169,817 research outputs found

    Neural Natural Language Inference Models Enhanced with External Knowledge

    Full text link
    Modeling natural language inference is a very challenging task. With the availability of large annotated data, it has recently become feasible to train complex models such as neural-network-based inference models, which have shown to achieve the state-of-the-art performance. Although there exist relatively large annotated data, can machines learn all knowledge needed to perform natural language inference (NLI) from these data? If not, how can neural-network-based NLI models benefit from external knowledge and how to build NLI models to leverage it? In this paper, we enrich the state-of-the-art neural natural language inference models with external knowledge. We demonstrate that the proposed models improve neural NLI models to achieve the state-of-the-art performance on the SNLI and MultiNLI datasets.Comment: Accepted by ACL 201

    ExBERT: An External Knowledge Enhanced BERT for Natural Language Inference

    Get PDF
    Neural language representation models such as BERT, pretrained on large-scale unstructured corpora lack explicit grounding to real-world commonsense knowledge and are often unable to remember facts required for reasoning and inference. Natural Language Inference (NLI) is a challenging reasoning task that relies on common human understanding of language and real-world commonsense knowledge. We introduce a new model for NLI called External Knowledge Enhanced BERT (ExBERT), to enrich the contextual representation with realworld commonsense knowledge from external knowledge sources and enhance BERT’s language understanding and reasoning capabilities. ExBERT takes full advantage of contextual word representations obtained from BERT and employs them to retrieve relevant external knowledge from knowledge graphs and to encode the retrieved external knowledge. Our model adaptively incorporates the external knowledge context required for reasoning over the inputs. Extensive experiments on the challenging SciTail and SNLI benchmarks demonstrate the effectiveness of ExBERT: in comparison to the previous state-of-the-art, we obtain an accuracy of 95.9% on SciTail and 91.5% on SNLI

    Enhancing the Reasoning Capabilities of Natural Language Inference Models with Attention Mechanisms and External Knowledge

    Get PDF
    Natural Language Inference (NLI) is fundamental to natural language understanding. The task summarises the natural language understanding capabilities within a simple formulation of determining whether a natural language hypothesis can be inferred from a given natural language premise. NLI requires an inference system to address the full complexity of linguistic as well as real-world commonsense knowledge and, hence, the inferencing and reasoning capabilities of an NLI system are utilised in other complex language applications such as summarisation and machine comprehension. Consequently, NLI has received significant recent attention from both academia and industry. Despite extensive research, contemporary neural NLI models face challenges arising from the sole reliance on training data to comprehend all the linguistic and real-world commonsense knowledge. Further, different attention mechanisms, crucial to the success of neural NLI models, present the prospects of better utilisation when employed in combination. In addition, the NLI research field lacks a coherent set of guidelines for the application of one of the most crucial regularisation hyper-parameters in the RNN-based NLI models -- dropout. In this thesis, we present neural models capable of leveraging the attention mechanisms and the models that utilise external knowledge to reason about inference. First, a combined attention model to leverage different attention mechanisms is proposed. Experimentation demonstrates that the proposed model is capable of better modelling the semantics of long and complex sentences. Second, to address the limitation of the sole reliance on the training data, two novel neural frameworks utilising real-world commonsense and domain-specific external knowledge are introduced. Employing the rule-based external knowledge retrieval from the knowledge graphs, the first model takes advantage of the convolutional encoders and factorised bilinear pooling to augment the reasoning capabilities of the state-of-the-art NLI models. Utilising the significant advances in the research of contextual word representations, the second model, addresses the existing crucial challenges of external knowledge retrieval, learning the encoding of the retrieved knowledge and the fusion of the learned encodings to the NLI representations, in unique ways. Experimentation demonstrates the efficacy and superiority of the proposed models over previous state-of-the-art approaches. Third, for the limitation on dropout investigations, formulated on exhaustive evaluation, analysis and validation on the proposed RNN-based NLI models, a coherent set of guidelines is introduced

    Improving Natural Language Inference Using External Knowledge in the Science Questions Domain

