number of remaining navigation history objects not found in the region but which 
belong to the neighbour region. The total number of navigation history objects is Nobj, and Preg is a factor to 
highlight the regions with objects detected when compared with other neighbour regions: Preg = Pmaxobj + Ppos + 
Pperc + PID. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5 Left to right, the representation of the vector displacement (dirdisp) and the object's direction (dirobj) when the user is at the centre of 
the region, the values for each of the vertical and horizontal components ex and ey, the computation, and navigation instructions for the user 

given in clock hours (see text).  
 
Pmaxobj is the maximum value of the objects identical to the last detected ones in the region (room), i.e.  

Pmaxobj = MAX i (Pobj,i), with i the index of the detected identical objects within the region. Ppos represents the 
relationship of the neighbourhood with the region were the user is assumed to be. It serves to emphasise 
regions which are close to the region were the user was last, indicating them as more favourable to the new user 
location when compared to other, more distant regions. We assign Ppos = 2 to neighbour regions of the last 
known user position, and 0 to other regions. 

Pperc is the weight assigned to regions on the planned route. Its purpose is to highlight the regions belonging 
to the navigation route relative to other regions. When these regions have identical expected objects, we use 
Pperc = 1.5, otherwise 0. The last parameter, PID, represents the proximity of objects in the navigation history 
that were detected in frames with the same likelihood (belonging to the same GIS regions; contextualisation 
process), considering distances of up to 1 metre. For regions that validate this criterium, PID = 2, otherwise PID 
= 0. Figure 2 shows (in the right columns) in red the region of the detected landmark or reference objects 
(shown in the left columns) and in blue the next room on the route. 
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4.3 Navigation Notifications 

Recognition and navigation notifications are intended to inform the user of detected objects, text information 
(written on signs), and to guide the user on the path to the destination. Here we used vocal commands by text-
to-speech [14]. Any other interface can be used for the guidance commands [2]. Whenever a recognition of a 
new object occurs, this information is provided to the user, indicating the type of object (extinguisher, door, 
stair, text, etc.) and the detection zone in the captured image, considering the image being split into 3×3 
regions, i.e. left, centre, right and up, centre, down. For example, in case of Fig. 2 bottom-left, the system says 
“extinguisher-left-down.”  The user can select between receiving only direction notifications, or direction plus 
object and/or text notifications. 

User guidance is complex, since orientation using the cardinal points available via the GIS is very difficult 
for most if not all users. Due to this we use “hours” (see Fig. 5 right). To determine in which direction is the 
next destination, it is necessary to use the direction vector (vdir) and the displacement vector (vdisp) in order to 
verify the angle between the two. The direction vector characterises the movement performed by the user from 
the last position (P1) to the current position (P2), while the displacement vector characterises the expected 
movement from the current position (P2) to the next destination point, door or staircase (P3), proposed in the 
planned route; see Fig. 5, 3rd column.  

If δ is the angle between the displacement and direction vectors, and these vectors have angles φ and α with 
the x-axis, then δ = φ - α. Knowing δ, it is quite easy to convert to hours: h = (360- δ)/30 if  δ >0 and h = δ /30 
if δ  ≤ 0 (see Fig. 5 right). For example, in the case of Fig. 2, 1st row 3rd column, the system says “stair-three 
o’clock.” This method, based on the combination of direction and displacement vectors, is only applicable if 
the system knows the user location, through an object (or group of objects) in the GIS, and the user is really 
following the instructions along the planned route.  

5. Discussion 

We presented a route planning, localisation and navigation system which integrates an indoor GIS of a 
building with visual landmarks detected by a normal, hand-held camera. The system was designed such that it 
can easily be integrated in the Blavigator prototype. The latter is already able to detect valid paths and any 
obstacles in local navigation. The system presented here complements local navigation with global navigation, 
although only indoor. The system works in real time on a netbook computer (Intel core i3, 1st series with 2GB 
RAM) and it was tested successfully in the ISE/UAlg building. The performance time is on average 0.5s for the 
localisation and 0.3s for the route planning.  

The developed navigation framework offers robust localisation, even in cases where it is difficult to 
differentiate regions on the basis of reference objects that are present. The navigation history enables auto-
localisation, by selecting the region that combines the largest number of nearby objects in the history.  

However, the system supported in the estimated direction information to the next move (vector for 
displacement). Localisation usually fails when the user deviates from the assumed or expected path. The correct 
location is then restored as soon as sufficient navigation history (objects) or a single significant object exists. 
False positive and negative detections may also interfere negatively. In the future a verification technique that 
can rule out false detections by analysing the proximity relations with the other navigation history objects. 
Nevertheless, most planned routes could be followed from the starting to the destination, even when these were 
on different floors.  

On-going work concerns including more landmarks in the database such that all spaces can be covered more 
densely, and detecting doors and stairs from oblique viewing angles, such that the user can limit the pointing 
angles of the camera to ±45º from the front. The final goal is a system which only employs a SmartPhone with 
a built-in camera, worn by a strap around the neck. 
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