    Full text link
    Natural Language Inference (NLI) is fundamental to many Natural Language Processing (NLP) applications including semantic search and question answering. The NLI problem has gained significant attention thanks to the release of large scale, challenging datasets. Present approaches to the problem largely focus on learning-based methods that use only textual information in order to classify whether a given premise entails, contradicts, or is neutral with respect to a given hypothesis. Surprisingly, the use of methods based on structured knowledge -- a central topic in artificial intelligence -- has not received much attention vis-a-vis the NLI problem. While there are many open knowledge bases that contain various types of reasoning information, their use for NLI has not been well explored. To address this, we present a combination of techniques that harness knowledge graphs to improve performance on the NLI problem in the science questions domain. We present the results of applying our techniques on text, graph, and text-to-graph based models, and discuss implications for the use of external knowledge in solving the NLI problem. Our model achieves the new state-of-the-art performance on the NLI problem over the SciTail science questions dataset.Comment: 9 pages, 3 figures, 5 table

    Semantic Representation and Inference for NLP

    Full text link
    Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).Comment: PhD thesis, the University of Copenhage

    Knowledge-enhanced neural grammar Induction

    Get PDF
    Natural language is usually presented as a word sequence, but the inherent structure of language is not necessarily sequential. Automatic grammar induction for natural language is a long-standing research topic in the field of computational linguistics and still remains an open problem today. From the perspective of cognitive science, the goal of a grammar induction system is to mimic children: learning a grammar that can generalize to infinitely many utterances by only consuming finite data. With regard to computational linguistics, an automatic grammar induction system could be beneficial for a wide variety of natural language processing (NLP) applications: providing syntactic analysis explicitly for a pipeline or a joint learning system; injecting structural bias implicitly into an end-to-end model. Typically, approaches to grammar induction only have access to raw text. Due to the huge search space of trees as well as data sparsity and ambiguity issues, grammar induction is a difficult problem. Thanks to the rapid development of neural networks and their capacity of over-parameterization and continuous representation learning, neural models have been recently introduced to grammar induction. Given its large capacity, introducing external knowledge into a neural system is an effective approach in practice, especially for an unsupervised problem. This thesis explores how to incorporate external knowledge into neural grammar induction models. We develop several approaches to combine different types of knowledge with neural grammar induction models on two grammar formalisms — constituency and dependency grammar. We first investigate how to inject symbolic knowledge, universal linguistic rules, into unsupervised dependency parsing. In contrast to previous state-of-the-art models that utilize time-consuming global inference, we propose a neural transition-based parser using variational inference. Our parser is able to employ rich features and supports inference in linear time for both training and testing. The core component in our parser is posterior regularization, where the posterior distribution of the dependency trees is constrained by the universal linguistic rules. The resulting parser outperforms previous unsupervised transition-based dependency parsers and achieves performance comparable to global inference-based models. Our parser also substantially increases parsing speed over global inference-based models. Recently, tree structures have been considered as latent variables that are learned through downstream NLP tasks, such as language modeling and natural language inference. More specifically, auxiliary syntax-aware components are embedded into the neural networks and are trained end-to-end on the downstream tasks. However, such latent tree models either struggle to produce linguistically plausible tree structures, or require an external biased parser to obtain good parsing performance. In the second part of this thesis, we focus on constituency structure and propose to use imitation learning to couple two heterogeneous latent tree models: we transfer the knowledge learned from a continuous latent tree model trained using language modeling to a discrete one, and further fine-tune the discrete model using a natural language inference objective. Through this two-stage training scheme, the discrete latent tree model achieves stateof-the-art unsupervised parsing performance. The transformer is a newly proposed neural model for NLP. Transformer-based pre-trained language models (PLMs) like BERT have achieved remarkable success on various NLP tasks by training on an enormous corpus using word prediction tasks. Recent studies show that PLMs can learn considerable syntactical knowledge in a syntaxagnostic manner. In the third part of this thesis, we leverage PLMs as a source of external knowledge. We propose a parameter-free approach to select syntax-sensitive self-attention heads from PLMs and perform chart-based unsupervised constituency parsing. In contrast to previous approaches, our head-selection approach only relies on raw text without any annotated development data. Experimental results on both English and eight other languages show that our approach achieves competitive performance
    • …
    corecore